A线坐标
直线的交点坐标与距离公式课件高二上学期数学人教A版(2019)选择性必修第一册
+ −
特别地,(1)原点(0,0)与任意一点(, )间的距离||= 2 + 2 ;
(2)当1 2 平行于x轴时,| 1 2 |=|2 − 1 |;
(3)当1 2 平行于y轴时,| 1 2 |=|2 − 1 |.
注意:两点的距离公式与两点的先后顺序无关,即公式可以写成
A
A
即 Bx Ay Bx0 Ay0 .
Ax By C 0
解方程组
,得直线 l 与 PQ 的交点坐标,
Bx Ay Bx0 Ay0
B 2 x0 ABy0 AC ABx0 A2 y0 BC
,
即垂足 Q 的坐标为
.
2
2
2
2
A B
=
=
=
≠
2 2 2 2 2 2
2.3 直线的交点坐标与距离公式
2.3.2 两点间的距离公式
探究新知
已知平面内两点1 1 , 1 ,2 2 , 2 ,如何求1 , 2 之间的距离|1 2 |?
由点1 1 , 1 ,2 2 , 2 ,得1 2 = (2 − 1 , 2 − 1 )
3 + 4 − 2 = 0
= −2
解:解方程组
得
=2
2 + + 2 = 0
所以, 与 的交点是M (-2,2)
课本71页例2
判断下列各对直线的位置关系,如果相交,求出其交点的坐标:
(1)1 : − = 0,
2 :3 + 3 − 10 = 0 ;
(2)1 :3 − + 4 = 0,
159
思考
如何取点,可使计算简单?
第7讲 直线的交点坐标与距离公式(原卷版)
第7讲直线的交点坐标与距离公式新课标要求1.能用解方程组的方法求两条直线的交点坐标。
2.探索并掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
知识梳理一、直线的交点与直线的方程组解的关系1.两直线的交点(l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0)2.两直线的位置关系二、两点间的距离公式三、点到直线的距离1.概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离. 2.公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.四、两平行直线间的距离1.概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离. 2.公式:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B 2.名师导学知识点1 两直线的交点问题【例1-1】(宜昌期末)已知两直线1:3420l x y +-=,2:220l x y ++=,则1l 与2l 的交点坐标为 . 【例1-2】(雅安期末)过直线1:240l x y -+=与直线2:10l x y ++=的交点,且过原点的直线方程为( ) A .20x y -=B .20x y +=C .20x y -=D .20x y +=【例1-3】(芜湖期末)若三条直线2380x y ++=,10x y --=和0x ky +=交于一点,则k 的值为( ) A .2-B .12-C .2D .12【变式训练1-1】(阎良区期末)直线5y x =-+与直线1y x =+的交点坐标是( ) A .(1,2)B .(2,3)C .(3,2)D .(2,1)【变式训练1-2】((安庆期末)直线210x y ++=与直线20x y -+=的交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式训练1-3】((庐江县期中)直线230x y k +-=和直线120x ky -+=的交点在x 轴上,则k 的值为() A .24- B .24C .6D .6±知识点2 直线过定点问题【例2-1】(宿迁期末)设直线2(3)260x k y k +--+=过定点P ,则点P 的坐标为( ) A .(3,0)B .(0,2)C .(0,3)D .(2,0)【例2-2】(江阴市期中)直线:1(2)l y k x -=+必过定点( ) A .(2,1)- B .(0,0)C .(1,2)-D .(2,1)--【变式训练2-1】(黄浦区期末)已知a R ∈,若不论a 为何值时,直线:(12)(32)0l a x a y a -++-=总经过一个定点,则这个定点的坐标是( ) A .(2,1)-B .(1,0)-C .21(,)77-D .12(,)77-【变式训练2-2】(慈溪市期末)直线1(y kx k k =++为常数)经过定点( ) A .(1,1) B .(1,1)-C .(1,1)-D .(1,1)--知识点3 两点间距离公式的应用【例3-1】(南充期末)已知点(1A ,0,2)与点B (1,3-,1),则||(AB = )A .2BC .3D 【例3-2】(临川区校级一模)已知ABC ∆的三个顶点的坐标分别为(3,4)A ,(5,2)B ,(1,4)C --,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰直角三角形【变式训练3-1】(琼山区校级期末)已知ABC ∆的顶点坐标为(7,8)A ,(10,4)B ,(2,4)C -,则BC 边上的中线AM 的长为( )A .8B .13C .D 【变式训练3-2】(雁江区校级月考)如图,已知等腰梯形ABCD ,用坐标法证明:AC BD =.知识点4 点到直线的距离【例4-1】(金凤区校级期末)已知点(2,1)P -.(1)若一条直线经过点P ,且原点到直线的距离为2,求该直线的一般式方程; (2)求过点P 且与原点距离最大的直线的一般式方程,并求出最大距离是多少?【例4-2】(韶关期末)已知点(1,3)A 和点(5,2)B 到直线l 的距离相等,且l 过点(3,1)-,则直线l 的方程为()A .410x y ++=或3x =B .410x y +-=或3x =C .410x y ++=D .410x y +-=【变式训练4-1】(保山期末)若直线l 过点,倾斜角为120︒,则点(1,到直线l 的距离为( )A B C D 【变式训练4-2】(新课标Ⅲ)点(0,1)-到直线(1)y k x =+距离的最大值为( )A .1BCD .2知识点5 两平行线间距离公式及其应用【例5-1】(张家界期末)直线3430x y +-=与直线690x my ++=平行,则它们的距离为( ) A .65B .32C .125D .2【例5-2】(广州期末)若两平行直线20(0)x y m m ++=>与30x ny --=,则(m n +=) A .0B .1C .1-D .2-【变式训练5-1】(靖远县期末)已知直线240x y +-=与直线230x my m +++=平行,则它们之间的距离为( )AB C D 【变式训练5-2】(连云港期末)两条平行直线6450x y -+=与32y x =的距离是( )A B C D 【变式训练5-3】(广东期末)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为( ) A .2或1-B .1C .1或2-D .2-【变式训练5-4】(崇左期末)已知直线1:20l x y n ++=,2:440l x my +-=互相平行,且1l ,2l 之间的距离(m n += ) A .3-或3B .2-或4C .1-或5D .2-或2知识点6 运用距离公式解决最值问题【例6-1】(北碚区校级期末)已知ABC ∆的三个顶点(1,2)A ,(2,1)B ,(3,3)C ,若ABC ∆夹在两条斜率为1的平行直线之间,则这两条平行直线的距离的最小值是( )A B C D【例6-2】(鼓楼区校级期中)已知直线1:4270l x y +-=和2:210l x y +-=,直线m 分别与1l ,2l 交于A ,B 两点,则线段AB 长度的最小值为 .【变式训练6-1】(闵行区校级模拟)过点(1,2)-且与原点的距离最大的直线方程是 . 【变式训练6-2】(和平区校级期末)已知点(2,5)A 和点(4,7)B ,点P 在y 轴上,若||||PA PB +的值最小,则点P 的坐标为 .名师导练A 组-[应知应会]1.(辽源期末)点(3,1)到直线3420x y -+=的距离是( ) A .45B .75C .425D .2542.(宁波期末)直线6820x y +-=与6830x y +-=间的距离为( ) A .1B .3C .110D .253.(内江期末)已知点(1,3)M 到直线:10l mx y +-=的距离等于1,则实数m 等于( ) A .34B .43C .43-D .34-4.(兴庆区校级期末)设有直线(3)1y k x =-+,当k 变动时,所有直线都经过定点( ) A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.(沙坪坝区校级期中)已知直线1:10l x ay +-=与2:210l x y -+=平行,则1l 与2l 的距离为( )A .15B C .35D 6.(包头期末)点(,)P x y 在直线20x y +-=上,O 是坐标原点,则||OP 的最小值是( )A .1BC .2D .7.