山西省2020年中职对口升学考试数学真题试题含答案WORD版可编辑

合集下载

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题本试卷分选择题和非选择题两部分。

满分100分,考试时间为90分钟。

选择题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列 ,12,7,5,3,1-n 则53是它的( )A.第22项B. 第23项C. 第24项D. 第28项 3.[]0)(log log log 543=a ,则 =a ( ) 5 B.25 C. 125 D.625 4.设向量a =(2,-1),b=(x,3)且a⊥b则x=( )A.21B.3C.23D.-25.下列四组函数中,表示同一函数的是( ) A .2)1(与1-=-=x y x yB .11与1--=-=x x y x yC .2lg 2与lg 4x y x y ==D .100lg与2lg xx y =-=6.函数x x ycos 4sin 3+=的最小正周期为( )A. πB. π2C. 2πD.5π7.若函数2()32(1)f x x a x b =+-+在(,1]-∞上为减函数,则 ( )A .2-=aB .2=aC .2-≥aD .2-≤a8.在ABC ∆中,已知222c bc b a ++=,则A ∠的度数为( )3π B. 6π C. 32πD. 3π或32π9.已知直线b a ,是异面直线,直线c a//,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面10.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( ) A.x y162= B. x y 122= C.x y 16-2= D. x y 12-2=非选择题二、填空题(本大题共8小题,每空4分,共计32分。

山西省2020 年对口升学考试数学

山西省2020 年对口升学考试数学

.
15(. 101011)2 转化为十进制数为
.
16. 如果直线 x+3y-2=0 与直线 ax-y+2=0 垂
直,则 a=
.
17(.
1 125
)-
1 3
+8
2 3
=
.
8.已知三个向量a軆,b軋,c軆顺次连接构成一个三角
形,则a軆+b軋+c軆=
.
三、解答题(本大题共 6 小题,共计 38 分)
扇设 设
32 分)
11援log318-log36=
.
12.函数 y=sin2x-cos2x(x沂R)的最小正周期 T=
.
13.x4=a0+a(1 1+x)+a(2 1+x)2+a(3 1+x)3+a(4 1+x)4,
则 a3=
.
14.
若椭圆
x2 16
+
y2 9
=1 上一点 P 到一个焦点的
距离为 2,则点 P 到另一个焦点的距离为
A.y=
1 x
B援y= 姨 x
C援y=x2
D援y=x3
5.直线 .1
D.2
6.若 sin琢<0,cos琢>0,则角 琢 为
A.第一象限角
B援第二象限角
C援第三象限角
D援第四象限角
7.在吟A BC 中,蚁A ,蚁B,蚁C 所对应的边分别
为 a,b,c,已知 b=姨 3 ,蚁A =45毅,蚁B=60毅,则 a=
C. 嗓 a,b,c 瑟 D.茵/
2.在等差数列 嗓 an 瑟 中,已知 a1=3,a3=9,则公差 d=

中职对口升学高考《数学》试题

中职对口升学高考《数学》试题
33.(7分)在等差数列{an}中,已知 =20, 与2的等差中项等于 与3的等比中项.
(1)求数列{an}的通项公式;
(2)求数列{an}的第8项到第18项的和.
34.()
35.(6分)设抛物线的对称轴为坐标轴,顶点为坐标原点,焦点在圆 的圆心,过焦点作倾斜角为 的直线与抛物线交于A、B两点.
A. B. C. D.
3.“a=b”是“lga=lgb”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.下列函数是奇函数且在(0, )内是单调递增的是( )
A.y=cos(π+x) B.y=sin(π-x) C.y=sin ( -x) D.y=sin2x
5.将函数y=3sin(x+ )的图像向右平移 个周期后,所得的图像对应的函数是( )
27.直线l∥平面,直线b⊥平面,则直线l与直线b所成角是.
28.在△ABC中,∠C=900, 则 .
29.已知正方形ABCD所在平面与正方形ABEF所在平面成直二面角,则 __________.
30.从数字1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 _____________.
13.已知 的第k项为常数项,则k为( )
A.6 B.7 C.8 D.9
14.点M(3,4)关于x轴对称点的坐标为( )
A.(-3,4) B.(3,-4) C.(3,4) D.(-3,-4)
15.已知点P是△ABC所在平面外一点,若PA=PB=PC,则点P在平面ABC内的射影O是△ABC的 ( )
A.重心 B.内心 C.外心 D.垂心
10.下列四组函数中表示同一函数的是( )

中职数学对口升学优质试题2020年

中职数学对口升学优质试题2020年

2020年三轮随堂检测(七) (本试卷满分90分,答题时间40分钟)姓名_______________得分______一、选择题(本大题共12小题,每小题5分,共60分。

)1.已知集合A ={-1,0,1,2},B ={}x |x 2≤1,则A ∩B =( ). A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}2.不等式2x 2-x -1>0的解集是( ). A.(-12,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-12)∪(1,+∞)3.下列函数中是偶函数的是( ). A.y =2|x |-1,x ∈[-1,2] B.y =x 2+xC.y =x 3D.y =x 2,x ∈[-1,0)∪(0,1] 4.函数f (x )=x 2-5x +6的定义域为( ). A .{x |x ≤2或x ≥3} B .{x |x ≤-3或x ≥-2} C .{x |2≤x ≤3}D .{x |-3≤x ≤-2}5.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A.第一象限B.第二象限C.第三象限D.第四象限6.已知角α的终边经过点P (-3,1),则cos2α=( ) A.35B.-35C.45D.-457.在等差数列{an }中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.98.已知向量→a=(m,2), →b=(3,-6),若|→a+→b|=|→a-→b|,则实数m的值是().A.-4B.-1C.1D.49.若直线x+(1+m)y-2=0和直线mx+2y+4=0平行,则m的值为()A.1B.-2C.1或-2D.-2 310.由数字0,1,2,3组成的无重复数字的4位数中,比2019大的数的个数为()A.10B.11C.12D.1311.下面四个结论:(1)垂直于同一个平面的两个平面平行(2)垂直于同一直线的两个平面平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行其中正确的结论个数是A.0B.1C.2D.312已知双曲线的实轴长为2,焦点为(-4,0),(4,0),则该双曲线的标准方程为()A.x 212-y 24=1B.x 24-y 212=1C.x 2-y215=1D.y 215-x 2=1二、填空题(本大题共6小题,每小题5分,共30分。

