旋转折射式喷头移动喷洒水量分布计算模型构建与应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年10月灌溉排水学报
第42卷第10期Oct.2023Journal of Irrigation and Drainage No.10Vol.42
46
▪灌溉技术与装备▪
文章编号:1672-3317(2023)10-0046-11
旋转折射式喷头移动喷洒水量分布
计算模型构建与应用
薛绍鹏1,2,葛茂生1,2*,魏福强1,2,张骞文1,2,张廷宁1,2
(1.西北农林科技大学水利与建筑工程学院,陕西杨凌712100;
2.西北农林科技大学旱区农业水土工程教育部重点实验室,陕西杨凌712100)
摘要:【目的】探讨旋转折射式喷头移动喷洒水力特性,优化喷灌机组运行参数和配置。

【方法】采用喷灌强度等效拉伸法,构建了基于一次正交多项式拟合的移动喷洒水量分布计算模型,应用该模型对R3000、S3000、O3000喷头进行模拟计算,分析了工作压力(50~150kPa )、移动速度(20~45m/h )和组合间距(1.2~6m )对3种喷头移动喷洒水量分布和均匀度的影响。

【结果】①模型计算结果与实测值偏差在5%以内,模型精度较高。

②R3000、S3000、O3000喷头移动降水深随距喷头距离的增加而减小,3种喷头移动喷洒均匀度较固定喷洒分别提高11.17%、10.72%和2.36%。

③随着工作压力的增大,R3000、S3000、O3000喷头的有效喷灌半径逐渐增大,降水均匀度呈先增大后减小的趋势,最大降低幅度达35.66%,平均降水深和均匀度随移动速度的增大逐渐降低,但3种喷头喷洒均匀度的平均变化幅度仅为0.59%、1.38%、0.99%,说明移动速度对均匀度的影响较小。

随着组合间距的不断增大,均匀度呈波动下降的趋势。

④考虑工作压力和组合间距双因素影响,R3000、S3000、O3000喷头在低组合间距和高工作压力范围内取得较高的移动喷洒均匀度,在150kPa/3.6m 、150kPa/2.4m 、130kPa/3.6m 的工作压力/组合间距配置组合条件下,喷洒均匀度最高。

【结论】等效拉伸法降低了模型构建过程中的拟合次数,提高了计算精度;增大工作压力和降低组合间距有助于提高喷头移动喷洒均匀度。

关键词:低压喷头;水量分布;均匀度;移动喷洒;数学模型;组合间距中图分类号:S275.5
文献标志码:A
doi :10.13522/ki.ggps.2023044
OSID :
薛绍鹏,葛茂生,魏福强,等.旋转折射式喷头移动喷洒水量分布计算模型构建与应用[J].灌溉排水学报,2023,42(10):46-56.
XUE Shaopeng,GE Maosheng,WEI Fuqiang,et al.Construction and Application of Water Distribution Model for Rotary Refractive Sprinkler Spray Head Mobile System[J].Journal of Irrigation and Drainage,2023,42(10):46-56.
0引言1
【研究意义】旋转折射式喷头一般指有压喷灌水流经喷嘴射出,冲击并带动阻尼喷盘旋转,同时水流通过喷盘上具有专门结构设计的流道射出的一种喷头类型。

该类喷头具有适用工作压力低,水流破碎充分的特点,被广泛应用于大型时针式与平移式喷灌机等各类移动式喷灌机组[1]。

旋转折射式喷头的喷洒水力特性决定了喷灌机组的灌水质量,前人进行了大量的关于旋转折射式喷头喷洒水力特性的研究,包括工作压力、喷盘转速、安装高度等对喷头喷洒水量分布和打击动能分布特性等方面的影
收稿日期:2023-02-12修回日期:2023-05-24网络出版日期:2023-10-16基金项目:国家自然科学基金面上项目(52279045);陕西省青年科技新星项目(2023KJXX-011)
作者简介:薛绍鹏(1998-),男。

硕士研究生,主要从事节水灌溉技术与装备研究。

E-mail:********************.cn
通信作者:葛茂生(1990-),男。

副教授,硕士生导师,主要从事节水灌溉理论与新技术研究。

E-mail:*******************@《灌溉排水学报》编辑部,开放获取CC BY-NC-ND 协议
响[2-4]。

喷灌机原位实测或室内模拟试验是获得喷灌机组移动喷洒水量分布特性的重要手段,但是移动喷洒水量实测易受场地、环境等的限制,且人力与时间投入成本高,难以推广到试验因素较多或试验条件要求较高的情况[5]。