(河池期末)点2(2,)P m m 到直线70x y ++=的距离的最小值为( )A .4B .C .D .8.(江阴市期中)直线l 过(1,2)P ,且(2,3)A ,(4,5)B -到l 的距离相等,则直线l 的方程是( ) A .460x y +-=B .460x y +-=C .2370x y +-=或460x y +-=D .3270x y +-=或460x y +-=9.(平顶山期末)已知(1,2)P -,(2,4)Q ,直线:3l y kx =+.若P 点到直线l 的距离等于Q 点到直线l 的距离,则(k = ) A .2.3或6B .23C ..0D ..0或2310.(昆山市期中)已知(2,3)M -,(6,2)N ,点P 在x 轴上,且使得PM PN +取最小值,则点P 的坐标为()A .(2,0)-B .12(5,0)C .14(5,0)D .(6,0)11.(宝安区校级模拟)已知0x <<0y <<M M 的最小值为( )A .B .C .2D .12.(多选)(江阴市期中)若两条平行直线1:20l x y m -+=与2:260l x ny +-=之间的距离是则m n +的可能值为( ) A .3B .17-C .3-D .1713.(多选)(山东模拟)若三条直线1:10l ax y ++=,2:10l x ay ++=,3:0l x y a ++=不能围成三角形,则a 的取值为( ) A .1a = B .1a =-C .2a =-D .2a =14.(田家庵区校级期末)原点(0,0)到直线:20l x y -+=的距离是 .15.(尖山区校级期末)两条平行直线110l y -+=与2:230l ax y +-=之间的距离为 . 16.(嘉兴期末)直线1:0l x y m --=与直线2:30l mx y -+=平行,则m = ;1l 与2l 之间的距离为 . 17.(金华期末)已知直线:(1)2l x m y m ++=-,则当0m =时,直线l 的倾斜角为 ;当m 变化时,直线l 过定点 .18.(镇江期末)已知直线1:0l x y a ++=与直线2:0l x y +=,则实数a 的值为 . 19.(珠海期末)已知平面直角坐标系xOy 中,点(4,1)A ,点(0,4)B ,直线:31l y x =-,则直线AB 与直线l 的交点坐标为 .20.(苏州期末)已知A ,B 两点分别在两条互相垂直的直线20x y -=和5x ay +=上,且线段AB 的中点为(0,5)P ,则||AB = .21.(昆山市期中)在平面直角坐标xOy 中,已知(4,3)A ,(5,2)B ,(1,0)C ,平面内的点P 满足PA PB PC ==,则点P 的坐标为 .22.(新余期末)已知直线:2(2)l y ax a =+-过一、三、四象限,其中a Z ∈,则点(1,3)A -到直线l 的距离为 .23.(乐山期末)已知两条直线1:420l mx y +-=和2:10l x my ++=. (1)当12//l l 时,求m 的值;(2)在(1)的条件下,求1l 、2l 间的距离.24.(宁德期末)已知直线:260l x y --=与x 轴的交点为A ,且点A 在直线m 上. (1)若m l ⊥,求直线m 的方程;(2)若点(1,1)B 到直线m 的距离等于2,求直线m 的方程.25.(新都区期末)已知ABC ∆的三个顶点坐标为(3,1)A -,(3,3)B -,(1,7)C . (1)求BC 边的中线所在直线方程的一般式方程; (2)求ABC ∆的面积.26.(沭阳县期中)已知直线:(12)(1)720l m x m y m ++-++=. (1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线1l ,使夹在两坐标轴之间的线段被M 点平分,求直线1l 的方程.27.(宁城县期末)已知点ABC ∆三顶点坐标分别是(1,0)A -,(1,0)B ,(0,2)C , (1)求A 到BC 边的距离d ;(2)求证AB 边上任意一点P 到直线AC ,BC 的距离之和等于d .B 组-[素养提升]1.(尖山区校级期末)已知在ABC ∆中,顶点(4,2)A ,点B 在直线:20l x y -+=上,点C 在x 轴上,则ABC ∆的周长的最小值 . 2.(兰州期末)已知点(2,1)P -.(1)求过P 点与原点距离最大的直线l 的方程,最大距离是多少?(2)是否存在过P 点与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.。
空间直角坐标系》教案(人教A版必修
空间直角坐标系》教案(人教A版必修)第一章:空间直角坐标系的建立1.1 坐标系的定义与分类让学生理解坐标系的概念,掌握坐标系的分类及特点通过实例让学生了解坐标系在几何图形中的应用1.2 空间直角坐标系的定义与结构让学生理解空间直角坐标系的定义,掌握其结构特点通过实例让学生了解空间直角坐标系在空间几何中的应用第二章:点的坐标2.1 坐标的概念与表示方法让学生理解坐标的概念,掌握坐标的表示方法通过实例让学生了解坐标在空间几何中的应用2.2 点的坐标与坐标轴的关系让学生了解点的坐标与坐标轴的关系,掌握坐标轴上点的坐标特点通过实例让学生了解坐标轴上点的坐标在空间几何中的应用第三章:直线的方程3.1 直线方程的概念与表示方法让学生理解直线方程的概念,掌握直线方程的表示方法通过实例让学生了解直线方程在空间几何中的应用3.2 直线方程的求解方法让学生掌握直线方程的求解方法,能够灵活运用各种方法求解直线方程通过实例让学生了解直线方程的求解方法在空间几何中的应用第四章:平面的方程4.1 平面方程的概念与表示方法让学生理解平面方程的概念,掌握平面方程的表示方法通过实例让学生了解平面方程在空间几何中的应用4.2 平面方程的求解方法让学生掌握平面方程的求解方法,能够灵活运用各种方法求解平面方程通过实例让学生了解平面方程的求解方法在空间几何中的应用第五章:空间几何图形与坐标系5.1 空间几何图形在坐标系中的表示让学生了解空间几何图形在坐标系中的表示方法,掌握坐标系中几何图形的性质通过实例让学生了解空间几何图形在坐标系中的应用5.2 空间几何图形的位置关系与坐标系的变换让学生了解空间几何图形的位置关系,掌握坐标系变换的方法通过实例让学生了解坐标系变换在空间几何中的应用第六章:空间距离与角度6.1 空间两点间的距离让学生理解空间两点间的距离公式,掌握如何计算空间两点间的距离通过实例让学生了解空间两点间距离在几何中的应用6.2 空间角度的计算让学生理解空间角度的计算方法,掌握如何计算空间角度通过实例让学生了解空间角度在几何中的应用第七章:向量及其应用7.1 向量的概念与表示方法让学生理解向量的概念,掌握向量的表示方法通过实例让学生了解向量在空间几何中的应用7.2 向量的运算让学生掌握向量的运算规则,包括加法、减法、数乘和点乘通过实例让学生了解向量运算在空间几何中的应用第八章:空间解析几何8.1 解析几何的基本概念让学生理解解析几何的基本概念,如参数方程、极坐标方程等通过实例让学生了解解析几何在空间几何中的应用8.2 解析几何与坐标系的转换让学生掌握如何将解析几何问题转换为坐标系问题,以及如何利用坐标系解决解析几何问题通过实例让学生了解解析几何与坐标系的转换在空间几何中的应用第九章:空间几何体的性质与判定9.1 空间几何体的性质让学生了解空间几何体的基本性质,如表面积、体积、对称性等通过实例让学生了解空间几何体的性质在几何中的应用9.2 空间几何体的判定让学生掌握如何判定空间几何体的类型,如球、圆柱、锥体等通过实例让学生了解空间几何体的判定在几何中的应用第十章:空间几何的综合应用10.1 空间几何问题的一般解决方法让学生掌握解决空间几何问题的基本方法,如分割、投影、对称等通过实例让学生了解空间几何问题的一般解决方法10.2 空间几何在实际问题中的应用让学生了解空间几何在实际问题中的应用,如建筑设计、物理学中的力学问题等通过实例让学生了解空间几何在实际问题中的应用重点和难点解析重点环节一:坐标系的概念与分类补充和说明:本环节需要重点关注坐标系的定义、各种坐标系的结构特点以及坐标系在几何图形中的应用。
三维曲线方程大全