2020年山西省对口升学模拟数学试题

2020年山西省对口升学模拟数学试题

2020年山西省对口升学模拟数学试题一、单项选择题(每题3分)1.设集合M={x|1≤x ≤3},N={x|2≤x ≤4},则M ∪N= ( ) A.{X|1≤x ≤4} B.{x|2≤x ≤3} C.{x|1≤x ≤2} D.{x|3≤x ≤4}2.下列关系中正确的是 ( ) A.0∈∅ B.{0}∉∅ C.0=∅ D.0≠∅3.下列函数中,值域为(0,+∞)的函数是 ( ) A.f(x)=2x B.f (x )=√x C.f (x )=lg x D.f(x)=x 24.若a <b <0,则下列不等式中成立的是 ( ) A.1a <1b B.1a−b >1b C.|a |>|b | D.1a >1b−a5.“|a |=1”是“a=±1”的 ( ) A.充分条件 B.必要条件C.充要条件D.既不充分也不必要条件6.已知向量a,b 满足|a |=3,|b |=2,|a +b |=4,则|a −b |= ( ) A.√3 B.√5 C.3 D.√107.已知a =(-1,3),b =(x ,-1),则a ∥b ,则x= ( ) A.-3 B.﹣13 C.3 D.138.双曲线9x 2-4y 2=36的渐近线方程是 ( ) A.y=±23x B.y=±49x C.y=±32x D.y=±94x9.等差数列{a n }中,a 1+a 2+a 3=﹣24,a 18+a 19+a 20=78,则此数列前20项的和为 ( ) A.160 B.180 C.200 D.22010.在正方体A 1B 1C 1D 1-ABCD 中,A 1B 与A D 1所成的角的大小为 ( ) A.π6B.π4C.π3D.π2三.解答题(共38分)19.已知二次函数的图像过点(3,8),且对称轴x=2,与x 轴相交的两点之间的距离为6,求该函数解析式.(6分)拍照上传区域20.化简:√3tan√1+2sin50°∙cos50°(6分)21 .一个袋子中装有10个不同颜色的小球,其中白色球有8个,黑色球有2个,从中任意取出3个球.(6分)(1)共有多少种不同的取法?(2)取出的3个球中,恰有一个是黑球的不同取法有多少种?(3)取出的3个球中,至少有一个是黑球的不同取法有多少种?21.设等差数列{a n}的前n项和公式是S n=5n2+3n,求它的前3项,并求它的通项公式. 23.设抛物线y2=4x被直线y=2x+m截得的弦长为3√5,求m的值.(6分)24.在长方体ABCD-EFGH中,AB=BC=3,A E=4,求异面直线AF与E D所成角的余弦值.(8分)。

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题(答案解析)

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题(答案解析)

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.33.已知132a =,2log 0.3b =,b c a =,则()A.a b c<< B.b a c<< C.c a b<< D.b c a<<4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.45.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.566.函数π)()ex f x =的图象大致为()A. B.C. D.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.278.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.050.010k 3.8416.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为33的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题答案解析一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<【答案】B 【解析】【分析】求出集合,M N 后可得它们的交集.【详解】{(],1M x y ===-∞,{}()2200,2N x x x =-<=,故(]0,1M N = .故选:B.【点睛】本题考查集合的交运算以及一元一次不等式、一元二次不等式的解,考虑集合运算时,要认清集合中元素的含义,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图象.2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.3【答案】C 【解析】【分析】利用复数的除法计算可得z ,再利用复数的模的计算公式可得z .【详解】因为1i 21i z +-=-,故()()1i 1i 222z i ++=+=+,故z =故选:C.【点睛】本题考查复数的乘法和除法以及复数的模,注意复数的除法是分子、分母同乘以分母的共轭复数,本题属于基础题.3.已知132a =,2log 0.3b =,b c a =,则()A.a b c << B.b a c<< C.c a b<< D.b c a<<【答案】D 【解析】【分析】根据对数函数的单调性和指数函数的单调性可得三者之间的大小关系.【详解】因为2log y x =为增函数,且0.31<,故22log 0.30log 1b =<=,又2x y =为增函数,且103>,故103221a =>=,又x y a =为增函数,且0b <,故001b a a c =<=<,故b c a <<.故选:D .【点睛】本题考查指数幂、对数式的大小关系,此类问题的关键是根据底数的形式构建合理的单调函数,必要时还需利用中间数来传递大小关系.4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.4【答案】B 【解析】【分析】根据题意,分析圆22(4)(3)4x y -+-=的圆心以及半径,由勾股定理分析可得||PQ =,当||PC 最小时,||PQ 最小,由点与圆的位置关系分析||PC 的最小值,计算可得答案.【详解】由题意可知,点P 在圆221x y +=上,圆22(4)(3)4x y -+-=的圆心(4,3)C ,半径2r =过点P 作圆22(4)(3)4x y -+-=的切线,切点为Q ,则||PQ =当||PC 最小时,||PQ 最小又由点P 在圆221x y +=上,则||PC 的最小值为||114OC -==则||PQ==;故选:B.【点睛】本题主要考查了直线与圆位置关系,涉及直线与圆相切的性质,属于中档题.5.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.56【答案】B 【解析】【分析】设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,结合等差数列的通项公式及求和公式即可求解.【详解】解:设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,故113327a d a d +=+,15105a d +=,解可得,123a =,16d =,故任意两人所得的最大差值243d =.故选:B.【点睛】本题主要考查了等差数列的通项公式及求和公式在实际问题中的应用,属于基础题.6.函数π)()ex f x =的图象大致为()A. B.C. D.【答案】A 【解析】【分析】利用()10f <,结合选项运用排除法得解.【详解】解:1)(1)0ln f e=<,可排除选项BCD ;故选:A.【点睛】本题主要考查函数图象的识别和判断,利用特征值的符号是否与选项对应是解决本题的关键.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.27【答案】D 【解析】【分析】写出i j OP OP +所有可能结果,结合条件找到满足点M (异于点O )落在坐标轴上的结果,根据古典概率进行求解.【详解】由题意可知i j OP OP +所有可能结果有:12131415161718OP OP OP OP OP OP OP OP OP OP OP OP OP OP +++++++ ,,,,,,,232425262728OP OP OP OP OP OP OP OP OP OP OP OP ++++++ ,,,,,,3435363738OP OP OP OP OP OP OP OP OP OP +++++ ,,,,,45464748OP OP OP OP OP OP OP OP ++++ ,,,,565758OP OP OP OP OP OP +++ ,,,676878OP OP OP OP OP OP +++ ,,,共有28种;点M (异于点O )落在坐标轴上的结果有:23456718OP OP OP OP OP OP OP OP ++++,,,,14365827OP OP OP OP OP OP OP OP ++++,,,,共有8种;所以点M (异于点O )落在坐标轴上的概率为82287p ==.故选:D.【点睛】本题主要考查古典概率的求解,求出所有基本事件及符合题意的基本事件是解题关键,侧重考查数学建模的核心素养.8.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭【答案】A 【解析】【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,得出结论.【详解】解:将函数()cos f x x =的图象向右平移23π个单位长度,可得2cos()3y x π=-的图象;再将各点的横坐标变为原来的1(0)ωω>,得到函数2()cos()3g x x πω=-的图象.若()g x 在[0,]2π上的值域为1[,1]2-,此时,22[33x ππω-∈-,2]23ωππ-,220233ωπππ∴-,求得4833ω ,故选:A.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,属于基础题.