五年级下册数学三角形的内角和(1)
三角形的内角和公式
三角形的内角和公式
三角形是平面上的一种基本的几何图形,其内部有三个角。
三角形的
内角和是指三个角度的和。
对于任意一个三角形,其内角和总是恒定的,
即180度。
对于任意一个三角形,我们可以用三边的长度或者三个角度来描述它。
根据三角形的性质,我们知道三角形的三个内角和总是等于180度。
设三角形的三个内角分别为A、B、C,则有:
A+B+C=180°
其中A、B、C分别代表三角形的三个内角的度数。
这个公式可以适用
于任意一个三角形,不论是等边三角形、等腰三角形还是普通三角形。
三角形的内角和公式还有一种更广泛的应用,即在几何题中求解三角
形的内角和,从而确定三角形的性质和关系。
通过内角和公式,我们可以
判断一个三角形是锐角三角形、直角三角形还是钝角三角形,从而解决各
种与三角形相关的问题。
在解决三角形问题时,我们经常会用到三角形的内角和公式。
通过合
理应用这个公式,我们可以更好地理解和解决各种三角形问题,提高我们
的数学水平和解题能力。
总之,三角形的内角和公式是解决三角形问题的基础,通过掌握和应
用这个公式,我们可以更好地理解和解决各种与三角形相关的问题。
希望
大家能够认真学习和应用这个公式,提高自己的数学水平和解题能力。
《三角形内角和》说课稿(精选5篇)
《三角形内角和》说课稿《三角形内角和》说课稿(精选5篇)作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,说课稿有助于顺利而有效地开展教学活动。
如何把说课稿做到重点突出呢?以下是小编精心整理的《三角形内角和》说课稿(精选5篇),欢迎阅读,希望大家能够喜欢。
《三角形内角和》说课稿1一、说教材三角形的内角和是北师大版四年级下册第二单元的内容。
三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:教学目标:知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。
知道三角形两个角的度数,能求出第三个角的度数。
能应用三角形内角和的性质解决一些简单的问题。
过程与方法:发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法整个教学将体现以人为本,先放后扶的教学策略。
放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。
四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。
《三角形的内角和》(教案)冀教版四年级下册数学
三角形的内角和(教案)冀教版四年级下册数学一、教学内容本节课主要教学冀教版四年级下册数学中关于三角形内角和的知识。
学生将学习三角形内角和的概念,掌握三角形内角和的计算方法,并能够运用所学知识解决实际问题。
二、教学目标1. 知识与技能目标:学生能够理解并掌握三角形内角和的概念,学会计算三角形内角和的方法。
2. 过程与方法目标:通过观察、操作、探究等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。
3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生合作交流、积极探究的学习态度。
三、教学难点1. 学生对三角形内角和概念的理解。
2. 学生在计算三角形内角和时的准确性。
四、教具学具准备1. 教具:三角板、多媒体课件。
2. 学具:直尺、量角器、三角板。
五、教学过程1. 导入新课:利用多媒体课件展示一些生活中常见的三角形实物,引导学生观察并发现三角形的特征,引出三角形内角和的概念。
3. 讲解例题:教师通过讲解例题,帮助学生巩固所学知识,引导学生运用三角形内角和的计算方法解决实际问题。
4. 巩固练习:学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
六、板书设计1. 三角形的内角和概念。
2. 三角形内角和的计算方法。
3. 课后作业。
七、作业设计1. 基础题:计算给定三角形的内角和。
2. 提高题:运用三角形内角和的知识解决实际问题。
3. 拓展题:研究四边形、多边形的内角和。
八、课后反思1. 学生对三角形内角和概念的理解程度。
2. 学生在计算三角形内角和时的准确性。
3. 教学方法是否得当,是否需要调整。
4. 学生课堂参与度,是否需要增加课堂互动。
5. 作业设计是否合理,是否需要调整难度或题型。
通过本节课的教学,使学生掌握三角形内角和的知识,培养学生的观察能力、动手操作能力和逻辑思维能力,激发学生对数学学习的兴趣。
同时,教师应关注学生的课堂参与度和学习效果,及时调整教学方法和作业设计,以提高教学质量。
教资《三角形内角和》的教学设计(通用12篇)
教资《三角形内角和》的教学设计教资《三角形内角和》的教学设计(通用12篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
那么优秀的教学设计是什么样的呢?以下是小编收集整理的教资《三角形内角和》的教学设计(通用12篇),仅供参考,大家一起来看看吧。
教资《三角形内角和》的教学设计篇1教学目标:1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。
3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。
教学难点:通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。