1.碟形弹簧圆柱坐标方程:r=5theta=t*3600z=(sin(3.5*theta-90))+24*t2.叶形线.笛卡儿坐标标方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))3.螺旋线(Helicalcurve) 圆柱坐标(cylindrical)方程:r=ttheta=10+t*(20*360)z=t*34.蝴蝶曲线球坐标方程:rho=8*t theta=360*t*4 phi=-360*t*85.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos(ang)y0=s*sin(ang)x=x0+s*sin(ang)y=y0-s*cos(ang)z=06.螺旋线.笛卡儿坐标方程:x=4*cos(t*(5*360)) y=4*sin(t*(5*360))z=10*t7.对数曲线笛卡尔坐标系方程:z=0x=10*ty=log(10*t+0.0001)8.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*209.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)10.星行线卡迪尔坐标方程:a=5x=a*(cos(t*360))^3y=a*(sin(t*360))^311.心脏线圆柱坐标方程:a=10r=a*(1+cos(theta))theta=t*36012.圆内螺旋线采用柱座标系方程:theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta)13.正弦曲线笛卡尔坐标系方程:x=50*ty=10*sin(t*360)z=014.太阳线(这本来是做别的曲线的,结果做错了,连方程也忘了,不好意思)15.费马曲线(有点像螺纹线)数学方程:r*r=a*a*theta圆柱坐标方程1:theta=360*t*5a=4r=a*sqrt(theta*180/pi)方程2:theta=360*t*5a=4r=-a*sqrt(theta*180/pi)由于Pro/e只能做连续的曲线,所以只能分两次做16.Talbot曲线卡笛尔坐标方程:theta=t*360a=1.1b=0.666c=sin(theta)f=1x=(a*a+f*f*c*c)*cos(theta)/ay=(a*a-2*f+f*f*c*c)*sin(theta)/b17.4叶线(一个方程做的,没有复制)18.Rhodonea曲线采用笛卡尔坐标系方程:theta=t*360*4x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)19.抛物线笛卡儿坐标方程:x=(4*t) y=(3*t)+(5*t^2)z=020.螺旋线圆柱坐标方程:r=5theta=t*1800z=(cos(theta-90))+24*t21.三叶线圆柱坐标方程:a=1theta=t*380b=sin(theta)r=a*cos(theta)*(4*b*b-1)22.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta)23.Lissajous曲线theta=t*360a=1b=1c=100n=3x=a*sin(n*theta+c) y=b*sin(theta)24.长短幅圆内旋轮线卡笛尔坐标方程:a=5c=2.2theta=360*t*10x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)25.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=(a+b)*cos(theta)-c*cos((a/b+1)*theta) y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)26.三尖瓣线a=10x=a*(2*cos(t*360)+cos(2*t*360)) y=a*(2*sin(t*360)-sin(2*t*360))27.概率曲线!方程:笛卡儿坐标x=t*10-5y=exp(0-x^2)28.箕舌线笛卡儿坐标系a=1x=-5+t*10y=8*a^3/(x^2+4*a^2)29.阿基米德螺线柱坐标a=100theta=t*400r=a*theta30.对数螺线柱坐标theta=t*360*2.2 a=0.005r=exp(a*theta)31.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3=y^2*(2*a-x)forx32.tan曲线笛卡儿坐标系x=t*8.5-4.25y=tan(x*20)33.双曲余弦x=6*t-3y=(exp(x)+exp(0-x))/234.双曲正弦x=6*t-3y=(exp(x)-exp(0-x))/235.双曲正切x=6*t-3y=(exp(x)-exp(0-x))/(exp(x)+exp(0-x))36.一峰三驻点曲线x=3*t-1.5y=(x^2-1)^3+137.八字曲线x=2*cos(t*(2*180)) y=2*sin(t*(5*360))z=038.螺旋曲线r=t*(10*180)+1 theta=10+t*(20*180)z=t39.圆x=cos(t*(5*180)) y=sin(t*(5*180))z=040.封闭球形环绕曲线rho=2theta=360*tphi=t*360*1041.柱坐标螺旋曲线x=100*t*cos(t*(5*180)) y=100*t*sin(t*(5*180))z=042.蛇形曲线x=2*cos((t+1)*(2*180)) y=2*sin(t*(5*360))z=t*(t+1)43.8字形曲线柱坐标theta=t*360r=10+(8*sin(theta))^244.椭圆曲线笛卡尔坐标系a=10b=20theta=t*360x=a*cos(theta)y=b*sin(theta)45.梅花曲线柱坐标theta=t*360r=10+(3*sin(theta*2.5))^246.另一个花曲线theta=t*360r=10-(3*sin(theta*3))^2z=4*sin(theta*3)^247.改一下就成为空间感更强的花曲线了;)theta=t*360r=10-(3*sin(theta*3))^2z=(r*sin(theta*3))^248.螺旋上升的椭圆线a=10b=20theta=t*360*3x=a*cos(theta)y=b*sin(theta)z=t*1249.五星螺旋花曲线theta=t*360*4r=10+(3*sin(theta*2.5))^2z=t*1650鼓形线笛卡尔方程r=5+3.3*sin(t*180)+ttheta=t*360*10z=t*1051长命锁曲线笛卡尔方程:a=1*t*359.5b=q2*t*360c=q3*t*360rr1=w1rr2=w2rr3=w3x=rr1*cos(a)+rr2*cos(b)+rr3*cos(c) y=rr1*sin(a)+rr2*sin(b)+rr3*sin(c)52簪形线球坐标方程:rho=200*ttheta=900*tphi=t*90*1053.螺旋上升曲线r=t^10theta=t^3*360*6*3+t^3*360*3*3z=t^3*(t+1)54.蘑菇曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*20*2055.8字曲线a=1b=1x=3*b*cos(t*360)+a*cos(3*t*360) Y=b*sin(t*360)+a*sin(3*t*360)56.梅花曲线theta=t*360r=100+50*cos(5*theta) z=2*cos(5*theta)57.桃形曲线rho=t^3+t*(t+1)theta=t*360phi=t^2*360*10*1058.名称:碟形弹簧建立环境:pro/e圆柱坐r=5theta=t*3600z=(sin(3.5*theta-90))+2459.环形二次曲线笛卡儿方程:x=50*cos(t*360)y=50*sin(t*360)z=10*cos(t*360*8)60蝶线球坐标:rho=4*sin(t*360)+6*cos(t*360^2)theta=t*360phi=log(1+t*360)*t*36061.正弦周弹簧笛卡尔:ang1=t*360ang2=t*360*20x=ang1*2*pi/360y=sin(ang1)*5+cos(ang2)z=sin(ang2)62.环形螺旋线x=(50+10*sin(t*360*15))*cos(t*360) y=(50+10*sin(t*360*15))*sin(t*360)z=10*cos(t*360*5)63.内接弹簧x=2*cos(t*360*10)+cos(t*180*10) y=2*sin(t*360*10)+sin(t*180*10)z=t*664.多变内接式弹簧x=3*cos(t*360*8)-1.5*cos(t*480*8) y=3*sin(t*360*8)-1.5*sin(t*480*8)z=t*865.柱面正弦波线柱坐标:方程r=30theta=t*360z=5*sin(5*theta-90)66.ufo(漩涡线)球坐标:rho=t*20^2 theta=t*log(30)*60 phi=t*720067.手把曲线thta0=t*360thta1=t*360*6r0=400r1=40r=r0+r1*cos(thta1) x=r*cos(thta0) y=r1*sin(thta1)z=068.篮子圆柱坐标r=5+0.3*sin(t*180)+ttheta=t*360*30z=t*569.圆柱齿轮齿廓的渐开线方程:afa=60*tx=10*cos(afa)+pi*10*afa/180*sin(afa)x=10*sin(afa)-pi*10*afa/180*cos(afa)z=0注:afa为压力角,取值范围是0到60,10为基圆半径。
新教材高中数学直线的交点坐标与距离公式:两条直线的交点坐标pptx课件新人教A版选择性必修第一册
=0与直线l2:A2x+B2y+C2=0的位置关系是________.
