人教版平行四边形单元综合模拟测评检测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版平行四边形单元综合模拟测评检测试卷
一、选择题
1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个
A .2
B .3
C .4
D .5
2.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;
PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF
CDF
S
S
.=⑤其
中正确的是( )
A .①②③
B .①②④
C .②④⑤
D .①③⑤ 3.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14
B .10 与 14
C .18 与 20
D .4 与 28
4.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于
F ,若210AE AF BF ===,,则下列结论不正确的是( )
A .AFD AE
B ∆≅∆ B .点B 到直线AE 的距离为2
C .EB E
D ⊥
D .16AFD AFB S S ∆∆+=+
5.如图,在正方形ABCD 中,4AB =,E 是对角线AC 上的动点,以DE 为边作正方形DEFG ,H 是CD 的中点,连接GH ,则GH 的最小值为( )
A .2
B .51-
C .2
D .422- 6.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( ) A .10和34
B .18和20
C .14和10
D .10和12
7.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3 ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )
A .3
B .3
C .2
D .23
8.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为
( )
A .2
B .2
C .1.5
D .3
9.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )
A .1
B .
12
C .
14
D .
18
10.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )
A .
58
cm 2 B .
54
cm 2 C .
5
16
cm 2 D .
5 32
cm 2 二、填空题
11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .
12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.
13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.
14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,
//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,
11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则
2020C =______.
15.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .
16.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.
17.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)
18.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.
19.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当
CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.
20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =
1
2
AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.
三、解答题
21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,
AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .
(1)求证:四边形ABCD 是菱形; (2)若5AE =,3OE =,求线段CE 的长.
22.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向
以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.
23.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则
2222AB CD AD BC +=+.
(1)请帮助小明证明这一结论;
(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边
AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.
24.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;
(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒
∠==,点M ,N 是BD 边上的任意两
点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;
(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32EG ,MN 的长.
25.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动. (1)求点B 的坐标;
(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;
(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.
26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明..
)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形; 结论2:'B D
AC .
试证明以上结论. (应用与探究)
在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)
27.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.
(1)直接写出AQH 的面积(用含t 的代数式表示). (2)当点M 落在BC 边上时,求t 的值.
(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线). 28.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.
(1)当1x =时,点M 的坐标为( , )
(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)
29.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .
(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =
1
4
S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =1
4
S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);
(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =1
4
S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .
30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交
AD BC 、于点E F 、,垂足为O .
(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;
(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运
动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,
①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当
A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.
②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知A
C P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【分析】
根据已知条件易证△ABE ≌△ADF ,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,即可判定③;设EC=FC=x ,由勾股定理和三角函数计算后即可判定④⑤. 【详解】
∵四边形ABCD 是正方形,
∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF 等边三角形, ∴AE=EF=AF ,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt △ABE 和Rt △ADF 中,
AE AF
AB AD ⎧⎨
⎩
== , Rt △ABE ≌Rt △ADF (HL ), ∴BE=DF (故①正确). ∠BAE=∠DAF , ∴∠DAF+∠DAF=30°, 即∠DAF=15°(故②正确), ∵BC=CD ,
∴BC-BE=CD-DF ,即CE=CF , ∵AE=AF ,
∴AC 垂直平分EF .(故③正确). 设EC=FC=x ,由勾股定理,得:
,2
EF CG FG x ===
, ∴EC ≠FG (⑤错误) 在Rt △AEG 中,
sin 60sin 602sin 602
AG AE EF CG x ︒︒︒===⨯=,
AC ∴=,
AB ∴=
,
BE x ∴=
=
,
BE DF x ∴+=-≠,(故④错误),
综上所述,正确的结论为①②③,共3个, 故选B . 【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.
2.B
解析:B 【解析】 【分析】
根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF S
S <.