二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β【答案】BC 【解析】【分析】根据直线和直线,直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】若//m α,βn//,//αβ,则//m n 或,m n 异面,A 错误;若m α⊥,αβ⊥,则//m β或m β⊂,当//m β时,因为n β⊥,所以m n ⊥;当m β⊂时,由n β⊥结合线面垂直的性质得出m n ⊥,B 正确;若//m n ,m α⊥,则n α⊥,又n β⊥,则//αβ,C 正确;若//m n ,n α⊥,则m α⊥,又αβ⊥,则//m β或m β⊂,D 错误;故选:BC【点睛】本题考查了直线和直线,直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力.10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.050.01k 3.841 6.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关【答案】AC【解析】【分析】由于参加调查的男女生人数相同,则设为m人,从而可求出男女生中喜欢攀岩的人数和不喜欢攀岩的人数,再代入2K公式中计算,可得结论.【详解】解:由题意设参加调查的男女生人数均为m 人,则喜欢攀岩不喜欢攀岩合计男生0.8m0.2m m 女生0.3m 0.7m m合计1.1m0.9m2m所以参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多,A 对B 错;22222(0.560.06)501.10.999m m m m K m m m m -==⋅⋅⋅,当100m =时,2505010050.505 6.6359999m K ⨯==≈>,所以当参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关,C 对D 错,故选:AC【点睛】此题考查了独立性检验,考查了计算能力,属于基础题.11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为3的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形【答案】ABD 【解析】【分析】由2222()()0F P F A F P F A +-= ,2222||||F P F A F P F A +=- ,可得22||||F A F P = ,22F A F P ⊥,及c =,再由a ,b ,c 之间的关系求出a ,b 的值,进而求出双曲线的方程及渐近线的方程,可得A ,B 正确;求过1F作斜率为3的直线方程,与C 的渐近线方程求出交点M ,N 的坐标,求出||MN 的值,再求O 到直线MN 的距离,进而求出OMN 的面积可得C 不正确;求出2F 关于渐近线的对称点Q 的坐标,进而求出||OQ ,1|OF |,1||QF 的值,可得1QOF 为正三角形,所以D 正确.【详解】解:由2222()()0F P F A F P F A +-= ,可得2222F P F A = ,即22||||F A F P = ,由2222||||F P F A F P F A +=- ,可得22F A F P ⊥,将x c ==代入双曲线的方程可得2||by a =,由题意可得2222b ac a c c a b ⎧=+⎪⎪⎪=⎨⎪=+⎪⎪⎩解得234a =,294b =,所以双曲线的方程为:2244139x y -=,渐近线的方程:b y x a =±=,所以A ,B 正确;C 中:过1F 作斜率为33的直线,则直线MN的方程为:x =,则x y ⎧=-⎪⎨=⎪⎩解得:2x =,32y =,即(2M ,32,则x y ⎧=-⎪⎨=⎪⎩,解得:4x =-,34y =,即(4N -,34,所以3||2MN ==,O 到直线MN的距离为2d ==,所以113||22228△=== MNO S MN d 所以C 不正确;D 中:渐近线方程为y =,设2F ,0)的关于渐近线的对称点(,)Q m n ,则32233n m ⎧+=⎪⎪⎨=-解得:m =,32n =,即(2Q -,32,所以||OQ ==,1||OF =,1||QF ==,所以1QOF 为正三角形,所以D 正确;故选:ABD.【点睛】本题考查由向量的关系线段的长度及位置关系,及点关于线的对称,和三角形的面积公式,属于中档题.12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点【答案】BCD 【解析】【分析】对于A,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A;对于B,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B.对于C,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C.对于D,构造函数()()cos g x f x x=-,利用导数法求出单调区间,结合零点存在性定理,即可判断D.【详解】根据题意,对于A,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=-即(4)(2)()f x f x f x +=-+=则()f x 是周期为4的周期函数,A 错误;对于B,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-;故B 正确.对于C,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--,[0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---,[6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x=-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin 20g g '=>'=-+<,存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增,0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点,即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--,则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增,且()()3sin3>0,22+sin 20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=,所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<,又()()2cos 2>0,4cos 4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点,所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,,当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点,当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确;故选:BCD.【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.【答案】1516【解析】【详解】试题分析:通项为261231661()()(1)22r r rr r r r r T C x C x x---+=-=-,令1230r -=,得4r =,所以常数项为422456115()()216T C x x =-=.考点:二项展开式系数【方法点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.【答案】59-【解析】【分析】直接利用向量共线的充要条件列出方程求解,然后利用二倍角公式求解即可.【详解】解:向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭ b ,且// a b ,∴可得tan cos 3θθ=,sin 3θ∴=,225cos 212sin 129θθ∴=-=-⨯=-.故答案为:59-.【点睛】本题考查向量共线的充要条件,二倍角的余弦函数的应用,考查计算能力,属于基础题.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.【答案】2【解析】【分析】直线CD 的方程与椭圆的方程联立求出两根之和及两根之积,进而求出弦长CD ,再求两条平行线间的距离,进而求出平行四边形的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率.【详解】解:设1(C x ,1)y ,2(D x ,2)y ,联立直线1l 与椭圆的方程:22221y x c x y ab =-⎧⎪⎨+=⎪⎩,整理可得:22222222()20a b x a cx a c a b +-+-=,212222a cx x a b +=+,22221222a c ab x x a b -=+,所以222||CD a b ==+,直线1l ,2l 间的距离d ==,所以平行四边形的面积2222||2S CD d b a b===+ ,整理可得:2220c a +-=,即220e +-=,解得:2e =±,由椭圆的性质可得,离心率2e =故答案为:2【点睛】本题考查椭圆的性质及直线与椭圆的综合,属于中档题.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.【答案】(1).52π3(2).3【解析】【分析】由题意画出图形,找出四棱锥外接球的球心,利用勾股定理求半径,代入球的表面积公式求球的表面积,再由球的对称性可知,球表面上的点到平面BCED 距离的最大值为半径加球心到面的距离.【详解】解:如图,取BC 的中点G ,连接,,DG EG AG ,AG 交DE 于K ,可知DG EG BG CG ===,则G 为等腰梯形BCED 的外接圆的圆心,过G 作平面BCED 的垂线,再过折起后的ADE 的外心作平面ADE 的垂线,设两垂线的交点为O ,则O 为四棱锥A BCED -外接球的球心,因为ADE 的边长为2,所以33OG HK ==,所以四棱锥A BCED -外接球的半径223392()33OB =+=,所以四棱锥A BCED -外接球的表面积为23952433ππ⎛⎫⨯= ⎪ ⎪⎝⎭,由对称性可知,四棱锥A BCED -外接球的表面上一点P 到平面BCED 的最大距离为:393393333++=故答案为:52π3;3933+【点睛】此题考查空间中点、线在、面间的距离计算,考查空间想象能力,属于中档题.。