l1∥l2
[方程组无解,则l1与l2无公共点,从而l1∥l2.]
3.直线l1 :4x-y+3=0与直线l2 :3x+12y-11=0的位置关系是
l1⊥l2
________.
l1⊥l2
[由4×3+(-1)×12=0得l1⊥l2.]
15x+5y+16=0
的直线方程为_________________.
2
因此l1与l2的斜率相等,但截距不相等,所以它们平行.
(2)l1:x-2y+1=0,l2:x+2y+5=0.
[解]
− 2 + 1 = 0,
解方程组ቊ
可得x=-3,y=-1,
+ 2 + 5 = 0,
因此,l1与l2相交,而且交点坐标为(-3,-1).
类型3 直线系过定点问题
【例3】 (1)直线mx-3y+2m+3=0,当m变动时,所有直线都经
l1
l2
设这两条直线的交点为P,则点P既在直线__上,也在直线__上.所
以点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的
1 + 1 + 1 = 0,
方程A2x+B2y+C2=0,即点P的坐标就是方程组 ቊ + + = 0
2
2
2
的解.
知识点2 两直线的位置关系和方程组解的个数的关系
第二章
直线和圆的方程
2.3 直线的交点坐标与距离公式
2.3.1 两条直线的交点坐标
1.会用解方程的方法求两条相交直线的交点坐标.(数学
学习 运算)
任务 2.会根据方程解的个数判定两条直线的位置关系.(数学
两条直线的交点坐标
因此,当且仅当 m≠±1 时,l1 与 l2 相交. (2)由(1)中的方程③知,m=-1 时得 0=2 方程无解,即方
程组无解,两直线平行.
因此,当且仅当 m=-1 时,l1 与 l2 平行. (3)由(1)中的方程③知,m=1 时得 0=0,方程有无数多解,
即方程组有无数多解,两直线重合.
因此,当且仅当 m=1 时,l1 与 l2 重合.
2021/10/10
10
(3)∵m=0 时,l1 不平行 l2, ∴l1∥l2⇔m-1 2=m3 ≠26m,解得 m=-1. (4)∵m=0 时,l1 与 l2 不重合, ∴l1 与 l2 重合时,有m-1 2=m3 =26m,解得 m=3.
2021/10/10
11
例 4:若直线 x+a2y+6=0 和直线(a-2)x+3ay+2a=0 没 有公共点,则 a 的值是__________.
2021/10/10
18
(4)因为 m≠±1 时,l1 与 l2 相交; 当 m=0 时,l1 的斜率为 0,l2 的斜率不存在,l1⊥l2;
当 m≠0 时,l1、l2 的斜率分别为-m、-m1 , 因为(-m)·-m1 ≠-1,故 l1 与 l2 不垂直.
因此,当且仅当 m=0 时,l1⊥l2.
2021/10/10
6
1-1.求直线 l1:3x+4y-5=0 与直线 l2:2x-3y+8=0 的 交点 M 的坐标.
解:由 l1 与 l2 的方程联立方程组
3x+4y-5=0 2x-3y+8=0
,解得xy= =- 2 1
.
∴点 M 的坐标为(-1,2).
2021/10/10
7
直线恒过定点问题
x=m+m 1 (5)由(1)知,方程组的唯一解为y=2mm++11
高二数学直线的交点坐标与距离公式
y P
o
x
思考4:一般地,若直线l1:A1x+B1y+C1=0 和l2:A2x+B2y+C2=0相交,如何求其交点 坐标?