因此,尝试通过构建移动喷洒水量叠加模型进行水量分布的模拟计算具有重要意义。

【研究进展】旋转折射式喷头的径向水量分布常呈现明显的峰谷型分布,如单峰或双峰型分布[6],为获得较均匀的水量分布,需采用多喷头组合和适宜的组合间距,在供水干管方向进行水量叠加[7]。

陈震等[8]在实测单喷头水量分布的基础上,通过MALTLAB 编程模拟了组合叠加喷洒水量分布特性。

朱兴业等[9]采用三次样条插值得到了多喷头组合喷洒水量分布均匀系数。

但除了沿供水干管方向进行水量叠加外,喷灌机组在行进过程中,还要沿机组移动方向进行水量的叠加,灌溉区域内每点的实际
Copyright ©博看网. All Rights Reserved.
薛绍鹏等:旋转折射式喷头移动喷洒水量分布计算模型构建与应用
47
灌水量,都受到2种水量叠加的共同作用。

范永申
等[10]通过对喷灌和软管灌溉两用机进行试验,得到了低能耗平移式喷灌机的水量分布和喷灌均匀度变化特征。

张以升等[11]实测了特定灌水定额下轻小型平移式喷灌机的移动水量分布特性,发现可以通过调整喷头组合间距和机组行走速度保证喷头在较低工作压力下的喷洒均匀度。

Zhang 等[12]试验发现振荡波动水压可以提高喷头射程。

固定喷洒条件下的喷头径向水量分布特征曲线是进行移动喷洒水量计算的基础[13],Zhang 等[5]基于实测径向水量分布数据,建立了固定折射式喷头的移动喷洒水量分布计算模型,但其模型的计算过程复杂,不利于推广应用。

Dukes [14]研究中曾将喷头径向水量分布简化为三角形、椭圆、矩形和抛物线型等形式,Liu 等[15]基于椭圆、三角和抛物线型水量分布假设,建立了配备固定折射式喷头的平移式喷灌机移动喷洒水量分布计算模型,但大量喷洒实测结果表明,喷头的径向水量分布形状较为复杂,随喷头类型、工作压力等的变化呈马鞍形、单峰、双峰等不规则变化[6],依据简单几何图形表征喷头的径向水量分布不具有代表性。

最小二乘法是基于最小化误差平方和的曲线拟合优化方法,能够更真实地反应喷头径向水量分布的峰谷特征[6],葛茂生等[13]基于最小二乘法拟合建立了一种移动喷洒均匀度计算模型,但基于最小二乘法拟合的多项式往往具有较高的阶数,增加了过拟合风险[16]。

【切入点】旋转折射式喷头在移动喷洒条件下的水量分布与喷洒均匀度存在实测工作量大、易受环境影响,模拟计算精度低、过程烦琐等问题。

【拟解决的关键问题】为此,以平移式喷灌机组中应用最广泛的旋转折射式喷头(Nelson R3000、S3000、O3000喷头)为研究对象,采用喷灌强度等效拉伸法,构建基于一次正交多项式拟合的移动喷洒水量计算模型并验证模型精度,将构建模型用于分析喷头工作压力、组合间距、机组移动速度等对移动喷洒水量分布的影响,为优化机组配置和运行参数,提高移动式喷灌机组运行效率提供科学依据。

1移动喷洒水量分布计算模型构建
1.1径向水量分布特征曲线
本文以实测水量到拟合曲线正交距离平方和最小为准则,对喷头径向水量分布特征曲线进行正交最小二乘法拟合,与最小二乘法拟合相比,该方法可得到较合理的阶数和更高的拟合精度[17],基于正交最小二乘法拟合的径向水量分布特征曲线可表述为:
p x =i=0n
a i x i 0≤x ≤R 0x>R
,(1)
式中:x 为测点到喷头的距离(m );p (x )为距喷头距离x 处的喷灌强度(mm/h );a i 为正交多项式回归系数,可根据实测数据采用SPSS 或MATLAB 软件拟合得到;i 为正交多项式的阶数;n 为多项式阶数。