中等职业学校对口升学考试数学模拟试题

中等职业学校对口升学考试数学模拟试题

中等职业学校对口升学考试数学模拟试题(一)(时间:120分钟;分数:150分)一、选择题(12小题,每题5分,共60分) 1. 已知集合{}1,2,3,4A =,集合{}2,4B =,则A B =( )(A ){}2,4 (B ){}1,3 (C ){}1,2,3,4 (D )∅ 2.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) (A )22(2)5x y -+=(B )22(2)5x y +-=(C )22(2)(2)5x y +++= (D )22(2)5x y ++= 3.的展开式中的系数是( )(A )6 (B )12 (C )24 (D )48 4.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) (A )等腰直角三角形 (B )直角三角形(C )等腰三角形(D )等腰或直角三角形5.已知实系数一元二次方程01)1(2=+++++b a x a x 的两个实根为21,x x , 且 1,1021><<x x ,则a b的取值范围是( ) (A )]21,1(-- (B ))21,1(-- (C ) ]21,2(-- (D ))21,2(--6.阅读右图所示的程序框图,运行相应的程序,输出的结果是( ). (A )3 (B )11 (C )38 (D )1234)2(x x +3x第9题7.已知x 、y 的取值如下表所示:若y 与x 线性相关,且ˆ0.95y x a =+,则a =( )x0 1 3 4 y2.24.34.86.7(A )2.2 (B )2.9 (C )2.8(D )2.68.设A 、B 为直线y x =与圆221x y += 的两个交点,则||AB = ( )(A )1 (B )2 C 3 D 2 9.如下图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A )14 (B )13 (C )12 (D )2310.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )(A )l 与C 相交(B )l 与C 相切(C )l 与C 相离 (D )以上三个选项均有可能11.若a ∈R ,则“1a =”是“1a =”的( )条件(A )充分而不必要 (B )必要而不充分 (C )充要 (D )既不充分又不必要12.一束光线从点)11(,-A 出发经x 轴反射,到达圆C :13-2-22=+)()(y x 上 一点的最短路程是( )(A )4(B )5(C )32-1(D )26二.填空题(6小题,每题5分,共30分)13.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3 个黑球,从袋中任取一球,颜色为黑色的概率等于 .14.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜 率k 的取值范围是 ______________________.15.函数y =____________. 16. 若向量()1,1a =,()1,2b =-,则a b ⋅等于_____________.17. 已知函数2,0,()5,0,x x f x x x <⎧=⎨->⎩则((2))f f = . 18. 设x 、y 满足条件310x y y x y +≤⎧⎪≤-⎨⎪≥⎩,则z x y =+的最小值是 .三.解答题(6小题,共60分)19. (8分)已知不等式220ax bx +->的解集是124x x ⎧⎫-<<-⎨⎬⎩⎭,求,a b 的值;f x=R,求实数a的取值范围.20. (8分)若函数()21.(10分)用定义证明函数f(f)=−5f−3在R上是减函数.22.(10分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为6,且经过点31(,)22.求椭圆C 的方程.23.(12分)如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,,AB BC D ⊥为AC 的中点,12A A AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2) 求四棱锥11B AA C D -的体积.24.(12分)已知圆O :122=+y x ,圆C :1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|. (Ⅰ)求实数a 、b 间满足的等量关系; (Ⅱ)求切线长|PA|的最小值;BPA模拟试题(一)参考答案一.选择题(12小题,每题5分,共60分)1.A2.D)42,42(-3.C4.C5.D6.B7.D8.B9.C 10.A 11.A 12.A二.填空题(6小题,每题5分,工30分) 13. 0.5 14.15.16.1 17.-1 18.1三.解答题(6小题,共60分)19.(8分)依题意知12,4--是方程220ax bx +-=的两个根,]1,43(12()44129(2)()4b a ab a ⎧-+-=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪--=-⎪⎩20.(8分)①当0a =时,()3f x =,其定义域为R ;②当0a ≠时,依题意有20136360a a a a >⎧⇒<≤⎨∆=-≤⎩ 21.(10分)证明:设 f 1,f 2 为任意两个不相等的实数,则∆f =f (f 2)−f (f 1)=(−5f 2−3)−(−5f 1−3)=−5(f 2−f 1),Δf Δf =−5(f 2−f 1)f 2−f 1=−5<0 ,所以,函数 f (f )=−5f −3 在 R 上是减函数.22.(10分)解: 由22222221,3a b a e a b -==-=得b a = 由椭圆C 经过点31(,)22,得2291144a b+= ② 联立① ②,解得1,b a ==所以椭圆的方程是2213x y +=23.(12分)(1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD ,因为 四边形11BCC B 是平行四边形,C。

山西省2020年对口升学考试真题(含答案)

山西省2020年对口升学考试真题(含答案)

山西省2020年对口升学考试真题英语第一部分共答题(所有考生作答,共70分)一、语音(本大题共10小题,每小题1分,共计10分)从A、B、C、D四个选项中,选出划线部分发音不同的一项。

1.A.cook B.cool C.book D.foot2.A.clean B.deal C.dead D.dream3.A.drive B.difficult C.drink D.distance4.A.luck B.custom C.industrial D.during5.A.wound B.loud C.proud D.ground6.A.focus B.almost C.clothes D.honestmp B.value C.patient D.manner8.A.force B.afford C.work D.according9.A. allow B.snow C.throw D.blow10.A.honor B.hour C.honest D.history二、单项选择题(本大题25分,每小题1分,共计25分)从A、B、C 、D四个选项中,选出空白处的最佳选项。

11.My friend Jane was born______Frbruary6th,2000.A.atB.inC.onD.for12.I don’t believe he could drive____he told me.A.onceB.sinceC.whileD.until13.Among the experts, attending the conference are five_________.A.woman chemistB.woman chemistsC.women chemistD.women chemists14.--______will Mum be back?--In about two hours.A.How fastB.How soonC.How longD.How much15.—What did Sandy say?-----She said they_____a school trip the next weekend.A.hadB.haveC.will haveD.would have16.Every means_____tried,but all in vain.A.hasB.haveC.has beenD.have been17.Do you remember______he said at the meeting.A.all thatB.that whichC.all whatD.anything of which18.Never leave to others what you can do____.A.itB.itselfC.yourselfD.themselves19.The match was put off,_____was exactly_____he wanted.A.it;whatB.that;thisC.which;whatD.that;what20.I know all about the story because I _____it three times.A.had readB.readC.have readD.had been readingst week,the teacher,as well as a number of students,______to attend the party.A.was invitedB.be invitedC.were invitedD.had been invited22.He told me I _____go to see him at any time.A.canB.mightC.wouldD.should23.He proposed that the question____at the next meeting.A.be discussedB.is discussedC.to be discussedD.would be discussed24.The gas,if____with some air,burns rapidly.A.mixB.mixingC.mixesD.mixed25.Please give the key to_____comes first.A.whoB.whomC.whoeverD.whomever26.The only thing_____can be done is to stop them from going there.A.whoB.thatC.whatD.which27.Bruce and John have arrived,but ____students in the class aren’t here yet.A.otherB.the otherC.othersD.the others28.Please tell me____.A.what does mean the sentenceB.what this sentence meansC.what means this sentenceD.what does this sentence mean29.The man had a ____escape when he ran across the street in front of the bus.A.goodB.fineC.closeD.narrow30.Warm sunshine ____the coming of spring.A.instructsB.linksbinesD.announces31.We were____in the middle of our telephone conversation.A.cut offB.put offC.let offD.called off32.He was late again because he _____.A.oversleepsB.had oversleptC.has oversleptD.was oversleeping33.If traffic problems are not solved soon,driving in the city____impossible.A.becomeB.becomesC.will becomeD.will have become34.He asked me how many days____to finish the experiment.A.it had takenB.would it takeC.had it takenD.it was taken35.And now we must leave______. It is too late.A.right awayB.on averageC.by chanceD.by accident三、完型填空(本大题共15小题,每小题1分,共计5分)从A、B、C 、D四个选项中,选出空白处的最佳选项。

2020山西省中考数学试题(word版,含答案)(共3套)

2020山西省中考数学试题(word版,含答案)(共3套)
1.将-3+(-1)的结果是()。
A. 2 B. -2 C. 4 D. -4
2.下列运算错误的是()
A. B. C. D.
3.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心称图形但是不是轴对称图形的是()
4.如图,在△ABC中,点D,E分别是边AB,BC的中点,若
△DBE的周长是6,则△的周长是()。
山西省中考数学参考答案
山西省中考数学试题(二)
一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.(2016·山西) 的相反数是()
A. B.-6C.6D.
2.(2016·山西)不等式组 的解集是()
A.x>5B.x<3C.-5<x<3D.x<5
且点B的横坐标为1.过点A作AC⊥y轴交反比例函数 (k≠0)的图象于
点C,连接BC。
(1)求反比例函 数的表达式。
(2)求△ABC的面积。
20.(本题8分)
随着互联网、移动终端的迅速发展,数字化阅读
越来越普及,公交、地铁上的“低头族”越来越多。
某研究机构针对“您如何看待数字化阅读”问题进
行了随机问卷调查(问卷调查表如右图所示),并将
13.如图,四边形ABCD内接于⊙的直径,点C为 的中点。
若∠A=40°,则∠B=度。
14.现有两个不透明的盒子,其中一个装有标号为别为1,2的两张卡片,
另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同。若
从两个盒子中随机抽取一张卡片,则两张卡片标号恰好相同的概率是。
15.太原市公共自行车的建设速度、单日 租骑量等四项指标稳居全国首位,公共自行车车桩的截面示意图如图所示,