几何元素及关系 点A 直线l 代数表示 A (a, b)
Aa Bb C 0
点A在直线l上
直线l1与l2的交点是A
l: A xB yC 0
点A的坐标是方程组的解
vcg49wfv
有脱缰呢!”耿英说:“你们看,这河水看起来也多像一群野马哇,不断地翻滚咆哮着!俺可知道了,为什么爷爷和奶奶叫咱 们站远点儿瞧。咱们离得这么远呢,这看得久了,俺都有些腿发软了呢!”耿老爹指着河面对耿正兄妹三人说:“你们仔细看 看,这黄河是不是比堤岸下面的地面高出一些啊?”三人仔细观看一番,都说好像是这么回事儿呢!耿正奇怪地说:“怎么会 是这样呢?在咱们老家那一带,凡有水流过,地面都会被冲成沟渠的哇!”耿英也说:“是哇,这河水应该比地面低一些才对 哩!”耿直自言自语地念叨:“这是为什么啊?”看到三个娃儿都在用心琢磨,耿老爹很高兴,有意进一步启发他们,就又问: “那你们说,这水为什么不清澈呢?”耿正说:“肯定是里边有泥沙啦!”耿英也说:“所以俺说洗不了衣裳嘛!”耿直撇撇 嘴说:“这个连俺都知道呢!”耿老爹笑了,说:“如果水里边泥沙太多呢?”兄妹三人恍然大悟!耿正脱口而出:“就会在 水下形成很多淤泥!”耿英接着哥哥的话说:“淤泥越积越多,河道就抬高了,河水自然也就高了!”耿直眼珠子滴溜溜一转, 大声说:“那河堤也得越垒越高才能拦住河水哇!”耿老爹满意地笑了,说:“所以啊,人们历来就将黄河称为悬河呢。说的 就是,这是一条悬在地面之上的大河啊!想想看,滔滔的河水在高处流,而人是住在低处的。这样的一条大河一旦决了堤,那 要不像是一群脱缰的野马才怪呢!”兄妹三人听了,吃惊地直倒吸凉气。远远地望到在滔滔波浪中漂过来一个瓜皮小船儿,船 头船尾各站着一个人在用力地撑篙摇橹。再仔细看时,发现船上还坐着两个人,小小的船舱里还放了一些什么东西。一会儿, 小船儿飘荡过来了,在距离耿家父子四人百步之外靠西的一个简易小渡口上,站在船尾的人用力撑住小船。船上坐着的两个人 特别麻利地跳上了岸,船头摇橹的人弯腰拿起船舱里的东西递给他们。然后,瓜皮小船儿就掉转船头向南岸飘荡而去了。再看 那两个上了岸的人,他们已经背起东西快步往西走去了。远远望去,那里好像也有一个小村庄呢。耿直吃惊地瞪大眼睛说: “俺的娘耶,他们怎么这么大的胆子哇,就不怕掉到水里!这么大的水,还翻滚着呢。这要掉进去了,肯定就没命了哇!”耿 老爹说:“住在这黄河边儿上的人,没有一个不会游水的。即使是不小心掉进去了,他们也会游上岸的。只要不是发生就像决 堤那样的大灾难,他们都不会有事儿。不像俺们这些旱鸭子,一见了深水就害怕!”父子四人随便聊着继续转悠一会儿。看看 日头已经快正午了,耿老爹说:“咱们回去哇,不可以让爷爷奶奶久等的。你们如果还没有玩儿够,咱们下午再出来哇!”耿 直说:“俺可不想再出来玩儿了。除了这让人看
人教版高中数学必修二 讲学案:第三章 3.3 直线的交点坐标与距离公式
三条直线ax+2y+7=0,4x+y=14和2x-3y=14相交于一点,求a的值.
解:解方程组 得
所以两条直线的交点坐标为(4,-2).
由题意知点(4,-2)在直线ax+2y+7=0上,将(4,-2)代入,得a×4+2×(-2)+7=0,解得a=- .
两点间距离公式
[典例](1)已知点A(-3,4),B(2, ),在x轴上找一点P,使|PA|=|PB|,并求|PA|的值;
在直线2x+3y-6=0上任取一点(3,0),关于点(1,-1)对称点为(-1,-2),
则点(-1,-2)必在所求直线上,
∴2×(-1)+3×(-2)+C=0,C=8.
∴所求直线方程为2x+3y+8=0.
题点四:线关于线对称
4.求直线m:3x-2y-6=0关于直线l:2x-3y+1=0的对称直线m′的方程.
层级一 学业水平达标
1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是()
A.(4,1)B.(1,4)
C. D.
解析:选C由方程组 得 即直线x+2y-2=0与直线2x+y-3=0的交点坐标是 .
2.过点A(4,a)和点B(5,b)的直线与y=x+m平行,则|AB|的值为()
A.6B.
C.2D.不能确定
(1)在直线l上求一点P,使|PA|+|PB|最小;
(2)在直线l上求一点P,使||PB|-|PA||最大.
解:(1)设A关于直线l的对称点为A′(m,n),
则 解得 故A′(-2,8).
因为P为直线l上的一点,
则|PA|+|PB|=|PA′|+|PB|≥|A′B|,
当且仅当B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点P即是直线A′B与直线l的交点,
中职数学中点坐标、距离
为d=_______A_2__B_2_____. 说明:当两平行直线的方程中x,y的系数不相等时,需先 化成相等后再运用公式计算.
第4页,共43页
基础过关 1 2 3 4 5 6
1.已知A(-2,3),B(6,1)两点,则线段AB的中点坐标是
( D) A.(4,1)
B.(4,2)
第6页,共43页
基础过关 1 2 3 4 5 6
3.点(1,-1)到直线x-y+2=0的距离是( D )
A.1
B.2
C. 2
D. 2 2
【提示】 由点到直线的距离公式可得d = |1 (1) 2 | 2 2 .
1 (1)2
第7页,共43页
基础过关 1 2 3 4 5 6
4.两平行直线3x-4y+1=0与6x-8y+9=0之间的距离是( A
第9页,共43页
基础过关 1 2 3 4 5 6
6.已知原点到直线2x-3y+m=0的距离是 13 ,则
m=_1_3_或_-__1_3_. 【提示】 d = | m | 13,∴|m|=13,即m=±13.
22 (3)2
第10页,共43页
典例剖析 例1 变1 例2 变2 例3 变3 例4 变4 例5 变5
第16页,共43页
典例剖析 例1 变1 例2 变2 例3 变3 例4 变4 例5 变5
【变式训练3】 如果两平行直线y=3x-b 与y=3x+5之间的距离为 10 ,那么 b=_5_或__-__1_5_ .
【提示】 两直线方程化为3x-y-b=0与3x-y+5=0,则 ,解1得0 =b=|5或b b5=| -15.
第18页,共43页
曲线坐标计算
曲线坐标计算一、 圆曲线圆曲线要素:α---------------曲线转向角 R---------------曲线半径根据α及R 可以求出以下要素: T----------------切线长 L----------------曲线长 E----------------外矢距q----------------切曲差两切线长与曲线全长之差 各要素的计算公式为:︒⋅=180παR L 弧长)12(sec -=αR E sec α=cos α的倒数圆曲线主点里程:ZY=JD -TQZ=ZY +L /2 或 QZ=JD -q /2 YZ=QZ +L /2 或 YZ=JD +T -q JD=QZ +q /2校核用 1、基本知识里程:由线路起点算起,沿线路中线到该中线桩的距离; 表示方法:DK26+;“+”号前为公里数,即26km,“+”后为米数,即284.56m;CK ——表示初测导线的里程;DK ——表示定测中线的里程;K——表示竣工后的连续里程;铁路和公路计算方法略有不同;2、曲线点坐标计算偏角法或弦切角法已知条件:起点、终点及各交点的坐标;1计算ZY、YZ点坐标通用公式:2计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点;li 为i 点与ZY点里程之差;弧长所对的圆心角弦切角弦的方位角当曲线左转时用“-”,右转时用“+”;②计算弦长③计算曲线点坐标此时的已知数据为:ZY x ZY,y ZY、 ZY- i、 