利用MATLAB 软件设计编写了正交多项式水量分布拟合程序,便于研究和后续计算。

1.2移动喷洒水量计算1.2.1基本假设
旋转折射式喷头喷洒范围为圆形,且移动过程中喷头的旋转速度远大于机组的行走速度[11],故此处可作2点假设以简化计算:①距喷头距离相等的各点处有相同的喷灌强度;②任意1个旋转周期内落在喷洒域某点的水量相同。

若喷头所在位置为O 点,Y 方向为机组行进方向,假设喷头位置不动,V 为测点移动方向,则X 轴上任意x 点的移动喷洒总受水量为该点进入喷洒域的起始点M start 到完全离开喷洒域的终末点M end 的总受水量,如图1所示,受水过程可以简化为以该点为垂心垂直于X 轴的虚线与喷头喷洒域外轮廓线相交得到的虚线段上的历时降水量总和,虚线段可称为喷洒路径。

图1移动喷灌示意
Fig.1Schematic diagram of mobile sprinkler irrigation
图1中O 为喷头位置;x 为测点到喷头行进线的距离(m );R 为喷洒半径(m );M start 为受水起点;M end 为受水终点;V 为喷灌机移动速度(m/h );θ为边缘受水点与喷头的夹角(0°<θ<90°)1.2.2等效拉伸系数
以喷头所在位置为圆心,以任意距喷头距离l 为半径作圆,总是能与喷洒路径和OR 各自交于点A 和点B ,如图2所示。

根据基本假设,A 、B 点的喷灌强度数值相等,因此可将点A 、B 称为一对等效强度点。

显然,在喷洒路径上的每一点,均能够在OR 上找到对应的等效强度点,而OR 上任意点的喷灌强度均可通过径向水量分布特征曲线得出,进而可得到喷洒路径上各点对应的喷灌强度。

定义x 点到喷洒路径和径向线OR 上各等效强度点距离的比值为等效拉伸系数K 。

Copyright ©博看网. All Rights Reserved.
灌溉排水学报
48
图2移动路径上等效水量分布假设
Fig.2Assumption of equivalent water distribution on the move path
图2中O 为喷头位置点;x 为测点到喷头行进线的距离(m );R 为喷洒半径(m );L 为R 点的喷灌强度等效点;A 1、A 2、A 3、B 1、B 2、B 3点为喷灌强度等效点。

在喷灌机组行进过程中,设喷灌机从X 轴上距喷头距离为x 的一点出发,其受水区间为M start 到M end 的1/2,设机组移动速度为v ,则任意行进时间t 时,受水点距X 轴的距离为vt ,则此时该点距喷头的距离X i 为:
X i =x 2+
vt 2,
(2)
设此时该点在X 轴上的等效强度点距x 点距离为Δx ,计算式为:
Δx =X i -x =x 2+vt 2-x ,(3)
根据对等效拉伸系数的定义,可得在喷洒路径上任意时刻对应的等效拉伸系数为:
K =vt Δx =vt x 2+vt 2-x

(4)
对式(4)变形可得:K =x 2+vt 2+x vt。

(5)
1.2.3移动喷洒水量
设固定喷洒径向水量分布的拟合函数为f (x ),移动路径上的水量分布函数为f L (x ),将等效拉伸系数带入固定喷洒水量分布函数,设a 为喷灌机在喷洒路径上任意时刻点到X 轴的距离。

a =vt 。

(6)则移动路径上的水量分布函数f L (a )为:f L a =f Ka =f (Kvt )。

(7)由式(6)和式(7)可得:
f L a =f x+x+vt
2。

(8)
随移动路径上各位置点的拉伸不同,但总的拉伸长度相同,以xR 和xL 长度比(式(9))计算整段移动路径在拉伸后的初始时间和终了时间,如式(10)和式(11)所示,即:
K =
R 2-x 2
R-x ,
(9)T x =Kx v ,
(10)
内任一点距首个喷头的距离(m )。

图3移动叠加示意
Fig.3Schematic of the move process overlay
根据组合叠加后各点的水量分布,可进一步计算出旋转折射式喷头的移动组合叠加喷洒均匀度,Christiansen 均匀系数CU 表示,计算式为:
图4试验装置示意
Fig.4Schematic diagram of test devicet
测试喷头安装在固定支架上,支架下方装有驱
动电机和轨道轮,可驱动喷灌装置行走,此装置可
用于喷头固定与移动喷洒水量分布测定试验。

