单端正激式变换器电路设计.

合集下载

100W单端正激开关电源方案分享之主电路设计

100W单端正激开关电源方案分享之主电路设计

100W 单端正激开关电源方案分享之主电路设计
单端正激式开关电源的设计和研发工作,对于很多工程师来说都是非常熟悉的了,这种开关电源在家电以及加工制造等领域是比较常见的。

本文将会在这里为大家分享一种100W 的单端正激开关电源设计方案,这一开关电源适合小功率应用方向的选择,设计相对简单易操作。

在今天的文章中,将会着重分享这一方案的主电路设计情况。

100W 单端正激开关电源的技术指标
本方案所设计的这种100W 单端正激式开关电源的技术指标要求是,输入市电220V/50HZ,输出12V/4A,工作温度为-40℃~+85℃,工作频率200~250KHZ,隔离电阻大于200MΩ,输入电压范围为交流176V~
260VAC/50HZ。

这一方案中的主要技术要求是输出电压精度维持在±1%左右,输出纹波需要控制在VP-P≤1%,负载调整率(主路)±0.5%。

同时,这一方案还要求输出具有短路保护功能,并能自动恢复。

效率η>82%。

主电路框架设计
下图图1 所示是本方案所选择的单端正激式开关电源电路的典型结构,可以看到,这一电源主要由整流滤波电路、DC/DC 变换电路、开关占空比控制电路以及取样比较电路等模块构成。

在这一单端正激式的开关电源主电路结构中,其前级整流滤波电路的主要作用是被用来消除来自电网的干扰,同时这一电路的设计也能够有效的防止开关电源产生的高频噪声向电网扩散,并将电网输入电压进行整流滤波,为变换器提供直流电压。

变换器是这一单端正激式开关电源的关键部分,在电源正常运行时,变换器可以把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔。

多路输出电流控制型单端正激DC/DC变换器的设计

多路输出电流控制型单端正激DC/DC变换器的设计

磁 芯的 复位 , 制 电路 使 用 第三代 B C MS电流 控 制型 P 控 IO WM, 简化 了电路 设 计 、 降低 了噪 声敏 感
度, 并分析 了 多路 输 出耦 合 电感 对 负载 交 叉调 节性 能的影 响 。 关键 词 : 电流控 制 型 ;多路 输 出:耦合 电感
De i n o u tp e Ou p t n r e tCo t o sg fM l l t u sa d Cu r n n r l i
的前沿 消 隐技术 , 而 降低 了噪 声敏感 度 。 从
本文 介绍 了一 个 多路 输 出 D / C变 换 器 。 CD 该
输 出参 数
变换 器 特 别 适 用 于 1 2V或 2 4V 蓄 电 池 、8V直 2
流 供 电条 件 。
1 基本 结 构
图 1所 示 为 多 路 输 出 电 流 控 制 型 单 端 正 激 D/ CDC变换 器 的原 理 图 。 输 出为一 路 闭 环 , 其 其它
电压 控制 型有 明显 的优 势 。首先 , 降低 了 P WM 启
Xi n S an i 7 0 6 , C ia ha x a 10 8 hn )
Ab t a t l p e o t u s sn l — n o wad DC DC c n e t r w i h i ey s ia l o o v l g ,wi e r n e s r c :A mu t l up t i ge e d fr r / o v r h c s v r u t b e f r lw- ot e i e a d a g p we u p y i n r d c d Th n u ot g a g s D - 0V,o t u s ae 5V/ ±l / . A, 0V/ . No ls o rs p l si to u e . e i p tv l e r n e i C 8 4 a u p t r 3 A, 5 V 0 5 1 0 5A. n o s ca i g cr u ti mp o e o r s t t e t n fr rma n t o e i o e ic i h h r e e ai n o I l mp n i i s e ly d t e e h r so me g e i c r n p w r c r u t c a c .T e tid g n r t f B COMS o c re tc n r lP M s u e o smp i e in n e u e t e n ie s s e t i t.T e ifu n e o l p e o p t u r n o t W o i s d t i l y d s s a d r d c h o s u c p i l y h n e c fmu t l utu f g bi l i c u l g i d ca c o t e la r s e u a in i n lz d o p i n u tn e t h o d c o sr g lt s a ay e . n o Ke wo d : u r n o t l mu t l o t us c u ln n u tn e y r s c re t n r ; l p e u p t; o p i g i d ca c c o i