C;根据坐标正算原理:切线支距法这种方法是以曲线起点ZY或终点YZ为坐标原点,以切线为X 轴,以过原点的半径为Y轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZYYZ点沿线路前进方向的切线方位角;当起点为ZY时,“±”取“+”,X0=XZY, Y0=YZY, 曲线为左偏时应以yi=-yi代入;当起点为YZ时,“±”取“-”,X0=XYZ, Y0=YYZ, 曲线为左偏时应以yi=-yi 代入;注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由 L/πR=n°/180°得L=n°πR/ 180°=nπR/180二、缓和曲线回旋线缓和曲线主要有以下几类:A:对称完整缓和曲线基本形------切线长、ls1与ls2都相等;B: 非对称完整缓和曲线---------------切线长、ls1与ls2都不相等C: 非完整缓和曲线卵形曲线----连接两个同向、半径不等的圆的缓和段所组成的卵形曲线D: 回头曲线------------回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;1、基本形缓和曲线基本公式:ρ=A2/l A=√Rlsρ为缓和曲线上任意点的曲率半径 A为回旋线参数l为缓和曲线上任意点到起点ZH的距离弧长ls为缓和曲线的全长切线角公式:缓和曲线直角坐标任意一点 P 处取一微分弧段 ds ,其所对应的中心角为d β xdx=dscos β xdy=dssin β x缓和曲线常数主曲线的内移值 p 及切线增长值 q内移值: p=Y s-R1-cosβs=l s2/24R切线增长值: q=X s-Rsinβs=l s/2-ls3/240R2缓和曲线的总偏角及总弦长总偏角:βs=l s/2R 180/Π总弦长: C s=l s-l s3/90R2缓和曲线要素计算切线长外距曲线长圆曲线长切线差平曲线五个基本桩号:ZH —— HY —— QZ —— YH —— HZ缓和曲线主点里程:ZH=JD-T HY=ZH+Ls YH=HY+Ly HZ=YH+LsQZ=ZH+L总/2=HZ-L总/2 JD=QZ+q/2校核缓和曲线上任意点坐标计算切线支距法:以缓和曲线起点ZHHZ点为坐标原点,起点的切线为x轴,过原点的垂直于切线的垂线为y轴建立坐标系,则缓和曲线上任意一点的切线支距坐标可通过以下公式求得:利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得:式中:α为ZHHZ点沿线路前进方向的切线方位角;当起点为ZH时,“±”取“+”,X0=XZH, Y0=YZH, 曲线为左偏时应以yi=-yi代入;当起点为HZ时,“±”取“-”,X0=XHZ, Y0=YHZ, 曲线为左偏时应以yi=-yi 代入;曲线上任意点的方位角αi=αZH或HZ±ββ为切线角±为右转“﹢”左转“﹣”当点位于圆曲线上,有:其中, , 为点到坐标原点的曲线长;2、非对称完整缓和曲线由于受特殊地形和地物条件限制采用对称缓和曲线型平曲线难以与地形条件相结合,于是引入非对称缓和曲线型平曲线;非对称缓和曲线在计算时较困难,不能简单套用对称缓和曲线的公式;以下阐述非对称缓和曲线几何要素和任意点坐标及方位角的计算原理;1计算原理如图1所示,平曲线由非对称缓和曲线Ls1、Ls2及半径R的圆曲线组成,JD 为平曲线切线交点,转角α;由于平曲线两端的缓和曲线不等长,因此在计算平曲线各要素时就不能简单套用等长缓和曲线的计算公式;平曲线各要素计算:注:第一式最后一项应 +q1根据交点坐标和切线长计算缓和曲线起点ZH或HZ坐标:XZH=XJD+T1×COSαYZH=YJD+T1×Sinαα为JD~ZH方位角XHZ=XJD+ T2×COSαYZH=YJD+T2×Sinαα为JD~HZ方位角曲线上任意点坐标按基本型缓和曲线的切线支距法和坐标变换、旋转来计算求出;3、非完整缓和曲线卵形曲线卵形曲线是指在两个同向、半径不等的圆曲线间插入一段不完整的缓和曲线,即卵形曲线是缓和曲线的一段,在插入时去掉了靠近半径无穷大方向的一段;首先需要计算出实际并不存在只是在计算过程中起辅助作用的完整缓和曲线段的起点即ZH或HZ点桩号、坐标和切线方位角;这样卵形曲线段的计算就转化为完整缓和曲线段的计算;(1)卵形曲线参数式中:R大,R小为卵形曲线相连的两圆曲线半径,为非完整缓和曲线段即卵形曲线段长度;(2)与相对应的完整缓和曲线的长度为(3)卵形曲线的起点Q接大半径圆的点至假设存在的完整缓和曲线起点ZH或HZ点的弧长为或 =-(4)与对应的弦长为又因为βQ-------切线角ΔQ-------切点Q至假设起点ZHHZ的弦切角故可得,Q点至ZH点的方位角ZH点的切线方位角Q点至HZ点的方位角HZ点的切线方位角求得卵形曲线起点Q至ZHHZ的弦长和方位角后,则ZHHZ点的坐标为求出假设的ZHHZ点的坐标后,就可以根据基本形缓和曲线的计算方法来计算曲线上任意点的坐标;上面的公式3到11是以不完整缓和曲线的起点Q 接大圆点来计算假设的完整缓和曲线起点ZHHZ 的坐标;也可以以接小圆的缓和曲线终点YHHY 来计算起点ZHHZ 坐标;如下:① 与相对应的完整缓和曲线的长度为② 与对应的的弦长为总弦长: C s = l s -l s 5/90R 2 l s 2= l s -l s 3/90R 2③ 接小圆的YHHY 点的切线角总偏角: βs =l s /2R 180/Π④ 接小圆的YHHY 点到假设起点ZHHZ 的弦切角 ⑤ 设接小圆的YHHY 点为Z,则Z 点至ZH 点的方位角αZ-ZH=αZ +180±Rl b s3200==δ⑥ ZH 点的切线方位角 αZH=αZ ±βZ ⑦ Z 点至HZ 点的方位角αZ-HZ=αZ ±Rl b s3200==δ⑧ HZ 点的切线方位角αHZ=αZ ±βZ⑨ ZHHZ 点的坐标为 设接小圆的YHHY 点为ZXZH 或HZ=XZ+ C s cos αZ-ZHHZYZH 或HZ=YZ+ C s Sin αZ-ZHHZ C s 为弦长注:卵形曲线上大圆包含小圆,也就是说接小圆处的曲率半径为R 小,沿大圆方向曲率半径渐大;假设的完整缓和曲线的起点ZHHZ 在大圆那边; 4、 回头曲线什么是回头曲线回头曲线是一种半径小、转弯急、线型标准低的曲线形式,其转角接近、等于或大于180度;在实际中,我们确实经常在山区道路碰到回头曲线,基本的感觉就是一个急弯,并且转了一百八十度,跟掉头差不多,也就是前面描述的:转角接近、等于或大于180度;下图是湘西“公路奇观”的连续回头曲线;这里所讨论的回头曲线,主要是基于其平面坐标计算的特殊性而言的,它只有一个定义,就是:转角大于或等于180度,由于实际使用中很少有转角正好等于180度的情况,所以就是指转角大于180度这种情况了;为什么这么定义呢,因为一般情况下,交点与曲线的关系是:交点在曲线的外侧,即便是转角接近180度,它的交点也在曲线外侧,如下图:而当转角等于180度时,则成为两条平行线,没有交点,或者说无限远,其曲线位置不具有唯一性,这种情况实际中几乎不会采用;而当转角大于180度时,则交点的位置就比较特殊了,如下图:这个图中,JD1和JD3是普通情况下的交点,均在曲线的外侧,而JD2的转角大于180度,其位置在曲线的内侧,这种情况,才是本此讨论的回头曲线;回头曲线的计算1曲线要素的计算先看一个案例,邵怀高速公路溆浦连接线二级公路,有一个回头曲线,其曲线设计参数如下:JD5,交点坐标X=,Y=,转角224°08′″左转,半径60m,缓和曲线长35m,曲线ZH点桩号K49+,切线方位角359°23′″,平面图形如下所示:交点桩号:ZH点桩号K49+加上切线长T,结果为K49+;从这个计算结果来看,我们发现与一般曲线要素不同的地方是:1.