"教师准备:4组学具、课件学生准备:量角器、练习本教学过程:一、兴趣导入,揭示课题1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"(生出示三角形并汇报各类三角形及特点)2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。
"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。
"(设置矛盾,使学生在矛盾中去发现问题、探究问题。
)3、我们来帮帮它们好吗?4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。
你能标出三角形的三个角吗?(生快速标好)数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。
这节课我们就来研究一下"三角形的内角和"(课件片头1)"同学们,用什么方法能知道三角形的内角和?"二、猜想验证,探究规律(动手操作,探究新知)1.量角求和法证明:先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。
5.3《三角形的内角和》(教案)2023-2024学年数学四年级下册-人教版
5.3《三角形的内角和》教案一、教学目标1. 让学生理解并掌握三角形的内角和是180°。
2. 培养学生通过观察、操作、推理、交流等数学活动,发展空间观念和推理能力。
3. 培养学生合作交流的意识,增强对数学学科的兴趣。
二、教学重点与难点1. 教学重点:让学生理解并掌握三角形的内角和是180°。
2. 教学难点:如何引导学生通过观察、操作、推理、交流等方式,发现并证明三角形的内角和是180°。
三、教学过程1. 导入新课- 利用多媒体展示一些生活中的三角形图片,引导学生观察并说出三角形的特征。
- 提问:同学们,你们知道三角形的内角和是多少吗?今天我们就来学习这个问题。
2. 探究新知- 分组活动:让学生分组用三角板测量三角形的内角和,并记录下来。
- 小组讨论:让学生在小组内交流自己的测量结果,引导学生发现三角形的内角和可能是180°。
- 课件演示:利用多媒体课件演示三角形的内角和测量过程,让学生直观地感受三角形的内角和是180°。
- 总结规律:引导学生总结三角形的内角和是180°。
3. 巩固练习- 出示一些不同类型的三角形,让学生计算内角和,并验证是否为180°。
- 让学生举例说明生活中哪些物体的形状可以近似看作三角形,并计算其内角和。
4. 拓展提高- 让学生思考:除了三角形,还有哪些多边形的内角和是固定的?能否用同样的方法求出四边形的内角和?- 引导学生通过观察、操作、推理、交流等方式,探索多边形的内角和规律。
5. 课堂小结- 让学生回顾本节课所学内容,总结三角形的内角和是180°。
- 强调通过观察、操作、推理、交流等数学活动,发展空间观念和推理能力的重要性。
6. 课后作业- 让学生完成教材P54页的练习题。
- 选做:让学生回家后观察生活中哪些物体的形状可以近似看作三角形,并计算其内角和。
四、教学反思本节课通过观察、操作、推理、交流等数学活动,让学生掌握了三角形的内角和是180°。
四年级数学教案《三角形的内角和》(精选10篇)
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
《三角形的内角和》教学反思(精选4篇)
《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思篇1二学期几何里一个重要的知识点——三角形内角和,是在学生认识了三角形的特点和分类的基础上这一节课进一步对三角形内角之间的关系的学习和探究。
本课设计的出发点在于运用先进的多媒体手段让学生直观感知三角形内角和的特点。
这节课上完之后,我在课后进行了小结,也听取了经验丰富的教师的分析,收获很大,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:1.在本次授课中,引入是比较恰当的。
我是从学生原有的对图形的认识的感性知识进行引入的,先出示一个长方形,让学生说出它的内角和是多少度,学生用之前学过的知识都知道,长方形有四个直角,那么加起来就是360°,然后又用正方形,由于正方形和长方形有一个同样的特征,所以学生也很容易就能回答出来它的内角和是多少。
再将正方形沿着对边剪开,分成两个三角形,这个时候问学生:你们能猜出三角形的内角和是多少吗?这样的引入和从旧知到新知的过渡,非常地自然,学生也较容易进行猜想。
2.利用多媒体手段让学生直观感知三角形内角和的特点。
用动画演示撕角拼一拼,折角,让学生可以非常直观地认识三角形内角和的特点,印象非常深刻,也给学生在进行动手操作时以正确的指引。
3.小组合作,自主探究。
整一节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人我讲完整节课而学生只是听。
4.在学生进行猜想之后,让学生开始动手实验,测量三角形的三个内角的度数并填表,这个环节在处理的时候不是很得当,因为量角在学生来说,本来就是一个难点,没有很好的掌握量角的技巧导致没能准确地量角,而且在本节课中,要进行量角实验的三角形个数较多,学生不能很好地进行小组分工,所以在这个地方花费了不少的时间,而结果量出来的度数也不是很精确,虽说在测量中允许有误差,但是这与一开始的教学设计出发点有出入,达不到很好验证猜想的效果。
小学五年级数学《三角形的内角》练习题