单端正激变换器电路解说

单端正激变换器电路解说

单端正激变换器電路解說★电路拓扑图2、电路原理其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级需有复位绕组Nr(此点上我对一些参考书籍存疑,当然有是最好,实际应用中考虑到变压器脚位的问题)。

在实际使用中,我也发现此绕组也用RCD吸收电路取代亦可,如果芯片的辅助电源用反激供给则也可削去调整管的部分峰值电压(相当一部份复位绕组)。

输出回路需有一个整流二极管D1和一个续流二极管D2。

由于其变压器使用无气隙的磁芯,故其铜损较小,变压器温升较低。

并且其输出的纹波电压较小。

3、变压器计算一般来说高频变压器的设计可划分为以下六个步骤:a、选择磁芯材料和磁芯结构形式。

b、确定工作频率,工作最大磁感应强度Bm。

c、计算并初选磁芯型号。

d、计算并调整原、副边匝数。

e、计算并确定导线线径。

f、校核窗口面积和最大磁感应强度Bm。

现就这六个步骤来讨论单端正激式变压器的设计:★ 选择磁芯材料和磁芯结构形式高频变压器磁性材料选择的标准为高初始磁导率μi、低矫顽力Hc、高饱和磁感应强度Bs、低剩磁Br、高电阻率ρ和高居里温度点。

磁导率高,变压器工作时励磁电流就小;矫顽力低则磁滞损耗比较小;高饱和磁感应,低剩磁,变压器工作时磁通变化范围 B可以较大,相应减小了变压器体积;高电阻率,高频工作时涡流损耗比较小;高居里温度点,变压器工作温度可以相应提高,但以上各项要求不可能同时得到满足,不同的磁性材料存在其长处也必然存在不足,需视具体应用条件加以选择。

一次电源工作频率一般选择在60KHz~150KHz 之间,二次电源产品工作频率一般选择在100KHz~400KHz之间,在这个频率范围,宜选用Mn-Zn铁氧体材料,目前二次电源常用的铁氧体材料包括TDK的PC30-PC40,Magnetics的P 材料,PHILIP的3F3及899厂的R2KB2等。

磁芯结构形式的选择一是考虑能量传递,二是考虑几何尺寸的限制,三是考虑磁芯截面积和窗口面积的比例,多路输出变压器一般要求有较大的窗口面积,选择EE型、EI型或PQ 型磁芯,可具有较大的窗口和良好的散热性,DC/DC模块电源可选用FEY型、FEE型、EUI型等,铃流变压器要求磁芯截面积比较大,可选用GU形磁芯;此外还应考虑变压器的安装,加工方便性,成本等,目前中、大功率通常选用GU形磁芯,这种磁芯特点是有较大的截面积,漏磁很小,采用国产材料,成本低,但出线需手焊。

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计

2开关电源设计
( 1 ) 系 统 参 数 及 电 路 设 计。本 文 设 计 的 电路 参 数 为 : 输
入 电压 为市 电2 2 0 V / 5 0 H Z , 输 出电压 为直 流5 V / 4 0 A , 工作频 率
波特性 , 断 电后还能使电源的进线端L 、 N 不带 电, 保证使用的安

技 术 应 用
基于UC 2 8 4 5 单端正激式开关电源设 计
李 祥 洪 浩 邱力军( 西京学院 控制工 程学院, 陕西 西安 7 1 0 1 2 3 )
摘 要: 本文论 述一种 采用U C 2 8 4 5 为控 制芯片的开关电源, 介绍了 正激 式变压 器的X - 作原 理, 并给 出 相 关设计 电路
全性。
( 5 ) 反馈电路设计。 过流保护电路是由R 2 ห้องสมุดไป่ตู้ 、 R 2 2 、 R 2 3 以及C l l
R 2 2 、 R 2 3 上 的电压反映了电流瞬 时值, 当开关电源发 生过 5 0  ̄I O O K H z 。 整个 电路 由E M I 滤波 电路、 整流滤波 电路、 高频变 组成 。 电流时, Q 1 漏极的电流会增大, U R S 会增大, U R S 接 入U C 2 8 4 5 的保 压器 、 电流检测和反馈补偿 电路等几部分组成 , 其 原理 图如 图1 护输入 端3 脚, 当U R S = I V 时, U C 2 8 4 5 芯片的输 出脉冲将关 断。 通 所示: 过调节R 2 1 和R 2 2 、 R 2 3 分压 比可以改变开关管的限流值 , 实现电
关键 词: U C 2 8 4 5 ; 单端 正激 ; 开关电源
开关电源 是利用现代 电力电子技术 , 控制开关管 占空比来 6 7 . 8 K H z 。 维持稳定输 出电压 的一种 电源, 其中高频开 关式直流稳压电源 设备、 军工装备、 科研仪器、 L E D 照明等领域得到广泛应用。 为了降低功耗 , U C 2 8 4 5 采用两条供 电电路, 一条是启动时 正常工作情况下的驱动 电流很大, 所以由变压器分一 个绕 组进 行供电, 可以降低功耗, c 5 起储 能和滤波作用, 因为U C 2 8 4 5 的瞬