山西省2020年对口升学考试数学真题解析版+原卷版试题含答案PDF版

山西省2020年对口升学考试数学真题解析版+原卷版试题含答案PDF版

山西省2020年高职对口招生考试数学试题解析版一、选择题(本大题共10小题,每小题3分,共计30分)1.设集合A={a,b},B={a,b,c},则B A ⋂=()A.{a,b}B.{a}C.{a,b,c}D.φ【答案】:A 【解析】:“交集”运算取2个集合的公共元素,故B A ⋂={a,b}2.等差数列{n a }中,已知9,331==a a ,则公差d 等于()A.2B.1C.3D.4【答案】:C【解析】:323913d 13=-=--=a a .3.已知13,0log 31>>ba ,则()A.a>1,b<0B.a>1,b>0C.0<a<1,b<0D.0<a<1,b>0【答案】:D【解析】:10log )(,1310,1lo 0log 313131<<∴=<<=>a x x f g a 是减函数函数由于,0b 313=>底数3>1,由函数xx f 3)(=是增函数知,b>0.故0<a<1,b>0.选D4.下列函数在),0(+∞为单调递减的是()A.xy = B.x1y =C.2y x = D.3y x =【答案】:B【解析】:选项A.21x x y ==是幂函数,在),0(+∞上,a x =y 当幂指数a>0时是增函数,a<0时是减函数;选项B ,反比例函数xky =,当k>0时,函数图像过一、三象限的双曲线,满足在),0(+∞是减函数;选项C,2y x =是二次函数,函数图像是一条开口向上且关于y 轴对称的抛物线,故2y x =在),0(+∞上单调递增;选项D ,3y x =图像是一条关于原点对称的上升曲线(从左往右看)函数在R 上单调递增.5.已知直线x-y-2=0,则此直线的斜率为()A.-1B.-2C.1D.2【答案】:C 【解析】:x-y-2=0变形为斜截式方程y=x-2,可知斜率k=1.6.已知0cos ,0sin ><αα,则α在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】:D 【解析】:考察三角函数值在各个象限的符号,可通过各象限内点的坐标的正负和三角函数定义来推导得出,记忆口诀:第一至第四象限的角的正弦值依次为“正正负负”,余弦值依次为“正负负正”,正切值为“正负正负”,也可借助口诀“全STC ”来记忆。

2020年中职文化普测数学试题大全(含答案)

2020年中职文化普测数学试题大全(含答案)

2020数学普测题大全(含答案)第一大题单选题(T41-T46)T41 不等式1.下列所给的不等式为一元二次不等式的是(D)。

A.3x+4<0B. 1x+ 1>0 C. √x+1<0 D. x2-x+1<02.长方形长为x厘米,宽为x-4厘米(x>4),要使此长方形面积大于50平方厘米,可用以下不等式表示为(A)。

A.X(X-4)>50B. X(X-4)<50C. X(X-4)≥50D. X(X-4)≤503.集合R用区间表示为(D)。

A. (-∞,0)B. (0,+∞)C. RD. (-∞,+∞)4.若a<0,则下列不等式不正确的是(B)。

A. 4+a>3+aB. 4a>3aC. 3a>4aD.4-a>3-a5.不等式|X-2|<3的解集是(C)。

A.{X|X<-1}B. {X|X>5}C. {X| -1< X<5 }D. {X|X<-1或X>5}6.若|X|>3,则x的取值范围是(A)。

A. {X|X<-3或x>3}B. {X| x>3}C. {X|X<-3 }D. {X|-3<X<3 }7.元素3属于以下哪个区间(D)。

A.(1,2)B. (0,2)C. (0,1)D. (2,4)8.若a=x4+2x2+1,b=x4+x2+1,则(B)。

A. a≤bB. a≥bC. a>bD. a<b9.若不等式(x-c)(x+2)<0的解集为(-2,5),则c的取值为(B)。

A. 4B. 5C. 6D.310.集合A=(-1,4),集合B=[0,5],则AUB=(D)。

(-1,5) B .[-1,5] C. R D.(-1,5]11.不等式|2X-3|>5的解集是(A)。

A.{x|x<-1或x≥4}B.{x|-1<x<4}C.{x|x<-1}D.{x|x>4}12.不等式|X+2|<5在正整数集中的解集是(A)。

山西省2020年中职对口升学考试数学真题试题含答案WORD版可编辑

山西省2020年中职对口升学考试数学真题试题含答案WORD版可编辑

太原 郝志隆 编辑整理山西省2020年对口升学考试数学试题一、选择题(本大题共10小题,每小题3分,共计30分)1.设集合A={a,b},B={a,b,c},则B A ⋂=( ) A.{a,b}B. {a}C.{a,b,c}D.φ2.等差数列{n a }中,已知9,331==a a ,则公差d 等于( ) A.2B. 1C. 3D. 43.已知13,0log 31>>b a ,则( ) A.a>1,b<0B. a>1,b>0C.0<a<1,b<0D. 0<a<1,b>04.下列函数在),0(+∞为单调递减的是( )A.x y = B.x1y =C.2y x =D.3y x =5.已知直线x -y -2=0,则此直线的斜率为( )A.-1 B. -2 C. 1 D. 26.已知0cos ,0sin ><αα,则α在( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限7.ABC ∆中,角A ,角B ,角C 的对边分别为a,b,c ,已知︒=∠︒=∠=6045,3B A b ,,则a=( )A.2B.3C.223 D.68.双曲线14x 22=-y 的渐近线方程为( ) A.x 21y ±=B.x 2y ±=C.x 41y ±=D.x 4y ±=9. 如图,在正方体1111D C B A ABCD -中,E 是1CC 的中点,则直线AE 与平面ABCD 所成角的正切值为( )A.31 B.42C.322 D.2ABCD C 1 B 1D 1A 1E 第9题山西省2020年对口升学数学试题真题解析10.已知平面向量→→b 、a 不共线,若向量→→→→→→→→→-=+-=+=b a CD b a BC b a AB 33,82,5,则( ) A.ACD 三点共线B. ABC 三点共线C.BCD 三点共线D. ABD 三点共线二、填空题(本题共8小题,每小题4分,共计32分)11.6log 18log 33-= .12.x x y 22cos sin -=的最小正周期T 为 .13.若=++++++++=3443322104,)1()x 1()1()1(x a x a a x a x a a 则 .14.若椭圆19y 1622=+x 上有一点P 到一个焦点的距离为2,则到另一个焦点的距离为 . 15.2)101011(转为十进制的数为 .16.设直线x+3y -2=0与直线ax -y+2=0垂直,则a= .17.3231-81251⋅)(= . 18.向量→→→c b a ,,顺次相连构成一个三角形,则=++→→→c b a .三、解答题(本大题共6小题,共38分)19.(4分)已知⎪⎩⎪⎨⎧>-≤-=1,181|,3|)(x x x x x f ,求f[f(-2)].20.(6分)从2男2女4名羽毛球运动员中选出男女各一名配对参加混合双打,求其中男运动员甲被选中的概率.21.(7分)同一平面内有向量52||),2,1(==→→b a ,且→→b a //,求向量→b 的坐标.22.(7分)求经过点A(5,2),B(3,2),且圆心在直线2x -y -3=0上的圆的方程23.(6分)已知等差数列}{n a 的前n 项和为n S ,225S ,5a 153==,求n a24.(8分)]5,5[,22)(f 2-∈++=x ax x x ,求(1)当a=-1时,求函数的最大值和最小值;(2)若函数f(x)在[-5,5]上是单调函数,求实数a 的取值范围.太原 郝志隆 编辑整理2020年山西省对口升学考试数学参考答案一、选择题二、填空题11.1 12.π13. -4 14. 615. 43 16. 3 17. 9 18.→三、解答题19.(4分)解:f(-2)=|-2-3|=5,f[f(-2)]=f(5)=21-58=,故f[f(-2)]=220.(6分)解:设“男运动员甲被选中”为事件A ,基本事件总数为41212=⋅C C ,甲被选中的基本事件个数为212=C ,所以甲被选中的概率为P(A)=2142=.21.(7分)解:设向量→b 的坐标为),(y x b =→,则根据题意有222021)52(x ⎩⎨⎧=⨯-⨯=+x y y ,解得,⎩⎨⎧==⎩⎨⎧==4-2-42y x y x 或 所以向量)4-,2-()4,2(==→→b b 或.22.(7分)解:(方法一)设圆心为点P(a,b),观察到点A 和点B 的纵坐标相等,都等于2,所以直线AB//x轴,故42352a =+=+=B A x x ,圆心P 在直线2x -y -3=0上,把(4,b)代入方程解得,b=5,)5,4(P 圆心∴ 半径10)52()45(2222=-+-==||PA r ,故圆的标准方程为10)5()4(22=-+-y x 变形为一般方程即:031y 10-8x 22=+-+x y(方法二)设圆心为点P(a,b),半径为r ,则根据题意得:山西省2020年对口升学数学试题真题解析⎪⎩⎪⎨⎧=-+-=-+-=-222222)2()3()2()5(03-a 2r b a r b a b 解得:⎪⎩⎪⎨⎧===1054r b a 故圆的标准方程为10)5()4(22=-+-y x 变形为一般方程即:031y 10-8x 22=+-+x y(方法三)设圆的标准方程为)04(0Ey x 2222>-+=++++F E D F Dx y ,圆心坐标为(2-,2-ED ),圆心在直线2x -y -3=0上,故-D+2E-3=0(1),把点A(5,2),B(3,2)代入圆的方程中得 25+4+5D+2E+F=0(2),9+4+3D+2E+F=0(3), (1)(2)(3)连列方程组解得:D=-8,E=-10,F=31故所求圆的一般方程为:031y 10-8x 22=+-+x y .23.(6分)解:设数列}{n a 的首项为1a ,公差为d,则由⎩⎨⎧==2255a 153S 得⎪⎩⎪⎨⎧=⨯⨯+=+22521415a 155d 2a 11d 解得:12)1(21)1(a a ,2d 1a 11-=-+=-+=∴⎩⎨⎧==n n d n n .24.(8分)解:(1)a=-1时,]5,5[,22-)(f 2-∈+=x x x x ,函数图像是开口向上的抛物线,对称轴为x=1]5,5[1-∈,故函数最小值 为f(1)=1;f(-5)=25+10+2=37,f(5)=25-10+2=17,所以函数的最大值为37.(2)函数f(x)图像的对称轴为直线x=a -=2a2-,若函数f(x)在[-5,5]上是单调函数,则55a -≥--≤a 或 即55-≤≥a a 或.所以若函数f(x)在[-5,5]上是单调函数,则实数a 的取值范围是55-≤≥a a 或.。