《三角形的内角》习题11、求下面各角的度数.(1)已知等腰三角形的顶角是80度,它的一个底角是多少度?(2)一个直角三角形,其中一个角是40度,另一个角是多少度?(3)已知一个三角形的三条边都相等,求它各个角的度数.(4)我们佩戴的红领巾是()三角形,它的顶角是120度,底角是多少度?2、下面图形的内角和各是多少度?有什么规律?《三角形的内角》习题2一、填空题1.△ABC中,∠A=40o,∠B=60o,则与∠C相邻外角的度数是______.2.三角形三个内角的比为2:3:4,则最大的内角是_______度.3.如果△ABC扣,∠A+∠B=∠C-10o,则△ABC是________三角形.4.一个五边形的4个内角都是100o,则第五个内角的度数是_______.5.一个n边形的内角和与外角和的比为2:1,则n=________.6.三角形三个外角的比为2:3:4,则三个内角的比为_______.二、选择题7.一个多边形的每个内角都等于156o,则此多边形是( ).A.十五边形B.十六边形C.十七边形D.十八边形8.具备下列条件的△ABC中,不是直角三角形的是( ).A.∠A+∠B=∠C B.∠A—∠B=∠CC.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C9.一个三角形的三个外角中,钝角的个数最少为( ).A.0个B.1个C.2个D.3个10.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( ).A.27πR2B.47πR2C.πR2D.不能确定11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( ).A.第1块B.第2块C.第3块D.第4块12.如图,光线a照射到平面镜CD上,然后在平面镜和CD之间来回反射,这时光线的入射角等于反射角,即∠l=∠6,∠5=∠3,∠2=∠4.若已知∠l=55o,∠3=75o,那么∠2等于( ).A.50o B.55o C.66o D65o三、解答题13.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.14.已知:在△ABC中,∠A+∠B=2∠C,∠A-∠B=20o,求三角形三个内角的度数.15.如图,∠A=65o,∠ABD=30o,∠ACB=72o,且CE平分∠ACB,求∠BEC的度数.16.如果一个n边形的内角都相等,且它的每一个外角与内角的比为2:3,求这个多边形的内角和.17.如果一个多边形的每个内角都相等,每个内角与每个外角的差是90o,求这个多边形的内角和.18.如图,在∆ABC中,∠B、∠C的平分线交于点O.(1)若∠A=50o,求∠BOC的度数.(2)设∠A=n o(n为已知数),求∠BOC的度数.(3)当∠A为多少度时,∠BOC=3∠A?19.一个同学在进行多边形的内角和计算时,所得的内角和为1125o,当发现错了以后,重新检测发现少了一个内角,问这个内角是多少度,他所求的是几边形的内角和?20.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,如图(1),AC、AD是五边形ABCDE的对角线.思考下列问题:(1)如图(2),n边形A1,A2,A3…A n中,过顶点A1可以画______条对角线,它们分别是________;过顶点A2可以画________条对角线,过顶点A3可以画条对角线.(2)过顶点A1的对角线与过顶点A2的对角线有相同的吗?过顶点A1的对角线与过顶点A3的对角线有相同的吗?(3)在此基础上,你能发现竹边形的对角线条数的规律吗?《三角形的内角》习题3一、选择题1、一个三角形中,有一个角是65°,另外的两个角可能是().A、95°,20°B、45°,80°C、55°,60°2、一个等腰三角形,顶角是100°,一个底角是().A、100°B、40°C、55°3、一个等腰三角形,一个底角是顶角的2倍,这个三角形顶角()度,底角()度.A、36°B、72°C、45°D、90°二、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带( )去.为什么?三、将一个大三角形分成两个小三角形,这两个小三角形的内角和分别是多少?四、如果一个三角形有两个直角,结果会怎样?那么一个三角形最多有几个直角?五、一个直角三角形,一个锐角是50°,另一个锐角是几度?六、已知等腰三角形的风筝,一个底角70°,顶角多少度?③②①。
《三角形的内角和 》PPT课件(共24张PPT)
我有一个钝角,比你三个角都大,所以我的内角和才是最大的。
900 算一算,三角形的内角和是多少度呢?
一个三角形的三个内角度数分别是65°,35°,80°. 三角形内角和等于1800。
540
(1) 这个三角形的内角和是多少度?
抢答游戏:
(3)把这个小三角形再分成一 大一小两个三角形,这两个三角 形的内角和分别是多少度?
抢答游戏:
(4)把两个小三角形拼成一个 大三角形,这个大三角形的内角 和是多少度?
抢答游戏:
(5) 3个小三角形拼成一个更 大的三角形,它的内角和是多少 度?
判断(用手语表示)
√ 1.一个三角形的三个内角度数分别是65°,35°,80°.( )
2.三角形的内角和与三角形的大小无关。( ) √
× 3.一个直角三角形,一个内角是37°,另一个内角是48°。( )
4、一个三角形中不可能有2个直角。 ( )
√
∠1=40º
2
∠ 2=48º
3
∠ 3=92º
1
猜猜∠3有多少度?
你能求出等边三角形每个角的度数吗?
等边三角形
400 1800-700 -700
520
300
800
东东把一块三角形的玻璃打碎成三 片,现在他要到玻璃店去配一块形状完 全一样的玻璃,那么最省事的办法是带 ( )去。 为什么?