【详解】
在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,
BAE BAF 90∠∠∴+=,
BAE DAF ∠∠∴=,
BE DP ⊥,
ABE BPE 90∠∠∴+=,
又
ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),
ABE ADF ∠∠∴=,
在ABE 和ADF 中, BAE DAF AB AD
ABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ABE ∴≌()ADF ASA ,故①正确;
AE AF ∴=,BE DF =,
AEF ∴是等腰直角三角形,
过点A 作AM EF ⊥于M ,则AM MF =,
点P 是AB 的中点,
AP BP ∴=,
在APM 和BPE 中,
90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩
,
APM ∴≌()BPE AAS ,
BE AM ∴=,EP MP =,
PF MF PM BE EP ∴=+=+,故②正确;
BE DF =,FM AM BE ==,
AM DF ∴=,
又
ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,
DAM CDF ∠∠∴=,
在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩
,
ADM ∴≌()DCF SAS ,
CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,
BC CD =,
CF BC ∴≠,
BCF ∴不是等边三角形,故③错误;
CF DM DF FM EM FM EF FP ==+=+=≠,
又AM DF =,
APF CDF S S ∴<,故⑤错误;
综上所述,正确的有①②④,
故选B .
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.
3.C
解析:C
【分析】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.
【详解】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF
根据题意,设AB=12,BD=x ,DF=y
则AF=AB=12,BF=24
∴在△BDF 中,BD+FD >BF ,即:x+y >24
在△BDF 中,BD -FD <BF ,即:x -y <24
满足条件的只有C 选项
故选:C
【点睛】
本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.
4.B
解析:B
【分析】
A 、首先利用已知条件根据边角边可以证明△APD ≌△AE
B ;
B 、利用全等三角形的性质和对顶角相等即可解答;
C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;
D 、根据勾股定理和三角形的面积公式解答即可.
【详解】
解:在正方形ABCD 中,AB =AD ,
∵AF ⊥AE ,
∴∠BAE +∠BAF =90°,
又∵∠DAF +∠BAF =∠BAD =90°,
∴∠BAE =∠DAF ,
在△AFD 和△AEB 中,
AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩
=
∴△AFD ≌△AEB (SAS ),故A 正确;
∵AE =AF ,AF ⊥AE ,
∴△AEF 是等腰直角三角形,
∴∠AEF =∠AFE =45°,
∴∠AEB =∠AFD =180°−45°=135°,
∴∠BEF =135°−45°=90°,
∴EB ⊥ED ,故C 正确;
∵AE =AF ,
∴FE AE =2,
在Rt △FBE 中,BE ==
∴S △APD +S △APB =S △APE +S △BPE ,
=11222
⨯
1=D 正确;
过点B 作BP ⊥AE 交AE 的延长线于P ,
∵∠BEP =180°−135°=45°,
∴△BEP 是等腰直角三角形,
∴BP =2
=,
即点B 到直线AE ,故B 错误,
故选:B .
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.
5.A
解析:A
【分析】
取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.
【详解】
取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,
∵AD=AB=4,
∴AO=12
AB=2 在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4
解得
∴GH的最小值为2
故选A.
【点睛】
本题考查了正方形的性质,根据题意确定E点的位置是解题关键.
6.B
解析:B
【分析】
作CE∥BD,交AB的延长线于点E,根据平行四边形的性质得到△ACE中,
AE=2AB=24,再根据三角形的三边关系即可得到答案.
【详解】
解:如图,作CE∥BD,交AB的延长线于点E,
∵AB=CD,DC∥AB
∴四边形BECD是平行四边形,
∴CE=BD,BE=CD=AB,
∴在△ACE中,AE=2AB=24<AC+CE,
∴四个选项中只有A,B符合条件,但是10,34,24不符合三边关系,
故选:B.
【点睛】
此题考查平行四边形的性质,三角形的三边关系,利用平行线将对角线及边转化为三角形是解题的关键.
7.B
解析:B
【解析】
试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.
解:连接CC1.
在Rt △ABE 中,∠BAE =30°,AB 3
∴BE =AB ×tan30°=1,AE =2,∠AEB 1=∠AEB =60°,
∵四边形ABCD 是矩形
∴AD ∥BC ,
∴∠C 1AE =∠AEB =60°,
∴△AEC 1为等边三角形,
同理△CC 1E 也为等边三角形,
∴EC =EC 1=AE =2,
∴BC =BE +EC =3,
故选B.
8.D
解析:D
【分析】
设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.