2020届中职数学对口升学复习第十部分《排列组合二项式定理》基础知识点归纳及山西历年真题汇编

2020届中职数学对口升学复习第十部分《排列组合二项式定理》基础知识点归纳及山西历年真题汇编

n( ( ( 第十部分排列组合二项式定理【知识点 1】两个计数原理1.分类计数原理:完成一件事有 n 类办法,在第 1 类办法中有 m 1 种不同方法,在第 2 类办法中有 m 2 种不同方法...... ,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N=m 1+m 2+...+m n 种不同的方法 .(加法原理)2.分步计数原理:完成一件事需要分为 n 个步骤,做第 1 步有 m 1 种不同方法,做第 2 步有 m 2 种不同的方法 ... 做第 n 步有 m n 种没同的方法,那么完成这件事共有 N=m 1 ⨯ m 2 ⨯ ... ⨯ m n 种不同的方法 .(乘法原理)【知识点 2】排列与排列数1.排列的定义(1)元素:问题中所选取的对象.(2)排列:从 n 个不同元素中,任取 m (m ≤ n ) 个元素,按时一定的顺序排成一列,叫作从 n 个不同元素中取出 m 个元素的一个排列.(3)选排列:如果 m<n ,这样的排列叫作选排列. (4)全排列:如果 m=n ,这样的排列叫作全排列.2.排列数:从 n 个不同元素中取出 m (m ≤ n ) 个元素的所有排列的个数,叫作从n 个不同元素中取出 m 个元素的排列数,记作 A m .【注意】:排列是结果,排列数是排列的个数。

【知识点 3】排列数公式1.选排列计数公式:A m = n g n- 1)g n - 2)g ⋅⋅⋅ g n - m + 1),其中m , n ∈ N *,且m ≤ n (m 个元素相乘) n2.全排列计数公式:A n = n ⨯ (n - 1)⨯ (n - 2)g ⋅⋅⋅ g 3 ⨯ 2 ⨯1 = n !n自然数1~n的连乘积叫作n的阶乘,用n!表示,即A n=n!.n【注意】:①0!=1;②A0=1;A1=n;A n=n!;n n n【知识点4】组合及组合数的定义1.组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合.【注意】:排列与顺序有关,而组合与顺序无关;2.组合数的定义:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫作从n个不同元素中取出m个元素的组合数,用符号C m表示.n【注意】:组合是把取出的元素合并成一组;组合数是所有不同组合的个数,它是一个数.【知识点5】组合数的计数公式与性质1.组合数公式:C m= n A mnA mm=n(n-1)(n-2)⋅⋅⋅(n-m+1)m!(n,m∈N*,且m≤n);C m=nn!m!(n-m)!【注意】:C0=C n=1;C1=n .n n n2.组合数性质:(1)C m=C n-m(2)C m=C m+C m-1.n n n+1n n【知识点6】二项式定理1.二项式定理:一般地,(a+b)n=C0a n b0+C1a n-1b1+⋅⋅⋅+C m a n-m b m+⋅⋅⋅+C n a0b n(n∈N*)n n n n这个公式所表示的规律叫作二项式定理.右边的多项式叫作(a+b)n的二项展开式,其中Cm(m=0,1,2,⋅⋅⋅,n)叫作二项式系n数;式中的Cm a n-m b m 叫作二项式的通项.n2.二项展开式的通项公式:Tm+1 3.二项展开式的性质:(1)展开式共有n+1项;=C m a n-m b m.(二项展开式的第m+1项) n(2)a的指数从n逐渐减到0,b的指数从0逐渐增到n,展开式中的每一项a和b的指数和都为n(3)二项式系数依次为C0,C1,⋅⋅⋅C n,第r项与倒数第r项的系数相等;n n n(4)若二项式的幂指数是偶数2n,那么二项式展开式有(2n+1)项(奇数项),且中间一项的二项式系数最大,如果二项式的幂指数是奇数2n-1,那么展开式有2n项(偶数项),且中间两项的二项式系数相等且最大。