一种新型谐振磁复位的单端正激变换器设计

一种新型谐振磁复位的单端正激变换器设计


2 0 1 3 S c i . T e c h . E n g r g .

种新型谐振磁复位的单端正激变换器设 计
张 涌 萍 肖 波
( 广东食 品药 品职业学院 , 广州 5 1 0 5 2 0 )


介绍 了一种通过变压器励磁电感 与其 并联 的电容 实现谐振磁复位 的正激变换器 , 通过适 当设 计主 电路参数 , 在不 同
大 值
边变 比 N =0 . 2 4 4 7 。 2 . 1 . 2 变压 器绕组 匝数 计 算
取2 1 V, 输 出电压最
振, 激磁 电流减小甚至反向, 变压器复位。 为 降低变
取5 6 V, 最 大 占空 比 D 取0 . 7 5, 得 原 副
压器的最大工作磁密 B , 实现一 、 三象 限工作 , 谐振
2 主 电路 设计
2 . 1 变 压器 设计
AB =
V I N M I N D M A x
( 7 )
其中 胁取 1 3 5 k H z , 得A B= 0 . 2 2 9 T 。
因采 用谐 振 复 位 , 存在 双向激磁 , 变 压 器 的最 大工作 磁 通密度 B M x<△ 曰。
图1 所示的电路与一般单端正激 电路的工作原 理基本相 同, 不 同的是 复位 电路。该 电路 的原理简 单来说就是利用功率变压器 的励磁 电感 与功率开 关管的结 电容、 变压器 的外接并联 电容 自 激振荡来
实 现磁复 位 的 。 当功 率管 关断 后 , 变 压 器 中 的励 磁 能 量 向 与其 并 联的谐 振 电 容充 电 转 移 。 当励 磁 能 量 完 全 转 移 到谐 振 电容 后 ( 此 时励 磁 电 流 为零 , 变 压 器 已经 复

DC-DC正激变换器设计指南

DC-DC正激变换器设计指南

介绍单端正激变换器拓扑技术作为最佳方案,广泛地应用于工业控制、电信中心局设备、数字电话及使用分布式配电系统等DC-DC 应用当中。

在DC-DC 单端正激变换器的设计当中,DPA-Switch 的产品的优势如下:• 元件数目低• 高效率(使用同步整流时,效率通常>91%)• 内置缓启动降低了应力及过冲• 内置精确的线电压欠压检测• 内置精确的线电压过压关断保护• 内置可调整的限流点• 内置过载及开环故障保护• 内置过热关断保护•在输入高压及负载瞬变情况下,可编程的占空比降低特点限制了占空比的偏移程度• 极好的轻载效率• 可选的300 kHz 或400 kHz 的工作频率• 无损耗集成的逐周期电流限制本设计指南中举例的电路对这些特点的使用以及DP A-Switch 的其它特点进行了说明。

范围本文说明了使用DPA-Switch 的具有单输出的单端正激变换器设计的设计指南。

它可以用来帮助系统工程师及电路设计师熟悉DC-DC 应用中DPA-Switch 的性能和要求。

此应用指南所提供的材料用于帮助DP A-Switch DC-DC 正激变换器设计的用户正确使用PI Expert 软件设计工具。

后续的应用指南还将包括更加复杂设计的全面的设计过程。

关于最新的应用信息及设计工具,建议设计者查看Power Integrations 网站 。

图 1. 具有单输出的DP A-Switch 单端正激变化器的典型电路结构应用指南AN-31DPA-Switch®DC-DC 正激变换器设计指南July 2004AN-31版本C 07/04图1所示为具有单一稳压输出的DPA-Switch 电源的典型 电路。