【详解】
设BC x =,
四边形ABCD 是矩形,
90,B AD BC x ∴∠=︒==,
由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,
OA OC x ∴==,
四边形AECF 是菱形,
AE CE ∴=,
在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩
,
()AOE COE SSS ∴≅,
90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,
∴点,,A O C 共线,
2AC OA OC x ∴=+=,
在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,
解得x =x =
即BC =
故选:D . 【点睛】
本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.
9.C
解析:C
【分析】
根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算总结规律,根据规律解答.
【详解】
根据三角形中位线定理求出△A 1B 1C 1的周长,根据计算结果总结规律,根据规律解答. 解:∵A 1、C 1分别为AB 、AC 的中点,
∴A 1C 1=BC =13,
同理,A 1B 1=
12AC =7,B 1C 1=12
AB =12, ∴△A 1B 1C 1的周长=7+12+13=32, ∴△A 1B 1C 1的周长=△ABC 的周长×12
, 则△A 2B 2C 2的周长=△A 1B 1C 1的周长×12=△ABC 的周长×(12
)2, …… ∴△A 8B 8C 8的周长=△ABC 的周长×(
12)8=64×1256=14, 故选:C .
【点睛】
本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10.A
解析:A
【分析】
设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的
12,依此类推可得下一个图形的面积是上一个图形的面积的12
,然后求解即可.
【详解】
设矩形ABCD 的面积为S=20cm 2,
∵O 为矩形ABCD 的对角线的交点,
∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12
S , ∵平行四边形AOC 1B 的对角线交于点O 1, ∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的
12, ∴平行四边形AO 1C 2B 的面积=
12×12S=22S , ……
依此类推,平行四边形AO 4C 5B 的面积=
52S =5202=58(cm 2), 故选:A .
【点睛】
本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12
是解题的关键. 二、填空题
11.12或20
【分析】
根据题意分别画出图形,BC 边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.
【详解】
解:情况一:当BC 边上的高在平行四边形的内部时,如图1所示:
在平行四边形ABCD 中,BC 边上的高为4,AB=5,AC=5
在Rt △ACE 中,由勾股定理可知:2222(25)42CE AC AE ,
在Rt△ABE中,由勾股定理可知:2222
=-=-=,
BE AB AE543
∴BC=BE+CE=3+2=5,
此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;
情况二:当BC边上的高在平行四边形的外部时,如图2所示:
在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25
在Rt△ACE中,由勾股定理可知:2222
CE AC AE,
(25)42
在Rt△ABE中,由勾股定理可知:2222
BE AB AE543
=-=-=,
∴BC=BE-CE=3-2=1,
∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,
综上所述,平行四边形ABCD的周长等于12或20.
故答案为:12或20.
【点睛】
此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.
12.42
【分析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△ADF ≌△ABE ,
∴AD=AB ,
∴四边形ABCD 为菱形,
∴AC 与BD 相互垂直平分,
∴BD=22242
AB AO -=
故本题答案为:42
【点睛】
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
13.218
cm 【分析】
根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的
14
,根据正方形的面积就可以求出结论. 【详解】 解:如图:
∵正方形ABCD 的对角线相交于点O ,
∴△AEO 与△CFO 关于O 点成中心对称,
∴△AEO ≌CFO ,
∴S △AEO =S △CFO ,
∴S △AOD =S △DEO +S △CFO ,
∵对角线长为1cm ,
∴S 正方形ABCD =
1112⨯⨯=12cm 2, ∴S △AOD =18
cm 2, ∴阴影部分的面积为18cm 2.
故答案为:
18
cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.
14.20181
2
【分析】
根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .
【详解】
∵点E 是BC 的中点,ED ∥AB ,EF ∥AC
∴DE 、EF 是△ABC 的中位线
∵等边△ABC 的边长为1
∴AD=DE=EF=AF =
12 则1C =1422
⨯= 同理可求得:2C =1,3C =
12 发现规律:规律为依次缩小为原来的
12 ∴2020C =20181
2 故答案为:
201812.
【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.
15.【分析】
作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正
方形BEDF 的面积,求出,即可求得BD 的长.