2020届山西省中职数学对口升学考试考前冲刺模拟试题三份含答案

2020届山西省中职数学对口升学考试考前冲刺模拟试题三份含答案

中职数学对口升学考试模拟试题(一)一、单项选择题(本大题共10小题,每小题4分,共计40分) 1.己知M={x|x >4},.N={x|x <5},则M ∪N =( )A.{x|4<x<5}B.RC.{x|x >4}D.{x|x >5} 2.已知sin α=32,则cos2α值为( ) A.352-1 B.91 C.95D.1-35 3.函数y=x 3是( )A.偶函数又是增函数B.偶函数又是减函数C.奇函数又是增函数D.奇函数又是减函数 4.不等式|2x -1|<3的解集是( )A.{x ︱x <1}B.{x ︱-1<x <2}C.{x ︱x >2}D.{x ︱x <-1或x >2} 5.在等差数列{a n }中,a 5+a 7=3,则S 11=( )A.15B.16.5C.18D.18.5 6.已知直线a,b 是异面直线,直线c ∥a ,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面 7.将3封信投入4个不同的邮筒的投法共有( )种A.34 B.43 C.A 34 D.C 34 8.已知|a|=8,|b|=6,<a,b>=150°,则a ·b=( )A.-243B.-24C.243D.16 9.函数f(x)=x 2-3x +1在区间[-1,2]上的最大值和最小值分别是( )A.5,-1B.11,-1C.5,-45 D.11,-45 10.椭圆52x +162y =1的焦点坐标是( )A.(±11,0)B.(0,±11)C.(0,±11)D.(±11,0)二、填空题(本大题共5小题,每空4分,共计20分。

请把正确答案填写在横线上)11.在二项式(2x -1)5展开式中,含x 3的项的系数是 .12.与同一直线相交的两条直线的位置关系为 .13.函数y =2-2-3x x 的定义域为 .14.f (x )= x x x x ⎩⎨⎧≥8,log 8<,23,则f [f (2)]= .15.设向量a =(1,m),b =(2,m -3),若a ⊥b ,则m= .姓名:________________一、选择题答案(每题4分,共40分)二、填空题答案(每题4分共20分)11、___________;12、___________;13、______________________;14、___________;15、___________;三、解答题(本大题共5小题,每小题8分,共计40分)16.空间四边形ABCD ,E ,F 分别是AB 、BC 的中点 求证:EF ∥平面ACD17.由数字0,1,2,3,4,可以组成下列几问中的多少种无重复数字? (1)多少个五位数?(2)多少个五位偶数?18.已知sin θ=1715,θ是第二象限角,求cos ⎪⎭⎫ ⎝⎛-3πθ的值.19.已知二次函数f (x )=x 2+bx +b 的图像与x 轴有两个交点,它们之间的距离为5,求b.20.求以O (1,3)为圆心,且和直线3x -4y -7=0相切的圆题号 12 3 4 5 6 7 8 9 10 答案姓名:________________ 成绩_____________参考答案一、单项选择题(本大题共10小题,每小题4分,共计40分) 1.B 2.B 3.C 4.B 5.B 6.D 7.B 8.A 9.C 10.B 二、填空题(本大题共5小题,每空4分,共计20分) 11.8012.平行、相交或异面 13.{x |-3≤x ≤1} 14.3 15.1或2三、解答题(本大题共5小题,每小题8分, 共计40分) 16.证明:∵E ,F 分别是AB 、BC 的中点 ∴EF ∥AC又∵AC 平面ACD ∴EF ∥平面ACD 17.解:(1)A 14A 44=96种(2)第一类:个位有0,有A 44种第二类:个位无0,有A 12A 13A 33种故A 44+A 12A 13A 33=60种18.解:∵sin θ=1715,且θ是第二象限角 ∴cos θ=-178又∵3πsin sin 3πcos cos 3πcos θθθ+=⎪⎭⎫ ⎝⎛-23sin cos 21θθ+=∴3483153πcos -=⎪⎭⎫ ⎝⎛-θ 19.解:设图像与x 轴的两个交点为(x 1,0)(x 2,0) ∵|x 2-x 1|=5∴平方展开得x 22-2x 2x 1+ x 21= 5整理得x 22+2x 2x 1+ x 21-4x 2x 1= 5 即(x 1+x 2)2-4x 2x 1=5∵根与系数的关系知x 1+x 2=-b ,x 2x 1=b ∴带入得b 2-4b -5=0 即b =-1或b =5 ∵ Δ=b 2-4b >0 ∴ b =520.解:∵圆与直线3x -4y -7=0相切 ∴圆心O (1,3)到3x -4y -7=0的距离d =r =51657123=-- ∴圆的方程为(x -1)2+(y -3)2=25256中职数学对口升学考试模拟试题(二)一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x|≤2,x∈R}则Q P I 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列ΛΛ、、、、、127531-n 则53是它的( ) A 第22项 B.第23项 C.第24项 D.第28项3.log 3[log 4(log 5a)]=0,则a=( ) A.5 B.25 C.125 D.6254.数组(34,5,1,67,89,38)中,序号为3的数组元素为( )A.1B.89C.38D.5 5.下列四组函数中,表示同一函数的是( ) A.2)1(1-=-=x y x y 与 B.111--=-=x x y x y 与 C. y=41gx 与y=21gx 2 D.y=1gx-2与100lgx y = 6.设向量→a =(2,-1),→b =(x ,3)且→→⊥b a 则x=( ) A.21 B.3 C.23D.-27.若函数b x a x x f +-+=)1(23)(2在]1,(-∞上为减函数,则( ) A.a=-2 B.a=2 C.2-≥a D.2-≤a 8. 在ABC ∆中,已知222c bc b a ++=则∠A 的度数为( ) A.3πB.6π C.32π D.323ππ或 9.已知直线a 、b 是异面直线,直线a//c 、那么c 与b 位置关系是( ) A.一定相交 B.一定异面 C.平行或重合 D.相交或异面 10.顶点在原点,对轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( )A.x y 162=B.x y 122=C.x y 162-=D.x y 122-=二、填空题(本大题共8小题每空4分,共计32分,请把正确答案填写在横上)1.)31(021)271()23()49(-+-+=_________________2 x x y cos 23sin 21+=的最大值是_________________ 3.若35,5,2=⋅==→→→→b a b a ,则→→b a ,的夹角θ=_________________ 4. 4)2(y x -的展开式中的第四项的二项式系数为_________________5. ⎩⎨⎧≥<=8,log 8,)(23x x x x x f 则f[f(2)]=_______________________6.函数223x x y --=的定义城为_______________________7.已知椭圆C 1过点M(4,0)且与椭圆C 2:364922=+y x 共焦点,则C 1的标准方程为_______________________8.二进制数(1011.11)2 ,转化为十进制数为_______________________三、解答题(本大题共6小题,1-5每小题6分,第6小题8分,共计38分)1.(6分)设等差数列{n a }的公差是正数,且4,125362-=+-=a a a a ,求前20项的和。

中职对口升学数学资料-上册1-5单元测试题+答案

中职对口升学数学资料-上册1-5单元测试题+答案

中职数学基础模块上册1-5章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则 A C B )(( ); A.{0,1,2,3,4} B. C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A. NB.M NC.M ND.N M7.设集合 0),( xy y x A ,,00),( y x y x B 且则正确的是( ); A.B B A B. B A C.B A D.B A 8.设集合,52,41 x x N x x M 则 B A ( );A. 51 x xB. 42 x xC.42 x x D. 4,3,2 9.设集合,6,4 x x N x x M 则 N M ( );A.RB. 64 x xC.D.64 x x 10.设集合B A x x x B x x A 则,02,22( ); A. B.A C. 1 A D.B11.下列命题中的真命题共有( ); ① x =2是022x x 的充分条件② x≠2是022x x 的必要条件③y x 是x=y 的必要条件④ x =1且y =2是0)2(12y x 的充要条件A.1个B.2个C.3个D.4个12.设共有则满足条件的集合M M ,4,3,2,12,1 ( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合42x Z x ; 2.用描述法表示集合 10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.,13),(,3),( y x y x B y x y x A 那么 B A ; 6.042x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A=B A B A x x B x x ,,71,40求 .2.已知全集I=R ,集合A C x x A I 求,31 .3.设全集I=,2,3,1,3,4,322a a M C M a I 求a 值.4.设集合,,02,0232A B A ax x B x x x A 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0 m n B.m-n >0 C. mn >0 D.mn 11 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35 4.不等式6 x 的解集是( );A. ,6B. 6,6C. 6,D. ,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,( D.),3()2,( 6.与不等式121 x 同解的是( );A .1-2x >1 B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232x x 的解集是( );A.(1,2)B.),2()1,(C.(-2,-1)D. ,1()2,( ) 8.不等式155 x 的解集是( ). A. 20 x x B.2010 x x C. 10 x x D.2010 x x x 或二 填空题:本大题共6小题,每小题6分,共36分。