帕斯卡:法国的数学家、物理 学家,为人类创造了无数的奇
迹,早在300年前这位法国著名
的科学家就已经发现了:
任何三角形的内角和 都是180°
当时才12岁
460 拿出准备好的三角形,小组合作,动手验证:三角形的内角和是不是180度?
《三角形的内角和》标准课件(人教版)1
四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,
通过交流、比较、评价寻找解决问题的途径和策略。
学法:合作交流法、动手实践法、自主探究法
这节课我设计了以“猜想一验证一归纳一运用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最 后达成共识。 43 ° 小学数学人教版四年级下册第五单元 直角三角形的内角和是180° 。 =40°-25° 结论不重要,重要的是让学生体会得到结论的过程,学会用转化的思想来解决生活中的问题。 3、在探索发现的过程中,培养学生大胆猜想,细心验证的数学思维。 直角三角形的内角和是180° 。 结论 三角形的内角和是180度 三角形的内角和都是180°
(一)复习引入,引发猜想 三角形的内角和都是180°
三角形的内角和都是180°
(一)复习引入,引发猜想 39°
通过复习上节课三角形按角分可
以分为哪几类,从而引入学习新课 三角形的内角和都是180°
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
直角三角形的内角和是180° 。
两个大小一样的直角三角形
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最
后达成共识。
数学讲究严谨性,为了得到准确的值,学生用拼、折等多种方法得出三角形内角和是180度,验证了自己的猜想
11.2.1三角形的内角和 公开课ppt课件
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!
大
你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°
14-2三角形的内角和(第1课时)(教学课件)-七年级数学下册同步精品课堂(沪教版)
2.已知△ABC中两个内角的度数,判断△ABC的类型:
(1)∠A=30°,∠B=40°;
(2)∠B=32°,∠C=58°;
(3)∠B=60°,∠C=50°.
解:(2)在△ABC中, ∠A+∠B+∠C=180° (三角形的内角和等于180°). ∵∠B=32°,∠C=58°(已知), ∴∠A=180°-∠B-∠C =180°-32°-58° =90°(等式性质) ∴△ABC是直角三角形.
解:根据题意,设∠A、∠B、∠C的度数分别为2x,3x,4x。 ∵∠A、∠B、∠C是△ABC的三个内角(已知)
∴∠A+∠B+∠C=180° (三角形内角和等于180°)
即 2x+3x+4x=180
解得 x=20
∴ ∠A =40°,∠B=60°,∠C=80°(等式性质)
随堂检测
1、判断下列各组角度的角是否是同一个 三角形的内角?
∠A+∠B+∠C=180° (三角形的内角和等于180°). ∵∠B=35°,∠C=55°(已知), ∴∠A=180°∠B∠C =180°35°55° =90°(等式性质).
∴△ABC是直角三角形.
可设一份为x.
例题2 在△ABC中,已知∠A:∠B:∠C=1︰2︰3, 求∠A、∠B、∠C的度数.
解:根据题意,可设∠A、∠B、∠C的度数分别为x、2x、3x.
∴ ∠1=30°(等式性质).
B
D
C 在△ADC中,
∠1+∠C+∠ADC=180°
求∠DAC的度 数,可在
(三角形的内角和等于180°). ∵∠C=45°(已知),
△ADC中加以 解决.
∴∠ADC=180°-30°-45°=105° (等式性质).
专题4.3 认识三角形-三角形的内角和(知识讲解)-2020-2021学年七年级数学下册基础知识专
1专题4.3 认识三角形-三角形的内角和(知识讲解)【知识回顾】1、平角的定义:一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角。
1平角=180度 平角不是一条直线,而是在一条直线上的两条射线。
2、平行线的性质 1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
【学习目标】1.通过平行线性质和平角定义理解三角形内角和;2.掌握三角形内角和及三角形的外角与内角的关系;3.能够运用三角形内角和定理及三角形的外角性质进行相关角的计算及相关证明问题.【知识点梳理】要点一、三角形的内角和定理1. 三角形内角和定理:三角形的内角和为180°.0++=180.A BC A B C ∆∠∠∠几何语言:如上图,在中,特别说明:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.200=90+=90.A BC C A B ∆∠⇔∠∠几何语言:如上图,在中,特别说明:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角和1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD 是△ABC 的一个外角.特别说明:(1)外角的特征:①顶点在三角形的一个顶点上; ②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.