固定
喷洒水量分布测试采用自喷头处引出的3条射线布
图5S3000喷头径向水量分布
Fig.5Radial water distribution of S3000nozzle
喷头径向水量分布分段拟合系数
radial water distribution of sprinkler
径向水量分布各分段拟合系数
R
a2a3a4a5
46.029-12.952 1.1400.9758
15.250000.9879
-277.33224.31-97.93222.190.9956
灌溉排水学报
(a)110kPa(b)130kPa(c)150kPa
图6线性移动水量分布模型验证
Fig.6Validation of linear moving water distribution model
3模型应用
3.1喷头选用
低压旋转折射式喷头是广泛应用于移动式喷灌系
统的喷头类型,根据喷头喷盘旋转所在的平面又可分
(a)固定喷洒
(b)移动喷洒
图7固定喷洒与移动喷洒水量分布对比
Fig.7Distribution of fixed and mobile spray water
由图7可知,移动喷洒水量分布呈抛物线分布,
移动降水深随距喷头距离的增加呈减小趋势,与固
定喷洒喷水量分布曲线的双峰分布相比,移动喷洒
极大削弱了峰值水量分布,移动喷洒过程中,R3000、
S3000、O3000喷头峰值降水深分别占平均降水深的
137.06%、144.53%、150.94%,与固定喷洒相比,
移动喷洒3种喷头峰值降水深分别降低14.96%、
23.01%、1.85%,降低了对土壤冲刷的风险和地表积
水形成的可能。

R3000、S3000、O3000喷头移动喷
洒均匀度分别为75.42%、65.26%、58.00%,与固定
喷洒相比,移动喷洒3种喷头喷洒均匀度分别提高
11.17%、10.72%、2.36%,说明机组行进方向的水量
叠加过程可有效提升喷洒均匀度。

3.3工作压力对移动喷洒水量分布特性的影响
工作压力是影响喷灌机灌溉质量的重要因素[2],
但生产厂家给出喷头适用工作压力范围较为模糊
(R3000适用工作压力为100~200kPa,S3000适用
工作压力为70~140kPa,O3000适用工作压力为
40~100kPa),对喷头的应用和选配缺乏有效指导。

结合上文构建的移动喷灌水量分布计算模型,分别
计算了R3000、S3000、O3000喷头在50、70、90、
110、130、150kPa工作压力下的移动喷洒水量分布,
以及喷洒均匀度系数CU(图8)。

由图8可知,R3000、S3000、O3000喷头在不
同工作压力下的移动降水深曲线均呈抛物线型分布,
移动降水深随距喷头距离的增大逐渐减小,旋转折Copyright
薛绍鹏等:旋转折射式喷头移动喷洒水量分布计算模型构建与应用
51
射喷头R3000、S3000在近喷头处2、6m 左右存在
微小的峰值降水深,这是由于固定水量分布曲线的双峰在移动过程叠加所致。

随着工作压力的增大,R3000、S3000、O3000喷头有效喷灌半径逐渐增大,增加幅度分别为31.25%、26.7%、30%,各喷头的平均降水深和最大降水深随工作压力的增大基本呈上升趋势,平均降水深的变化幅度分别为35.29%、31.66%、19.21%,最高降水深的变化幅度为58.6%、47.87%、24.47%。

R3000、S3000喷头降水深的变化趋势类似,与R3000、S3000喷头相比,O3000喷头降水深的增长幅度较低,可能与振荡射流形式有关,
灌溉水在喷洒域分布更加均匀。

随着工作压力的增大,降水均匀度CU 均呈先增大后减小的趋势。

在130kPa 工作压力下,喷头均匀度呈增加趋势,最大增加段在S3000喷头110~130kPa 处,最大增加幅度为21.21%。

而当工作压力高于130kPa 时,均匀度均大幅度降低,最大降低段位于130~150kPa 处,最大降低幅度为35.66%,其中R3000喷头在70kPa 工作压力时达到最大均匀度71.62%,S3000喷头在130kPa 工作压力时达到最大均匀度72.86%,O3000喷头在90kPa 工作压力时达到最大均匀度60.15%。

(a)R3000移动降水深(b)R3000水力性能指标
(c)S3000移动降水深(d)S3000水力性能指标
(e)O3000移动降水深(f)O3000水力性能指标
图8各喷头不同工作压力下移动降水深和水力性能指标
Fig.8Radial precipitation depth and hydraulic performance index of sprinkler under different working pressures
3.4移动速度对喷洒均匀度的影响
从图9可以看出,随着移动速度的增大,R3000、S3000、O3000喷头降水深曲线趋于平缓,平均降水深呈对数逐渐降低。