【详解】
解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:
则∠BEA=∠BFC=90°,
∵∠ADC=90°,
∴四边形BEDF 是矩形,
∴∠EBF=90°,
∵∠ABC=90°,
∴∠EBF=∠ABC=90°,
∴∠ABE=∠CBF ,
在△ABE 和△CBF 中,
BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ABE ≌△CBF (AAS ),
∴BE=BF ,△ABE 的面积=△CBF 的面积,
∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,
∴BE=DE ,BE 2=10 cm 2,
∴10(cm),
∴25.
故答案为:5
【点睛】
本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.
1619【分析】
先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.
【详解】
如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,
23OB ∴=
四边形ABCD 是菱形,
OC ∴垂直平分BD ,23OB OD ==, 点P 是对角线OC 上的点,
DP BP ∴=,
EP BP EP DP ∴+=+,
由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,
BOD ∴是等边三角形,
DA OB ⊥,
132
OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,
又(0,1)E -,
22(30)(31)19DE ∴=-++=,
即EP BP +的最小值为19,
故答案为:19.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.
17.①②④
【分析】
①根据平行四边形的性质和等腰三角形的性质即可判断;
②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEF
DFM ≅△△,得出,FE MF AEF
M =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;
③由FE MF =,得出EFC CFM S
S =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.
【详解】
①∵点F 是AD 的中点,
∴AF FD = .
∵在平行四边形ABCD 中,AD =2AB ,
//,AD BC AF FD CD ∴==,
,DFC FCB DFC DCF ∴∠=∠∠=∠ ,
FCB DCF ∴∠=∠,
∴∠BCD =2∠DCF ,故①正确;
②延长EF ,交CD 延长线于点M ,
∵四边形ABCD 是平行四边形,
//AB CD ∴,
A MDF ∴∠=∠,
∵点F 是AD 的中点,
∴AF FD = .
在AEF 和DFM 中,A FDM AF DF
AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩
()AEF DFM ASA ∴≅△△
,FE MF AEF M ∴=∠=∠.
CE AB ⊥ ,
90AEC ∴∠=︒,
90ECD AEC ∴∠=∠=︒,
12
CF EM EF ∴==,故②正确; ③∵FE MF =,
∴EFC CFM S S = .
CFM CDF MDF S S S =+△△△
CDF EFC S S ∴<△△,故③错误;
④设FEC x ∠= ,则FCE x ∠=,
90DCF DFC x ∴∠=∠=︒- ,
1802EFC x ∴∠=︒-,
9018022703EFD x x x ∴∠=︒-+︒-=︒- .
90AEF x ∠=︒- ,
3DFE AEF ∴∠=∠,故④正确;
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.
18.①②③④
【分析】
根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得
∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.
【详解】
解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∴△ABG≌△AEC(SAS),
∴BG=CE,故①正确;
设BG、CE相交于点N,AC、BG相交于点K,如图1,
∵△ABG≌△AEC,
∴∠ACE=∠AGB,
∵∠AKG=∠NKC,
∴∠CNG=∠CAG=90°,
∴BG⊥CE,故②正确;
过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,
∵AH ⊥BC ,
∴∠ABH +∠BAH =90°,
∵∠BAE =90°,
∴∠EAP +∠BAH =90°,
∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;
∵∠AHB =∠P =90°,AB =AE ,
∴△ABH ≌△EAP (AAS ),
∴EP =AH ,
同理可得GQ =AH ,
∴EP =GQ ,
∵在△EPM 和△GQM 中,
90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
,
∴△EPM ≌△GQM (AAS ),
∴EM =GM ,
∴AM 是△AEG 的中线,故③正确.
综上所述,①②③④结论都正确.
故答案为:①②③④.
【点睛】
本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.
19.16或10
【分析】
等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C 时,作辅助线,构建平行四边形AGHD 和直角三角形EGB',计算EG 和B'G 的长,根据勾股定理可得B'D 的长;
【详解】
∵四边形ABCD 是矩形,
∴DC=AB=16,AD=BC=18.