=+.A BC ACD A BC ACD AB ACD A ACD B∆∠∆⇒∠∠∠∠>∠∠>∠几何语言:如上图,在中,为一个外角,3特别说明:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.0++=360.DAB EBC FCA DAB EBC FCA ∠∠∠∆∠∠∠如上图:、、为ABC 三个外角,则特别说明:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.可以理解为一周为360°,所以外角和为360°【典型例题】类型一、三角形的内角和1.(2021·山西八年级期末)阅读感悟:如下是小明在学习完“证明三角形内角和定理”后对所学知识的整理和总结,请仔细阅读,并完成相应的任务.三角形内角和定理的证明今天,在老师的带领下学习了三角形内角和定理证明的多种方法,我对这些方法进行了梳理,主要分为两大类:一、动手实践操作类①量角器测量法:通过引导同学们画出任意三角形,每人都用量角器测量并将所测得的角度相加,得到结论;①折叠法:如图1,将①所画的三角形剪下并折叠,使每个角都落到三角形一边的同一点处,发现三个角正好可拼为一个平角,进而得到相关结论;①剪拼法:如图2,将方法①用过的三角形展开之后,随意的将某两个角撕下之后,拼到第三个角处,发现三个角正好可拼为一个平角,故而得到相应的结论.4二、证明类(思路:由实际操作的后两种方法得到的启发,我们可以通过构造辅助线,将所证明的三个角通过某些特殊的方法转化到一条直线上,利用所学相关数学知识来证明三角形内角和):①如图3,过三角形的某个顶点作对边的平行线,利用平行线性质来证明;①如图4,延长三角形的某一条边,并过相应的点做一条平行线,进而利用平行线性质来证明;……任务:(1)“折叠法”和“剪拼法”中得到相应结论的根据是:_________.(2)“证明类”的方法中主要体现了_______的数学思想;A .方程B .类比C .转化D .分类(3)结合以上数学思想,请在图5中画出一种不同于以上思路的证明方法,并证明三角形内角和定理.【答案】(1)平角为180︒;(2)C ;(3)见解析【分析】(1)分析题意,即可得到“折叠法”和“剪拼法”都是根据平角为180︒进行证明;(2)由题意,证明类主要是通过角度的转化,从而进行证明;5(3)过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,由角度的关系,得到A EDF ∠=∠,然后根据平角的定义,即可得到结论成立.解:(1)根据题意,“折叠法”和“剪拼法”都是根据平角为180︒进行证明;故答案为:平角为180︒;(2)根据题意,“证明类”的方法中主要体现了角度的转化,从而进行证明结论成立;故选:C ;(3)证明:如图,过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,,,180,180FDC B EDB C A AED EDF AED ∴∠=∠∠=∠∠+∠=︒∠+∠=︒.A EDF ∴∠=∠,180A B C EDF FDC EDB CDB ∴∠+∠+∠=∠+∠+∠=∠=︒.∴三角形的内角和为180︒.【点拨】本题考查了三角形的内角和定理的证明,解题的关键是掌握证明三角形内角和等于180°的方法.举一反三:【变式】(2020·河北石家庄市·九年级其他模拟)在学习“三角形的内角和外角”时,老师在学案上设计了以下内容:6下列选项正确的是( )A .①处填ECD ∠B .①处填ECD ∠C .①处填A ∠D .①处填B【答案】B【分析】延长BC 到点D ,过点C 作CE∴AB .依据平行线的性质以及平角的定义,即可得到∴A +∴B +∴ACB =180°.【详解】延长BC 到点D ,过点C 作CE∴AB, ∴CE∴AB .∴∴A =∴ACE (两直线平行,内错角相等).∴B =∴ECD (两直线平行,同位角相等).∴∴ACB +∴ACE +∴ECD =180°(平角定义).∴∴A +∴B +∴ACB =180°(等量代换).故选:B .【点拨】本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.2.(2020·上海市静安区实验中学八年级课时练习)已知:如图,在①ABC 中,①A①①ABC①①ACB=3①4①5,BD ,CE 分别是边AC ,AB 上的高,BD,CE 相交于H ,求7①BHC 的度数.【答案】135°【分析】先设∴A=3x ,∴ABC=4x ,∴ACB=5x ,再结合三角形内角和等于180°,可得关于x 的一元一次方程,求出x ,从而可分别求出∴A ,∴ABC ,∴ACB ,在∴ABD 中,利用三角形内角和定理,可求∴ABD ,再利用三角形外角性质,可求出∴BHC .解:∴在∴ABC 中,∴A :∴ABC :∴ACB=3:4:5,故设∴A=3x ,∴ABC=4x ,∴ACB=5x .∴在∴ABC 中,∴A+∴ABC+∴ACB=180°,∴3x+4x+5x=180°,解得x=15°,∴∴A=3x=45°.∴BD ,CE 分别是边AC ,AB 上的高,∴∴ADB=90°,∴BEC=90°,∴在∴ABD 中,∴ABD=180°-∴ADB -∴A=180°-90°-45°=45°,∴∴BHC=∴ABD+∴BEC=45°+90°=135°.【点拨】本题利用了三角形内角和定理、三角形外角的性质.解题关键是熟练掌握:三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.