当移动速度较低时,各喷头平均降水深较高(移动速度为20m/h ,平均降水深分
别为9.24、10.77、8.35mm )。

各喷头任一测点处的移动降水深随移动速度的增大而减小,且减小幅
度随移动速度的增加而降低,移动速度在20~25m/h 时,R3000、S3000、O3000喷头处移动降水深减小幅度最大,分别为19.9%、15.82%、20.15%,随着
Copyright ©博看网. All Rights Reserved.
灌溉排水学报
52
移动速度的增大,各测点的降水历时逐渐减小,使
得叠加在该测点的水量减小。

(a)R3000移动降水深(b)R3000CU 和平均降水量
(c)S3000移动降水深(d)S3000CU 和平均降水量
(e)O3000移动降水深(f)O3000CU 和平均降水量
图9110kPa 工作压力下3种喷头移动降水深和喷洒均匀度
Fig.9Moving precipitation depth and spraying uniformity of the three sprinklers under 110kPa working pressure
R3000、S3000、O3000喷头喷洒均匀度随移动速度的增大而减小,当移动速度为20m/h 时喷洒均匀度最大,分别为74.93%、67.11%、56.72%,但均匀度的平均变化幅度仅为0.59%、1.38%、0.99%,说明移动速度对喷洒均匀度的影响较小。

综上可知,在根据需求平均降水深进行喷灌机移动速度设计时,由于平均降水深在低移动速度时下降幅度较大和均匀度较高的特性,故可适度降低设计移动速度,以提高降水均匀度和平衡由于机组运行和蒸发漂移带
来的水量损失。

3.5组合间距对喷洒均匀度的影响
110kPa 工作压力下,R3000、S3000、O3000喷头的单喷头移动喷洒射程为7.2、7.2、7.6m ,选取2.4、3.6、4.8、6、7.2m 的双喷头组合间距[21],定义双喷头组合间区域为典型叠加区域,移动过程的径向降水深简化为多个喷头在典型叠加区域内的径向降水深之和。

各喷头的组合移动降水深和均匀度见图10。

Copyright ©博看网. All Rights Reserved.
(a)R3000水量分布(b)R3000均匀度
(c)S3000水量分布(d)S3000均匀度
(e)O3000水量分布(f)O3000均匀度
图10110kPa工作压力下不同喷头组合间距下种喷头水量分布与喷洒均匀度
Fig.10Water distribution curve and uniformity combination spaces-taking110kPa as an example
由图10可知,随着组合间距增大,R3000 S3000、O3000喷头降水深逐渐减小,且减小的幅度逐步降低,但喷洒均匀度CU呈波动下降趋势,在m喷头组合间距时,有多个喷头的水量分布在典型叠加区域内叠加,使得叠加区域平均降水深明显头数仅剩2个,此时区域内水量分布呈随组合间距增大而波动起伏的变化趋势,由于各喷头结构差异,呈现的效果差异明显,R3000、O3000喷头在4.8
喷头组合间距时均匀度大幅度下降,S3000喷头在喷头组合间距时均匀度大幅下降。

故组合间距
灌溉排水学报
(a)R3000(b)S3000(c)O3000
图11不同组合间距和工作压力下3种喷头均匀度热图
Fig.11Heat map of uniformity under the combined influence of combined spacing and working pressure
综上可知,工作压力和组合间距的不同配置对移动喷洒水量分布均匀度有明显影响,考虑双因素影响下的大型喷灌机机组配置,R3000喷头的最优配置分别为工作压力150kPa和组合间距3.6m,S3000喷头的最优配置分别为工作压力150kPa和组合间距2.4m,O3000喷头的最优配置分别为工作压随着移动速度的增大,喷头降水深曲线趋于平缓,平均降水深呈对数逐渐降低,这与Zhang等[12]研究结果一致,同时,发现喷灌机行走速度与平均降水深负相关,且移动速度对均匀度的影响较小。

Zhang 等[5]的研究结论表明了这一观点,但不同的是,Zhang等[5]是在特定灌水定额下,而本研究中设定为
薛绍鹏等:旋转折射式喷头移动喷洒水量分布计算模型构建与应用
55
动下降的趋势。