本设计指南对图1具体实现电路中的元件选择所需要注意的事项进行了讨论。

同时,本文还涉及到怎样在成本、效率及复杂性之间进行选择和折衷,包括同步整流的替换方法及产生偏置电压的可选方法。

系统要求设计开始时,要对规格要求进行评估。

我是工程师-单端正激式变压器设计

我是工程师-单端正激式变压器设计

【我是工程师】单端正激双管式开关电源设计之变压器设计(cjhk完成于江苏泰州)最近电源网举行我是工程师这个活动,看到礼品这么丰富,我也忍不住想凑个热闹,准备把以前自己动手设计的一款电源贴出来和大家共享,其中借鉴了一些资料,难免会有一些差错,希望大家能及时指证。

因为有两个月左右的时间,所以我自己的规划是:首先分析单端正激式变换器拓扑结构,接着根据我自己的项目分析单端正激式电路的高频变压器设计方法,再其次是分析使用到的电源管理芯片的特性及功能,同时分析功率MOS的选择与计算功率损耗,最后是各功能电路的分析并贴出原理图。

整个项目大概的时长差不多1个半月。

主要是工作比较忙,只能抽晚上的时间来和大家分享,很多地方分析的会不到位,计算的公式以及原理什么的都只是自己的理解,会有错误,望大家及时指正。

单端正激式开关电源,一般适用与200W以下的开关电源(至于为什么是200W,我没有真正去验证过,找了好些资料,都是这么说的,希望有高手能解释一下为什么不能超过200W)。

我以前见过1200W的单端正激式开关电源,功率模块用的是IGBT,不过效率不高。

常见的单端拓扑结构,通常都是带有去磁绕组。

去磁绕组的圈数和初级绕组的圈数相同,主要目的是为了防止变压器磁饱和。

理想的正激拓扑结构的高频变压器磁芯是不需要有去磁绕组的,因为初级获得的能量都会完全传递到次级。

但是实际的情况是因为磁芯工作的区间的第一象限,每次初级获得能量在传递到次级时,磁芯都会有一些能量的残留,当残留的能量不断累加到达磁芯饱和的阙值点时,变压器发生磁饱和(磁通量为零,电流无穷大,至此变压器就会烧毁)。

为了防止变压器磁饱和,需要加入去磁绕组(也称复位绕组)。

去磁绕组的方向和初级绕组的方向正好相反,每次初级将能量传递到次级时,残余的能量和去磁绕组中的能量方向相反,正好抵消。

至于去磁绕组和初级绕组是如何绕制的,查了几本书,都说是紧密绕制。

在《变压器与电感器设计》(龚绍文翻译)这本书中写道是双线并绕,我想了很长时间没有搞懂。

正激式直流变换器的设计

正激式直流变换器的设计

计算变压器、扼流圈
2. 技术指标
• • • • • • 输入电压 单相交流100V
输入电压变动范围 交流85~132V 输入频率 输出电压 50/60Hz V0=5V
输出电压变动范围 4.5~5.5V 输出电流 I0=20A
3.工作频率的确定
工作频率对电源体积以及特性影响很大,必须很好选择。 选用较高工作频率较高时 •优点: 可使输出滤波器小型化; 可使输出变压器可小型化; 1 1 暂态响应速度快。 T s 3 f 0 20010 •缺点: 主开关元件的热损耗增大; 噪声增多; 所使用的元器件(控制IC、主开关元件、输出二极 管、输出电容以及输出变压器的铁心等)受到限制。 零部件及配置型式,都受到限制。 输出变压器绕组要格外注意。 还有电路设计等都受到限制。另外还要注意输出变压 器绕组匝数。因此这里基本工作频率选为200KHz。
p
2
V
I
p
V
2
D
V
V
1
1
3
D
3
Q
b) a) (1)复位电路如上图a)所示,开关Q导通期间,变压器T1的 磁通增加,磁能就储存在变压器T1中;又当开关Q关断期间, 即释放出已励磁的磁能,以使磁通恢复为剩余磁通。T1上绕有
复位专用的绕组,在关断期间可使磁能通过D3向输入端回馈。
_
_
Q
2
变压器初级绕组N1上的电压为:
1950 2200 2390 1630 2070 2350
8200
10000
0.022
0.018
0.055
0.045
2550
2900
6800
8200
0.022
0.018

正激式变换器(正激开关电源)的设计实例

正激式变换器(正激开关电源)的设计实例

正激式变换器(正激开关电源)的设计实例作为功率变压器的一个设计实例,下面我们将设计正激式变换器中的变压器。

显然,这种变压器也不是用于我们的buck变换器中。

现在,我们考虑设计要求:输入电压为直流48V(简便起见,不需要考虑进线电压的波动范围),输出电压为5V,功率100W,开关频率为250kHz,基本电路图如图所示。