举一反三:【变式】 如图,在△ABC 中,∠A=50°,E 是△ABC 内一点,∠BEC=150°,∠ABE 的平分线与∠ACE 的平分线相交于点D ,则∠BDC 的度数为多少?8【答案】100°.解:∵△ABC 中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE 中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE 的平分线与∠ACE 的平分线相交于点D ,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角3.(2020·安徽省桐城市白马初级中学八年级期中)如图,已知①A =60°,①B =20°,①C =30°,求①BDC 的度数.【答案】110°【分析】延长BD 交AC 于H ,根据三角形的外角的性质计算即可.解:延长BD 交AC于H ,9∴BDC=∴DHC+∴C ,∴DHC=∴A+∴B∴∴BDC=∴A+∴B+∴C=60°+20°+30°=110°.【点拨】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.举一反三:【变式1】(2020·河南南阳市·七年级月考)如图,123∠=∠=∠,且60BFE ︒∠=,70BAC ︒∠=,求ABC ∠的度数.【答案】50°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和用∴2和∴BCF 表示出∴BFE ,再根据∴2=∴3整理可得∴ACB=∴BFE ,然后利用三角形的内角和等于180°求解即可.解:在∴BCF 中,∴BFE=∴2+∴BCF ,∴∴2=∴3,∴∴BFE=∴3+∴BCF ,即∴BFE=∴ACB ,∴∴BAC=70°,∴BFE=60°,∴在∴ABC 中,∴ABC=180°-∴BAC -∴ACB=180°-70°-60°=50°.【点拨】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记10 性质,并准确识图,找出图中各角度之间的关系是解题的关键.【变式2】 (2019·内蒙古八年级期末)如图,在ABC ∆中,45B C ==∠∠,点D 在BC 边上,点E 在AC 边上,且ADE AED ∠=∠,连接DE ,当60BAD ∠=时,求CDE ∠的度数.【答案】30°【分析】根据三角形的外角的性质求出∴ADC ,由三角形内角和定理求出∴BAC=90°,得出∴DAE 的度数,求出∴ADE=∴AED=75°,即可得出答案.解:∴ADC ∠是ABD ∆的外角,∴6045105ADC BAD B ∠=∠+∠=︒+︒=︒,∴45B C ∠=∠=︒,∴90BAC ∠=︒,∴30DAE BAC BAD ∠=∠-∠=︒,∴75ADE AED ∠=∠=︒,∴1057530CDE ∠=︒-︒=︒.【点拨】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.类型三、三角形的内角外角综合训练4..如图(1)所示,①ABC 中,①ABC ,①ACB 的平分线交于点O ,求证:①BOC=90+12①A . 变式1:如图(2)所示,①ABC ,①ACD 的平分线交于点O ,求证:①BOC=12①A . 变式2:如图(3)所示,①CBD ,①BCE 的平分线交于点O ,求证:①BOC=90-12①A .11【答案】见解析【分析】(1)先根据三角形内角和定理得到∴BOC=180°-∴OBC -∴OCB ,则2∴BOC=360°-2∴OBC -2∴OCB ,再根据角平分线的定义得∴ABC=2∴OBC ,∴ACB=2∴OCB ,则2∴BOC=360°-∴ABC -∴ACB ,易得∴BOC=90°+12∴A ; 变式1:根据BD 为∴ABC 的角平分线,CD 为∴ABC 外角∴ACE 的平分线,由三角形外角性质可得;∴2=∴1+∴O ,∴ACO=∴2=12∴ACD=12(∴A+∴ABC)=12(∴A+2∴1) =12∴A+∴1,两式联立可得 ∴1+∴O = 12∴A+∴1,即∴BOC=12∴A . 变式2:根据三角形外角平分线的性质可得∴BCO= 12(∴A+∴ABC )、∴OBC= 12(∴A+∴ACB );根据三角形内角和定理可得∴BOC=90-12∴A.. 解:(1)证明:在∴BOC 中,∴∴BOC=180°-∴OBC -∴OCB ,∴2∴BOC=360°-2∴OBC -2∴OCB ,∴BO 平分∴ABC ,CO 平分∴ACB ,∴∴ABC=2∴OBC ,∴ACB=2∴OCB ,∴2∴BOC=360°-(∴ABC+∴ACB ),∴∴ABC+∴ACB=180°-∴A ,∴2∴BOC=180°+∴A ,∴∴BOC=90°+12∴A ; 变式1:∴BD 为∴ABC 的角平分线,CD 为∴ABC 外角∴ACE 的平分线,12∴ ∴1= 12∴ABC ∴ACO=∴2=12∴ACD ∴∴2、∴ACO 分别是∴BCO 、∴ABC 的外角 ∴∴2=∴1+∴O ,∴ACO=∴2=12∴ACD=12(∴A+∴ABC)=12(∴A+2∴1) =12∴A+∴1,∴ ∴1+∴O =12∴A+∴1, ∴∴BOC=12∴A . 变式2:∴BO 、CO 为∴ABC 中∴ABC 、∴ACB 的外角平分线. ∴∴BCO=12(∴A+∴ABC )、∴OBC= 12(∴A+∴ACB ), 由三角形内角和定理得,∴BOC=180°-∴BCO -∴OBC ,=180°-12[∴A+(∴A+∴ABC+∴ACB )], =180°- 12(∴A+180°), =90°- 12∴A ; 【点拨】本题考查三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.