3)R3000、S3000、O3000喷头的工作压力和喷头组合间距配置组合分别为150kPa/3.6m 、150kPa/2.4m 、130kPa/3.6m 时,喷洒均匀度最高。

(作者声明本文无实际或潜在利益冲突)
参考文献:
[1]
李仰斌,刘俊萍.中国节水灌溉装备与技术发展展望[J].排灌机械工程学报,2020,38(7):738-742.
LI Yangbin,LIU Junping.Prospects for development of water-saving irrigation equipment and technology in China[J].Journal of Drainage and Irrigation Machinery Engineering,2020,38(7):738-742.[2]
赵伟霞,张萌,李久生,等.喷头安装高度对圆形喷灌机灌水质量的影响[J].农业工程学报,2018,34(10):107-112.
ZHAO Weixia,ZHANG Meng,LI Jiusheng,et al.Influence of sprinkler height on irrigation performance of center pivot irrigator[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(10):107-112.[3]
OUAZAA S,BURGUETE J,PANIAGUA M P,et al.Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory[J].Spanish Journal of Agricultural Research,2014,12(3):850-863.[4]
SCHWANKL L J,PRICHARD T L,HANSON B R.Reducing Runoff from Irrigated Lands:Soil intake rates and application rates in sprinkler-irrigated orchards[M].San Diego:University of California,Agriculture and Natural Resources,2007.[5]
ZHANG Yisheng,GUO Jinjun,SUN Bin,et al.Modeling and dynamic-simulating the water distribution of a fixed spray-plate sprinkler on a lateral-move sprinkler irrigation system[J].Water,2019,11(11):2296.[6]
仵峰,徐露,刘焕,等.单喷头水量分布函数拟合研究[J].水利科学与寒区工程,2019,2(2):20-26.
WU Feng,XU Lu,LIU Huan,et al.Fitting research on water distribution function of single sprinkler[J].Hydro Science and Cold Zone Engineering,2019,2(2):20-26.[7]MATEOS L.Assessing whole-field uniformity of stationary sprinkler irrigation systems[J].Irrigation Science,1998,18(2):73-81.
[8]
陈震,段福义,范永申,等.喷灌机全喷洒域与叠加域水量分布特性的静态模拟[J].农业工程学报,2017,33(16):104-111.
CHEN Zhen,DUAN Fuyi,FAN Yongshen,et al.Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(16):104-111.[9]
朱兴业,袁寿其,向清江,等.旋转式射流喷头设计与性能正交试验[J].农业机械学报,2008,39(7):76-79.
ZHU Xingye,YUAN Shouqi,XIANG Qingjiang,et al.Orthogonal experiment on design and performance of a rotational jet sprinkler[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(7):76-79.[10]
范永申,黄修桥,仵峰,等.喷灌和软管灌溉两用机组水量分布特性与试验[J].农业机械学报,2009,40(11):74-77,123.
FAN Yongshen,HUANG Xiuqiao,WU Feng,et al.Experiment and analysis on water distribution uniformity of machine of sprinkling irrigation and hose irrigation dual purpose[J].Transactions of the
Chinese Society for Agricultural Machinery,2009,40(11):74-77,123.[11]
张以升,朱德兰,张林,等.平移式喷灌机行走速度及喷灌均匀度试验研究[J].排灌机械工程学报,2014,32(7):625-630.
ZHANG Yisheng,ZHU Delan,ZHANG Lin,et al.Study on translocating speed and water distribution uniformity of lightweight lateral move irrigation system[J].Journal of Drainage and Irrigation Machinery Engineering,2014,32(7):625-630.[12]
ZHANG Kai,SONG Bo,ZHU Delan.The influence of sinusoidal oscillating water flow on sprinkler and impact kinetic energy intensities of laterally-moving sprinkler irrigation systems[J].Water,2019,11(7):1325.[13]
葛茂生,吴普特,朱德兰,等.卷盘式喷灌机移动喷洒均匀度计算模型构建与应用[J].农业工程学报,2016,32(11):130-137.
GE Maosheng,WU Pute,ZHU Delan,et al.Construction and application of mobile spraying uniformity model of hard hose traveler[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(11):130-137.[14]
DUKES M D.Effect of wind speed and pressure on linear move irrigation system uniformity[J].Applied Engineering in Agriculture,2006,22(4):541-548.[15]
LIU J P,ZHU X Y,YUAN S Q,et al.Modeling the application depth and water distribution uniformity of a linearly moved irrigation system[J].Water,2019,11(4):827.[16]
GE Maosheng,WU Pute,ZHU Delan,et al.Application of different curve interpolation and fitting methods in water distribution calculation of mobile sprinkler machine[J].Biosystems Engineering,2018,174:316-328.[17]