2024届山西省对口升学考试数学模拟试题及答案

2024届山西省对口升学考试数学模拟试题及答案

2024届山西省对口升学考试数学模拟试题及答案2024届山西省对口升学考试数学模拟试题及答案一、选择题1、下列函数中,在其定义域内为增函数的是() A. y=x^2 B. y=log(x)C. y=1/xD. y=|x| 答案:D2、已知角α终边在第二象限,那么[α-π/2,(3π)/2-α]的值是() A. 递减 B. 递增 C. 先增后减 D. 先减后增答案:B3、已知长方体的一个顶点上的三条棱长分别是3,4,5,则这个长方体对角线长是() A. 5 B. 5√2 C. 10 D. 25 答案:B4、已知函数f(x)在R上可导,且lim(x→0) [f(x) - f(-x)] / x = -1,则曲线y = f(x)在原点处的切线方程为() A. y = -x B. y = x C. y = 0 D. y = 2x 答案:A5、已知数列{an}的通项公式为an=(-1)^(n-1) * (4n-3),则其前11项的和为() A. -44 B. 44 C. -22 D. 22 答案:D二、填空题6、已知向量a = (1,2),b = (3,4),则a与b的夹角为____度。

答案:9061、已知f(x) = x^3 + ax^2 + bx + 5,过点P(1,4)且在x= - 1处有极值,则a =,b =。

答案:a = 3,b = -3611、在半径为1的圆内,任意给定一条弦,其长度超过圆内接等边三角形的边长的概率等于____。

答案:1/4三、解答题9、求函数y = x^3 - 6x^2 + 9x - 10的单调区间、极值点及对应的函数值。

答案:单调递增区间为(1,3),单调递减区间为(3,∞);极值点为x = 3,对应的函数值为f(3) = -1;极大值点为x = 1,对应的函数值为f(1) = -6。

91、已知{an}为等比数列,且a2 + a4 = 9,s3 = 6,求a1及公比q 的值。

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原 郝志隆 编辑整理
山西省2020年对口升学考试数学试题
一、选择题(本大题共10小题,每小题3分,共计30分)
1.设集合A={a,b},B={a,b,c},则B A ⋂=( ) A.
{a,b}
B. {a}
C.
{a,b,c}
D.
φ
2.等差数列{n a }中,已知9,331==a a ,则公差d 等于( ) A.
2
B. 1
C. 3
D. 4
3.已知13,0log 3
1>>b a ,则( ) A.
a>1,b<0
B. a>1,b>0
C.
0<a<1,b<0
D. 0<a<1,b>0
4.下列函数在),0(+∞为单调递减的是( )
A.
x y = B.
x
1y =
C.
2y x =
D.
3y x =
5.已知直线x -y -2=0,则此直线的斜率为( )
A.
-1 B. -2 C. 1 D. 2
6.已知0cos ,0sin ><αα,则α在( ) A.
第一象限 B. 第二象限 C. 第三象限 D. 第四象限
7.ABC ∆中,角A ,角B ,角C 的对边分别为a,b,c ,已知︒=∠︒=∠=6045,3B A b ,,则a=( )
A.
2
B.
3
C.
2
2
3 D.
6
8.双曲线14
x 22
=-y 的渐近线方程为( ) A.
x 2
1y ±=
B.
x 2y ±=
C.
x 4
1y ±=
D.
x 4y ±=
9. 如图,在正方体1111D C B A ABCD -中,E 是1CC 的中点,则直线AE 与平面ABCD 所成角的正切
值为( )
A.
31 B.
4
2
C.
3
2
2 D.
2
A
B
C
D C 1 B 1
D 1
A 1
E 第9题
山西省2020年对口升学数学试题真题解析
10.已知平面向量→
→b 、a 不共线,若向量→








-=+-=+=b a CD b a BC b a AB 33,82,5,则( ) A.
ACD 三点共线
B. ABC 三点共线
C.
BCD 三点共线
D. ABD 三点共线
二、填空题(本题共8小题,每小题4分,共计32分)
11.6log 18log 33-= .
12.x x y 2
2cos sin -=的最小正周期T 为 .
13.若=++++++++=34
43322104,)1()x 1()1()1(x a x a a x a x a a 则 .
14.若椭圆19
y 162
2
=+x 上有一点P 到一个焦点的距离为2,则到另一个焦点的距离为 . 15.2)101011(转为十进制的数为 .
16.设直线x+3y -2=0与直线ax -y+2=0垂直,则a= .
17.
3
2
31-8125
1⋅)(= . 18.向量→
→→c b a ,,顺次相连构成一个三角形,则=++→
→→
c b a .
三、解答题(本大题共6小题,共38分)
19.(4分)已知⎪⎩⎪
⎨⎧>-≤-=1,1
81|,3|)(x x x x x f ,求f[f(-2)].
20.(6分)从2男2女4名羽毛球运动员中选出男女各一名配对参加混合双打,求其中男运动员甲被选中的概率.
21.(7分)同一平面内有向量52||),2,1(==→→b a ,且→→b a //,求向量→
b 的坐标.
22.(7分)求经过点A(5,2),B(3,2),且圆心在直线2x -y -3=0上的圆的方程
23.(6分)已知等差数列}{n a 的前n 项和为n S ,225S ,5a 153==,求n a
24.(8分)]5,5[,22)(f 2
-∈++=x ax x x ,求
(1)当a=-1时,求函数的最大值和最小值;
(2)若函数f(x)在[-5,5]上是单调函数,求实数a 的取值范围.
太原 郝志隆 编辑整理
2020年山西省对口升学考试数学参考答案
一、选择题
二、填空题
11.
1 12.
π
13. -4 14. 6
15. 43 16. 3 17. 9 18.

三、解答题
19.(4分)解:f(-2)=|-2-3|=5,f[f(-2)]=f(5)=
21
-58
=,故f[f(-2)]=2
20.(6分)解:设“男运动员甲被选中”为事件A ,基本事件总数为41
21
2=⋅C C ,甲被选中的基本事件
个数为21
2
=C ,所以甲被选中的概率为P(A)=2
1
42=.
21.(7分)解:设向量→
b 的坐标为),(y x b =→
,则根据题意有2
220
21)52(x ⎩⎨⎧=⨯-⨯=+x y y ,解得,⎩⎨
⎧==⎩⎨⎧==4-2
-42y x y x 或 所以向量)4-,2-()4,2(==→
→b b 或.
22.(7分)解:(方法一)设圆心为点P(a,b),观察到点A 和点B 的纵坐标相等,都等于2,所以直线AB//x
轴,故42
3
52a =+=+=
B A x x ,圆心P 在直线2x -y -3=0上,把(4,b)代入方程解得,b=5,)5,4(P 圆心∴ 半径10)52()45(222
2=-+-==
||PA r ,故圆的标准方程为10)5()4(22=-+-y x 变形为一般方程即:031y 10-8x 22=+-+x y
(方法二)设圆心为点P(a,b),半径为r ,则根据题意得:。

相关文档
最新文档