举一反三:【变式】 .如图,①CBF ,①ACG 是①ABC 的外角,①ACG 的平分线所在的直线分别与①ABC ,①CBF 的平分线BD ,BE 交于点D ,E .(1)若①A=70°,求①D 的度数;(2)若①A=a ,求①E ;(3)连接AD ,若①ACB= ,则①ADB=.13【答案】(1)35°;(2)90°-12α;(3)12β 【分析】 (1)由角平分线的定义得到∴DCG=12∴ACG ,∴DBC=12∴ABC ,然后根据三角形外角的性质即可得到结论; (2))根据角平分线的定义得到∴DBC=12∴ABC ,∴CBE=12∴CBF ,于是得到∴DBE=90°,由(1)知∴D=12∴A ,根据三角形的内角和得到∴E=90°-12α; (3)根据角平分线的定义可得,∴ABD=12∴ABC ,∴DAM=12∴MAC ,再利用三角形外角的性质可求解.解:(1)∴CD 平分∴ACG ,BD 平分∴ABC ,∴∴DCG=12∴ACG ,∴DBC=12∴ABC , ∴∴ACG=∴A+∴ABC ,∴2∴DCG=∴ACG=∴A+∴ABC=∴A+2∴DBC ,∴∴DCG=∴D+∴DBC ,∴2∴DCG=2∴D+2∴DBC , ∴∴A+2∴DBC=2∴D+2∴DBC ,∴∴D=12∴A=35°; (2)∴BD 平分∴ABC ,BE 平分∴CBF ,∴∴DBC=12∴ABC ,∴CBE=12∴CBF , ∴∴DBC+∴CBE=12(∴ABC+∴CBF )=90°, ∴∴DBE=90°,∴∴D=12∴A ,∴A=α, ∴∴D=12α, ∴∴DBE=90°,∴∴E=90°-12α; (3)如图,14∴BD 平分∴ABC ,CD 平分∴ACG ,∴AD 平分∴MAC ,∴ABD=12∴ABC, ∴∴DAM=12∴MAC , ∴∴DAM=∴ABD+∴ADB ,∴MAC=∴ABC+∴ACB ,∴ACB=β,∴∴ADB=12∴ACB=12β. 故答案为:12β. 【点拨】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.。
《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)
《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。
《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。
使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。
案例分析(三角形内角和定理)
课题:《三角形内角和定理》一、教学目标知识技能:1、理解“三角形的内角和等于180°”.2、运用三角形内角和结论解决问题.数学思考:1、通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理 性,发展合情推理能力和语言表达能力.2、理解三角形内角和的计算、验证,其本质就是把三个内角集中在一起转化为一个平角,其方法可以用拼合的方法,也可以用引平行线的方法.解决问题:1、学会运用三角形内角和定理解决实际问题,如在航海测量、几何计算等方面的应用2、通过介绍“三角形内角和定理及其证明”,让学生初步了解什么是几何证明,并感 受证明几何问题的基本结构和推导过程.情感态度:在观察、操作、推理、归纳等探索过程中,发展同学们的合情推理能力,逐步养成和获得数学说理的习惯与能力.二、教学重点难点三角形内角和定理的证明及如何利用定理解决生活中的实际问题。
三、教学过程设计(一)学生回忆,引出课题问题1:复习平行线的性质如图1(1),已知:直线上有一点A ,过点A 作射线AM 、AN ,1、若∠DAM=30°,∠EAN=70°,则∠1等于多少度,为什么?2、若在AM 上任取一点B ,过点B 作BC ∥DE 交AN 于点C 如图1(2),则:(1)∠2等于多少度?为什么?(2)∠3等于多少度?为什么?(3)∠1+∠2+∠3等于多少度?为什么?师生活动:师:在第五章我们学习了相交线与平行线的相关知识,你还记得吗?请同学们完成以下练习,看看谁完成的又快又准。
生:1、∠1=80º,理由是: 平角的定义;2、(1)∠2=30º, 理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(2) ∠3=70º,理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(3)∠1+∠2+∠3等于180度,三角形内角和等于180度;(二)通过设疑,引出课题N M 70︒30︒1E D A 图1(1) N M 70︒30︒321E D C A B 图1(2)问题2:三角形内角和是1800是真命题吗?如何证明?师生活动:师:对于任意一个三角形的三个内角的和等于180度.我们是在小学已经知道了这个结论,那时侯,大家是怎样知道的呢?生:通过度量的方法,或者剪拼实验,能够验证一些具体的三角形的三个内角和都等于180º。
三角形的内角和自主学习单
《三角形的内角和》学习菜单
姓名: _______________ 学习伙伴: ________________ 【学习目标】
1.能算出三角尺上三个角的度数和,猜想到三角形的内角和可能是180° .
