初中数学沪科版九年级上册《锐角三角函数(正切)》优质课公开课课件省级比赛获奖课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
置呢?由此你能得出什么结论?
A
C2
C1
想一想
B2
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
A
C2 C1
想一想
B2
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
3) tanA不表示“tan”乘以“A ”
4)初中阶段,我们只学习直角三角形中锐角 的正切。
B
练一练: 1)在Rt△ABC中∠C=90°AC=5,
12 BC=12,tanA=( 12 )
5
A
5
C
B
练一练: 2)在Rt△ABC中∠C=90°AC=5,
13 12 AB=13,tanA=( 12 )
5
D
比眼力 比速度: 哪个梯子更陡?
A E
4m
3m
B
1.5m
F
1.3m
倾斜角越大——梯子陡
铅直高度与 水平宽度的比越大——梯子陡
想一想
B1
B2
A
C2
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
B2
A
C2
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
B2
A
C2
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
初中数学沪科版九年级上册 《锐角三角函数(正切)》 优质课公开课课件省级比赛获奖课件
锐角的三角函数
正切
取宝物比赛
咋判断陡?
选哪个?
10m
10m
(1)
1m
5m
(2)
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?



倾斜角

水平宽度
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
B2 A
C2
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
B2
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?


(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
A
C2 C1
∠A的正切
B
在Rt△ABC中,我们把锐角A 的对边与邻边的比叫做
∠A的正切. 记作:tanA
tan
A
A的对边 A的邻边
BC AC
a b
c
∠A的对边
a
A
∠A的邻边
b
C
思考 前面我们讨论了梯子 的倾斜程度,梯子的倾斜程 度与tanA有关系吗?
4
AB=10,tanA的值是(
)
3
C
A
B
4)如图,在Rt△ABC中AC=3,AB=√13,
则 tanA=( 2 ) 3
5)如图,在Rt△ABC中,AB=√7,
BC= √5,则 tanA=(√ 10 ),tanB=( √ 10 )
0.001)
200m
A
B 分析: 勾股定理求:AC
55m
C
BC Rt△ABC: AC
tanA
坡度
比一比看谁做得快而准
1)在直角三角形中,一个锐角所对的 直角边与相邻直角边的比,叫做这 个角的( 正切 )
2) 在直角三角形中,两锐角的正切互 为( 倒数 )关系.
3) △ABC中∠C=90°,AC=6,
在现实生活中,自行车是很重要的交通工 具,小明骑自行车上学要经过一段上坡路
h i h tan
l
l
坡角:坡面与水平面的夹角,记做
坡度:坡面的铅直高度与水平宽度的比叫做坡面
的坡度(或坡比),记做 i ,即
ih l
(坡度通常写成
i h:l
的形式)
例:某人从山脚下的点走了200m后 到达山顶的点B,已知点B到山脚的垂直 距离为55m,求山的坡度(结果精确到
A
5
C
B
练一练:
12
3)在Rt△ABC中∠C=90°AC=5, 5
BC=12,tanB=( )12A5CB
练一练:
13 12 4)在Rt△ABC中∠C=90°AC=5,
AB=13,tanB=( 5 ) 12
A
5
C
B
练一练:
5)在Rt△ABC中∠A=90°AC=3,
4 BC=4,tanC=( 4 ),tanB=( 3 )
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
倾斜角越大——梯子陡
铅直高度与 水平宽度的比越大——梯子陡
比眼力 比速度: 哪个梯子更陡?
B
E
(1)
(2)
5m
5m
A
2m
F
2.5m
D
比眼力 比速度: 哪个梯子更陡?
B
E
(1)
(2)
5m
4m
A
2m
F
2m
梯子越陡,tanA的值越大; 反过来, tanA的值越大,梯子越陡。
注意:1)tanA是一个完整的符号,它表示 ∠A的正切,记号里习惯省去角的符号“∠”。 但∠BAC的正切表示为:tan∠BAC,
∠1的正切表示为:tan∠1
2) tanA没有单位,它表示一个比值,即直 角三角形中∠A的对边与邻边的比。
3
4
C
3
A
B
3
A
4
练一练:
6)在Rt△ABC中∠B=90°
C AC=5,AB=3,tanA=( 4 ),
tanC=( 3 )
3
4
反思
∠A的正切值
B
在Rt△ABC中,如果锐角A确定,
∠A的对边 tanA ∠A的邻边
在Rt△ABC中∠C=90°
BC=3,tanA=
5 12
,求AC
A
C
正切也经常用来描述山坡的坡度

倾斜角

水平宽度
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
相关文档
最新文档