切线长T和外距E为负值;2.交点桩号比ZH点桩号小;设计文件中的直曲表数据也表明了这一点:2中桩坐标的计算虽然回头曲线的曲线要素与普通曲线有一些特别的地方,但现在我们更关心的是,按照普通平曲线的中桩坐标计算公式,能否计算出准确的结果;答案肯定是不能的,否则我也不会写这篇文章,在这里白费神了;中间具体的计算过程我就不展示了,按照普通平曲线的中桩坐标计算公式,能够计算出各个桩号的坐标,只可惜是错误的结果;按照这个错误的结果,展示该回头曲线的图形如下:回头曲线的处理回头曲线按照普通曲线中桩坐标计算方法不能得到正确的结果,原因在于它的交点实际在曲线内侧,而程序则把它当作普通曲线来处理,从上面那个图形即可看出;处理的方法很简单,就是把回头曲线一分为二,分成两个普通曲线,如下图所示,将JD5对称地分为JD5a和JD5b;这样,只要把JD5 a和JD5b当作普通曲线交点进行计算就行了;首先需要确定JD5 a和JD5b的相关参数,先看JD5a;1计算终点;显然,JD5a的计算终点就是回头曲线的曲中点,从设计文件直曲表上可查得,是K49+;2本交点桩号;JD5a的桩号嘛,应该是回头曲线的ZH点加上JD5a曲线的第一切线长;回头曲线的ZH点在直曲表上有,K49+,而JD5a曲线的第一切线长,那就需要计算一下了;根据示意图,由于图形的对称性,JD5a和JD5b的切线长有两个:T1和T2, JD5a的曲线要素为:半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m,交点转角是回头曲线转角的一半,即224°08′″/2=112°04′″,可计算得:T1=106.865m,T2=89.986m;则JD5a的桩号= +=3本交点X/Y坐标;根据坐标正算原理,按照几何关系,已知JD5的坐标为X=,Y=,JD5-JD5a的距离=+=239.493m,JD5-JD5a的坐标方位角359°23′″,容易得出JD5a的坐标为:X=,Y=;4交点之前直线方位角,就是JD5-JD5a的坐标方位角359°23′″也是JD5ZH点的方位角;5交点转角;交点转角是回头曲线转角的一半,即224°08′″/2=112°04′″,左转;6平曲线半径及缓和曲线长度;半径R=60m,第一缓和曲线Ls1=35m,第二缓和曲线Ls2=0m;7交点计算起终点桩号;就是曲线的起终点桩号,~到此,JD5a数据搞定;JD5b的数据,计算方法和前面基本一致,结果如下:计算终点:;交点桩号:;交点坐标:X=,Y=;交点之前直线方位角:247°19′07″;交点转角:112°04′″,左转;半径R=60m, Ls1=0m,第二缓和曲线Ls2=35m;交点计算起终点桩号:~;参数数据计算出来后,就可以按普通平曲线的计算方法来计算出回头曲线上任意点的坐标;案例当中回头曲线逐桩坐标表:。
Excel-一张图中两个纵坐标轴画法
产量 不良率
1200
20%
1000
6%
1500
13%
1150
8%
1340
17%
1280
9%
1470
5%
1290
4%
1300
8%
产量与不良率图
1600
1400
1200
1200
1500
1150
1340
1280
Байду номын сангаас
1000
1000
800
600
400
200
产量
不良率
1600
1500
1470
25%
1400
120020%
1200
1000
1000
1340 1280 1150
17%
1290 1300
20%
15%
800
13%
600
8%
9%
10% 8%
400
6%
200
5% 4%
5%
0
0%
产量 不良率
0
0%
A线 B线 C线 D线 E线 F线 G线 H线 I线
线别
A线B线C线D线E线F线G线H线I线
第三 步:
将产 量改 为柱 形 图: 在其 数据 点上 点右 键, 选图 表类
2000
25%
1500 1000 500
20%
15%
产量
10不% 良率 5%
0
0%
A线B线C线D线E线F线G线H线I线
第四 步:
对图 表做 美化 工作 (这 个就 根据 你个 人爱
2.3.1 两条直线的交点坐标024-2025学年高二上学期数学人教A版(2019)选择性必修第一册
证明 将直线方程整理为a(3x-y)+(-x+2y-1)=0.
所以无论a为何值,直线总经过第一象限.
课堂小结
回顾本节课的探究过程,说一说你学到了什么?
求相交直线交点坐标
解方程组
判断两条直线的位置关系(相交、平行、重合)
解: 解方程组
∴l1与l2的交点是M(- 2,2)
x
y
M
-2
2
0
l1
l2
练1
追问1:你能用直线的斜率判断直线的位置关系吗?
追问2:能否用斜率判断两对直线的位置关系?
追问3:如何从直线方程的一般式中确定斜率?
解:(1) 将两条直线方程化为斜截式:
追问2:能否用斜率判断两对直线的位置关系?
斜率相等,截距不等,则 平行.
解的个数与交点个数的对应
1.知识清单:(1)两条直线的交点.(2)直线系过定点问题.2.方法归纳:消元法、直线系法.3.常见误区:对两直线相交条件认识模糊.
课堂小结
随堂练习
1.两条直线l1:2x-y-1=0与l2:x+3y-11=0的交点坐标为A.(3,2) B.(2,3)C.(-2,-3) D.(-3,-2)
√
1
2
3
4
随堂练习
2.不论m为何实数,直线l:(m-1)x+(2m-3)y+m=0恒过定点A.(-3,-1) B.(-2,-1)C.(-3,1) D.(-2,1)
√
解析 直线l的方程可化为m(x+2y+1)-x-3y=0,
∴直线l恒过定点(-3,1).故选C.
随堂练习
3.斜率为-2,且过两条直线3x-y+4=0和x+y-4=0交点的直线方程为______________.
平面直角坐标系点的坐标特点完整版ppt课件
1.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
2.点A在x轴上,距离原点4个单位长度,则A点的坐标是
_(_4_,_0_)__或__(_-_4_,_0__)。
3.若点P在第三象限且到x轴的距离为 2 ,
到y轴的距离为1.5,则点P的坐标是(__-_1__._5_,__-_2_)。
★ 坐标轴上的点坐标特点:
横轴上的点的纵坐标为0,表示为(x,0)
纵轴上的点的横坐标为0.表示为(0,y) 原点的坐标为(0,0)
平面直角坐标系
(-, +)
y y轴或纵轴
6
5 4
(0, +) (+, +)
2
(-, 0)
1
-6 -5 -4 -3 -2 -1 o 1
-1
-2
(-, -) (0, -)
-4
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
平面直角坐标系内点的坐标的求法: 过已知点M作x轴的垂线,垂足在x轴 上的坐标即为点M的横坐标;过点M 作y轴的垂线,垂足在y轴上的坐标 即为点M的纵坐标,于是得点M的坐 标. 由点的坐标在平面直角坐标系内找 点的方法:先在x 轴上找到横坐标对 应的点,过此点作x轴的垂线;再在 y轴上找到纵坐标对应的点,过此点 作y轴的垂线,两垂线的交点即为所 求.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
坐标平面内点的坐标 坐标平面上的点可以用一对实数
直线的交点坐标与距离公式
跟踪练习1
• 已知直线l经过点P(3,1),且被两平行直 线l1:x+y+1=0和l2:x+y+6=0截得 的线段之长为5,求直线l的方程. [分析] 如右图,由点斜式得l方程,分别 与l1、l2联立,求得两交点A、B的坐标 (用k表示),再利用|AB|=5可求出k的值, 从而求得l的方程.