2.能用不同的方法验证三角形的内角和是180°
3.会应用发现的规律解决一些问题。
【我来预习】
1.知识链接
(1)三角形有()条边,()个角。
(2)三角尺3个角的度数分别是()()(),和是()
或()()(),和是()
2.自主预习
(1)三角形有()个内角
(2)
三角形的内角和是指 __________________________________________________________
(3)我猜想三角形的内角和可能是()度。
(4)读数学书78、79页。
【我来质疑】
在预习过程中你有哪些疑问?写下来,上课时我们一起解决。
【我来探究】
1、我用下面方法来验证我的猜想:
方法
)
方法方法三:
【自我检测】
2、用本课发现的规律算出下面多边形的内角和。
3、一块三角尺的内角和是180 °。
用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是()度。
(同位合作拼一拼)
【自我评价】
(动手操作☆、合作交流☆、检测结果☆☆☆)
☆☆☆☆☆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(√ )
2、两个锐角的和小于90度的三角形是钝角三角形( √ )
×
3、一个三角形有2个直角
()
4、有两个角的和是90度的三角形是直角三角形( √ )
1.基础训练。 三角形中,已知∠1=75°,∠2=39°, 求∠3的度数。
∠3 =180°-75°-39° = 66°
2.对比练习: 已知∠1和∠2是直角三角形的两个锐角, ①∠1=35°∠2=(55° ) ②∠1=58°∠2=(32° )
180°+ 180°= 360°
180°+ 180°= 360° 360°- 90°- 90°= 180°
180°+ 180°= 360° 360°- 90°- 90°= 180°
我的三个内角 的和一定比你大。
是这样ห้องสมุดไป่ตู้?
根据所学的知识,你能想办法 求出下列图形的内角和吗?
钝角三角形
260
1180
1180+260+380=1800
量
640
直角三角形
260
900
600+480+720=1800
拼
3
1
2
3
平角:1800
在下面的直角三角形中,∠A的度数是多少?
A
B
∠A=1800-( )-( ) =( )
填一填
300
C
∠1=40º
2
∠ 2=48º
∠ 3=92º3
1
猜猜∠3有多少度?
把一个三角形从一个顶点用一条直线分成
两个三角形,其中一个三角形的内角和(D)。
A、比90°小 B、比90°大 C、可能等于90°,大于90°或小于90° D、还是180°
一个三角形,有两个角是锐角,
则第三个角( D )。
A.一定是锐角 B.一定是钝角 C.一定是直角 D.可能是锐角或钝角或直角。
帕斯卡简介:
帕斯卡(1623—1662) 是法国著名的数学家、物 理学家、哲学家。
帕斯卡的故事:
帕斯卡12岁的时候,是个非常聪明,又 很顽皮的男孩。一天他又闯祸了,被爸爸 关在家里阁楼上思过,到了晚上,姐姐正 要叫帕斯卡下来吃饭,只见他兴冲冲地从 阁楼上跑了下来,嘴里大声的喊着“我发 现了,我发现了……”他究竟发现了什么 呢?
“你凭什么度数最大,我也要和你一样
大!”“不行啊!”老大说:“这是不可能
的,否则,我们这个家就再也围不起来
了……”“为什么?” 老二很纳闷。
1、说一说一套三角板的 各个角的度数,它们的 和呢?
1
1
2
3
(1)
2
3
(2)
60°+30°+90°=180°
45°+45°+90°=180°
2、你能猜想得到什么结论?
苏教版四年级数学下册
猜一猜:
▪ 三角形的三个内角和是多少度?
复习
什么是平角?平角有多少度?
1800
已知∠1=300, ∠2=800, 求∠3的度数。
复习
800
300
?
老大
内角三兄弟之争
老二
老三
在一个直角三角形里住着三个内角,平时,
它们三兄弟非常团结。可是有一天,老二突
然不高兴,发起脾气来,它指着老大说:
游戏:帮角找朋友
(每组卡片中,哪三个角可以组成三角形?)
600 900
450 300
540 460
520 800
量
600
锐角三角形
480
720
600+480+720=1800
内角三兄弟之争
同学们,通过刚才的学习, 你一定能帮忙解决直角三角形内 角三兄弟之争,你会如何解释呢? 想一想?
量
360
剪一剪、拼拼看,三角形的三个内角合起来是个多少 度的角?
三角形的三个内角的和是180°
·
复习
900
900
900 900
900
900
900 900
正方形和长方形的内角和是多少度?
长方形内角和3600,三角形呢?
三角尺
30
算一算,三 角形的内角和 是多少度呢?
判断: 1、一个三角形最少有2个锐角