分两种情况讨论:
(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形
(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°
又GH∥AD,
∴四边形AGHD是平行四边形,又∠A=90°,
∴四边形AGHD是矩形,
∴AG=DH,∠GHD=90°,即B'H⊥CD,
又B'D=B'C,
∴DH=HC=18
CD=,AG=DH=8,
3
∵AE=3,
∴BE=EB'=AB-AE=16-3=13,
EG=AG-AE=8-3=5,
在Rt△EGB'中,由勾股定理得:
GB′22
13512,
∴B'H=GH×GB'=18-12=6,
在Rt△B'HD中,由勾股定理得:B′D22
+=
6810
综上,DB'的长为16或10.
故答案为: 16或10
【点睛】
本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.
513
20
【分析】 根据12•BC •AH =12•AB •AC ,可得AH =61313,根据 12AD •BO =12BD •AH ,得OB =61313
,再根据BE =2OB =121313,运用勾股定理可得EC . 【详解】
设BE 交AD 于O ,作AH ⊥BC 于H .
在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,
由勾股定理得:BC =13,
∵点D 是BC 的中点,
∴AD =DC =DB =
13, ∵12•BC •AH =12
•AB •AC , ∴AH =61313
, ∵AE =AB ,DE =DB ,
∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,
∴AD 垂直平分线段BE ,
∵12AD •BO =12
BD •AH , ∴OB =61313
, ∴BE =2OB =
121313
, ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,
∴∠DEB+∠DEC=12
×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)(
)13-=513. 故答案为:513. 【点睛】
本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.
三、解答题
21.(1)见解析;(2)11
【分析】
(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;
(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12
AC ,在Rt ACE ∆应用勾股定理即可解答.
【详解】
(1)证明:∵AB CD ∥,
∴OAB DCA ∠=∠,
∵AC 为DAB ∠的平分线,
∴OAB DAC ∠=∠,
∴DCA DAC ∠=∠,
∴CD AD AB ==,
∵AB CD ∥,
∴四边形ABCD 是平行四边形,
∵AD AB =,
∴ABCD 是菱形;
(2)
∵四边形ABCD 是菱形
∴AO CO =
∵CE AB ⊥
∴90AEC ∠=︒
∴26AC OE ==
在Rt ACE ∆中,2211CE AC AE -故答案为(211.
【点睛】
本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.
22.(1)证明见解析;(2)能,10;(3)15
2
,理由见解析;
【分析】
(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.
(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.
(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.
【详解】
(1)由题意知:三角形CFD是直角三角形
∵∠B=90°,∠A=60°
∴∠C=30°,CD=2DF,
又∵由题意知CD=4t,AE=2t,
∴CD=2AE
∴AE=DF.
(2)能,理由如下;
由(1)知AE=DF
又∵DF⊥BC,∠B=90°
∴AE∥DF
∴四边形AEFD是平行四边形.
当AD=DF时,平行四边形AEFD是菱形
∵AC=60cm,DF=1
2
CD,CD=4t,
∴AD=60-4t,DF=2t,∴60-4t=2t
∴t=10.
(3)当t为15
2
时,△DEF为直角三角形,理由如下;
由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE
∴∠FDE=∠DEA=90°
在△AED中,
∵∠DEA=90°,∠A=60°,AE=2t
∴AD=4t,
又∵AC=60cm,CD=4t,
∴AD+CD=AC,8t=60,
∴t=15
2
.
即t=15
2
时,∠FDE=∠DEA=90°,△DEF为直角三角形.
【点睛】
本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.
23.(1)证明见解析;
(2
)73.
【分析】
(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;
(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.
【详解】
解:(1)∵AC ⊥BD ,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,
222222AD BC AO DO BO CO +=+++,
222222AB CD AO BO CO DO +=+++,
∴2222AD BC AB CD +=+; (2)连接CG 、BE ,如图2,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,
在△GAB 和△CAE 中,
AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩
,
∴△GAB ≌△CAE (SAS ),
∴∠ABG=∠AEC ,
又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE ⊥BG ,
由(1)得,2222CG BE CB GE +=+,
∵AC=4,AB=5,
∴BC=3,2,2,
∴222273GE CG BE CB =+-=,。