• [解析] 解法1:若直线l的斜率不存在, 则直线l的方程为x=3,此时与l1、l2的交 点分别为A′(3,-4)、B′(3,-9),截得 的线段A′B′的长|A′B′|=|-4+9|=5,符 合题意. • 若直线l的斜率存在,则设直线l的方程为y =k(x-3)+1(k≠-1).
若P点满足条件③,由点到直线的距离公式,有: 2 | x0 y0 1| = 5 5 2 即| 2x0-y0+3 | =| x0+y0- 1| ,所以x0-2y0+4=0, 或3x0+2=0,由P在第一象限,所以3x0+2=0不可能, 13 x0 3 2x0-y0+ 0 由方程组: 2 1 (舍去), y0 x - 2 y + 4 = 0 0 0 2 1 11 x 1 37 2x0-y0+ 0 0 9 由 得 ,所以P ( , ), 2 37 9 18 x - 2 y + 4 = 0 y 0 0 0 18 即为同时满足三个条件的点. | 2 x0 y0 3 |
返回目录
【解析】 (1)如图所示,设点B关于l的对称点B′的坐标
b-4 为(a,b),则kBB′ · kl=-1,即3· =-1.∴a+3b-12=0 ① a α b-4 又由于线段BB′的中点坐标为( , ),且在直线l上, 2 a ∴3× α - b - 4 -1=0.即3a-b-6=0 ② a ∴B′(3,3). 2 a=3,b=3, 解①②得
高中数学第三章空间向量与立体几何章末复习课件新人教B版选修2_1
α⊥β⇔μ⊥v⇔_μ_·_v_=__0_
l,m的夹角为θ
0≤θ≤π2,cos
|a·b| θ=_|_a_||_b_| _
l,α的夹角为θ
0≤θ≤π2, sin
|a·μ| θ=_|_a_||_μ_| _
|μ·v| α,β的夹角为θ 0≤θ≤π2, cos θ=__|μ__||v_|__
2.用坐标法解决立体几何问题 步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进行相关坐标的运算; (4)写出几何意义下的结论.
题型二 利用空间向量解决位置关系问题
例2 在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中 点,求证: (1)PC∥平面EBD;
(2)平面PBC⊥平面PCD.
反思感悟 (1)证明两条直线平行,只需证明这两条直线的方向向量是共线 向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②能够在平面内找到一个向量与已知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量 是共面向量.
线线平行 线面平行 面面平行 线线垂直 线面垂直
l∥m⇔a∥b⇔a=kb,k∈R l∥α⇔_a_⊥__μ_⇔_a_·_μ_=__0_
α∥β⇔μ∥v⇔_μ_=__k_v_,__k_∈__R_ l⊥m⇔_a_⊥__b__⇔_a_·_b_=__0_
l⊥α⇔a∥μ⇔a=kμ,k∈R
面面垂直 线线夹角 线面夹角 面面夹角
跟踪训练2 正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证: 平面AED⊥平面A1FD1.
题型三 利用空间向量求角
例3 如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点. (1)求点C到平面A1ABB1的距离;
平面直角坐标系复习专题
平面直角坐标系复习专题平面直角坐标系本章的主要知识点:1.有序数对:有顺序的两个数a和b组成的数对,记作(a,b),注意先后顺序。
2.平面直角坐标系:2.1 历史:法国数学家XXX最早引入坐标系,用代数方法研究几何图形。
2.2 构成坐标系的各种名称。
2.3 各种特殊点的坐标特点。
3.坐标方法的简单应用:3.1 用坐标表示地理位置。
3.2 用坐标表示平移。
平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同。
平行于y轴(或纵轴)的直线上的点的横坐标相同。
各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同。
第二、四象限角平分线上的点的横纵坐标相反。
特殊位置点的特殊坐标:坐标轴上的点P(x,y)。
X轴Y轴原点。
连线平行于坐标轴的点。
平行X轴,纵坐标相同,横坐标不同。
平行Y轴,横坐标相同,纵坐标不同。
各象限的点P(x,y)的坐标特点。
象限 (m,m) (m,-m)第一、三象限角平分线上的点横纵坐标相同横纵坐标相同第二、四象限角平分线上的点横纵坐标相反横纵坐标相反坐标平面内的点到坐标轴的距离:点到x轴的距离为纵坐标的绝对值。
点到y轴的距离为横坐标的绝对值。
如点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。
对称点的坐标特征:点P(m,n)关于x轴的对称点为P1(m,-n),即横坐标不变,纵坐标变为相反数。
点P(m,n)关于y轴的对称点为P2(-m,n),即纵坐标不变,横坐标变为相反数。
点P(m,n)关于原点的对称点为P3(-m,-n),即横、纵坐标都变为相反数。
判断题:1.坐标平面上的点与全体实数一一对应。
(错误)2.横坐标为0的点在轴上。
(正确)3.纵坐标小于0的点一定在轴下方。
(错误)4.到轴距离相等的点一定满足横坐标等于纵坐标。
(错误)5.若直线平行于轴,则上的点横坐标一定相同。
(正确)6.若在第二或第三象限,则点P(a,b)的纵坐标小于0.(正确)7.若在轴或第一、三象限,则点P(a,b)的横坐标和纵坐标都大于等于0.(正确)选择题:1.若点P(m,n)在第二象限,则点Q(-m,-n)在(B)第二象限。
平面直角坐标系(坐标法)
由直线的点斜式方程,得直线AD的方程为
直线BE的方程为 。……② 由方程①与② ,解得 x=0 。 所以,AD,BE的交点H在y轴上。因此,三角形的三条高线相交于 一点
b y ( x a) c
。……①
a y ( x b) c
通过上面的例题,同学们你能归纳坐标法,建系时应 注意什么?
坐标法 建系时,根据几何特点选择适当的直角坐标系, 注意以下原则: (1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
小试牛刀
1、两个定点的距离为6,点M到这两个定点的距离的
平方和为26,求点M的轨迹 方程。
C
x
练习,证明:三角形的三条高线交于一点
练习,证明:三角形的三条高线交于一点
证明:如图,AD,BE,CO分别是三角形ABC的三条高, 取 边AB所在的直线为x轴 , 边AB上的高CO所在的直线为y轴 建 立直角坐标系, 设A,B,C的坐标分别为(-a,0),(b,0),(0,c),则 kAC= c/a , kBC= -c/b . . 因为,所以kAD= b/c , kBE= -a/c
探究:你能建立与上述解答中不同的直角坐标系解决
这个问题吗?比较不同的直角坐标系下解决问题的过 程,你认为建立直角坐标系时应注意些什么?
例1.已知△ABC的三边a, b, c满足b2+c2=5a2,BE,CF 分别为边AC, CF上的中线,建立适当的平面直角坐标系 探究BE与CF的位置关系。 y C E O (A) F Bx E (A) O F B y
小试牛刀
2、已知点A为定点,线段BC在定直线l上滑动,已知