朱晓东,鲁铁定,陈西江.正交多项式曲线拟合[J].东华理工大学学报(自然科学版),2010,33(4):398-400.
ZHU Xiaodong,LU Tieding,CHEN Xijiang.Orthogonal polynomial curve fitting[J].Journal of East China University of Technology (Natural Science),2010,33(4):398-400.[18]
吴涤非.行喷式喷灌机组合均匀度的设计与计算[J].华北水利水电学院学报,1984,5(1):40-52.
WU Difei.The design and calculation of resultant uniformity of continuously moving mechanical sprinkley systems[J].Journal of North China Institute of Water Resources and Electric Power,1984,5(1):40-52.[19]
国家质量监督检验检疫总局,中国国家标准化管理委员会.农业灌溉设备喷头第3部分:水量分布特性和试验方法:GB/T 27612.3—2011[S].北京:中国标准出版社,2012.[20]
国家质量监督检验检疫总局,中国国家标准化管理委员会.农业灌溉设备中心支轴式和平移式喷灌机水量分布均匀度的测定:GB/T 19797—2012[S].北京:中国标准出版社,2013.[21]
朱兴业,万景红,ALEXANDER Fordjour,等.旋转折射式喷头水量分布与喷灌均匀性试验[J].农业机械学报,2018,49(8):145-152.ZHU Xingye,WAN Jinghong,FORDJOUR A,et al.Experiment of water distribution and uniformity of rotating plate sprinkler[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(8):145-152.[22]
DOGAN E,KIRNAK H,DOGAN Z.Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system[J].Biosystems Engineering,2008,99(2):190-195.[23]
ZHANG Lin,MERKLEY G P.Relationships between common irrigation application uniformity indicators[J].Irrigation Science,2012,30(2):83-88.
Copyright ©博看网. All Rights Reserved.
灌溉排水学报
56
Construction and Application of Water Distribution Model for Rotary Refractive Sprinkler Spray Head Mobile System
XUE Shaopeng1,2,GE Maosheng1,2*,WEI Fuqiang1,2,ZHANG Qianwen1,2,ZHANG Tingning1,2
(1.College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling712100,China;
2.Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,
Ministry of Education,Northwest A&F University,Yangling712100,China)
Abstract:【Objective】Refractive sprinkler spray head mobile irrigation is a widely used irrigation system.In this paper,we proposed a model to calculate its water distribution and hydraulic characteristics for helping optimize its operating parameters and configuration.【Method】We used the sprinkler intensity equivalent stretching method and constructed a mobile sprinkler water distribution model based on the primary orthogonal polynomial fitting.The model was then applied to the R3000,S3000and O3000rotary refractive sprinkler head systems to analyze their water distribution under working pressure ranging from50to150kPa,moving speed from20to45m/h,sprinkler spacing from1.2to8.4m.【Result】①The water depth of all three systems decreased with the increase in sprinkler pared with a fixed system,the three mobile systems increased spraying uniformity by2.36%to 11.17%.②With the increase in working pressure,the effective spraying radius of the R3000,S3000and O3000 systems gradually increased,while their spraying uniformity increasing first followed by a fall.The average water depth and distribution uniformity of the mobile systems decreased with the increase in moving speed,albeit the change was small ranging from0.59%to1.38%for the three systems.With the increase in sprinkler distance,the average water depth and the spraying uniformity decreased in a fluctuating way.③Considering the influence of working pressure and sprinkler spacing,the R3000,S3000and O3000gave the highest spraying uniformity when the working pressure/distance was150kPa/3.6m,150kPa/2.4m and130kPa/3.6m,respectively.【Conclusion】The equivalent stretching method reduces the number of fittings in model construction and improves modelling accuracy. Increasing working pressure or reducing sprinkler spacing can improve spraying uniformity.
Key words:low pressure sprinkler;water quantity distribution;uniformity;mobile spraying;mathematical model; combination spacing
责任编辑:白芳芳
Copyright©博看网. All Rights Reserved.。

相关文档
最新文档