容易得到,输出电流为100W/5V=20A。

这个电流值是比较大的,为了减少绕组电阻,副边的线圈匝数应该尽量取小。

这意味着取变比(原边匝数除以副边匝数)的时候,副边最少匝数取为1。

我们来看看变比为整数时会出现什么问题。

1 匝数比=1:1匝数比=1:1,即原边与副边的匝数相等。

当开关导通时,48V输入电压全部加在变压器的原边。

同样,副边也得到48V的电压(忽略漏感),并加于续流二极管两端。

实际上,具有低通态电压的肖特基功率二极管其最大阻断电压为45V左右。

48V的电路中,至少要采用电压为60V的器件,如果电压有过冲或者输入电压有波动,那么要求采用更高电压的器件。

二极管的反向阻断电压越高,其通态电压也越高,变换器的效率将会降低。

在低输出电压的变换器中,整流二极管的通态电压是一个常见的问题。

原因很明显:电感中的电流要么流过整流二极管,要么流过续流二极管,无论哪种情况,在二极管中总会产生一个大小为VfI的损耗。

二极管的损耗使变换器效率进一步下降。

这部分功率不在总功率V outI之中。

解决这个问题的唯一方法是采用同步整流器,但是其驱动非常复杂(同样的道理,当输出Vout降到3.3V,甚至更低时,必须使用同步整流器)。

不管怎么样,对于一个高效率的变换器而言,如果不采用同步整流器,1:1的变压器匝数变比不是一个很好的选择(对我们的例子而言)。

2 匝数比=2:1这时原边匝数是副边的2倍,所以加在原边的电压为48V,副边和二极管上的电压为24V,可以使用肖特基功率二极管。

正激式变换器占空比近似为DC=V out/Vsec=5V/24V=21%(忽略肖特基功率二极管的通态电压Vf)。

实验49-DC-DC 单端正激式变换电路设计实验

实验49-DC-DC 单端正激式变换电路设计实验

实验四十九 DC/DC 单端正激式变换电路设计实验(信号与系统—电力电子学—检测技术综合实验)一、 实验原理1. 单端正激变换器单端正激变换电路是隔离式DC/DC 变换电路中的一种,采用一个单管实现DC/DC 变换,例如图49-1所示的电路。

它在开关管Q 导通时电源的能量经隔离变压器T 、整流二极管和滤波电感直接送至负载,故称为正激;由于其变压器磁通只在单方向上变化而被称为单端。

这样的电路被称为单端正激式变换电路。

V O图49-1采用辅助绕组复位的单管正激变换器正激变换器由于具有电路结构简单、成本较低、输出电流大、工作可靠性高等优点而广泛应用于中小功率变换场合,更成为低压大电流功率变换器的首选拓扑结构。

正激变换器中,由于变压器的磁芯是单方向磁化的,每个周期都需要采用相应的措施,使磁芯回到磁化曲线的起点,否则磁芯磁会很快饱和而导致开关器件损坏,因此需要采用专门的复位电路,使变压器的磁芯磁复位。

当输入电压及占空比固定的时候,输出电压与负载电流无关。

因此DC/DC 单端正激变换电路具有低输出阻抗的特点。

在同等功率条件下,单端正激变换电路的集电极峰值电流很小,所以该变换器适合应用在低压,大电流,功率较大的场合。

2. 不同复位方式的正激变换器[2]通常采用的磁复位方法主要有以下几种: (1) 辅助绕组复位正激变换器采用辅助绕组复位的正激变换器见图49-1。

其中隔离变压器有三个绕组:一次绕组N 、二次绕组N 和去磁绕组N 。

在T 时间内,Q 导通,D 导通,D 、D 123ON 213截止,电源向负载传递能量,此时,磁通增量为I 1ON I 1(V /N )T (V /N )DT S ΔΦ=⋅=⋅,输出电压为V O =V N /N 。

I 21时间内,Q 阻断,D 截止,D 导通续流,D 在T OFF 213导通向电源回馈能量。

如果在整个T I S V (1D)T /N 3′ΔΦ=−时间内,D ,输出电压为V OFF 3都导通,磁通减少量最大为O =0,此时开关管Q 两端的反压为V (1+N I 1/N )。

采用TOPSwitch的单端正激式电源的电路分析与设计

采用TOPSwitch的单端正激式电源的电路分析与设计

引言TOPSwitch是美国功率集成公司(PI)于20世纪90年代中期推出的新型高频开关电源芯片,是三端离线PWM开关(Three terminalofflinePWMSwitch)的缩写。

它将开关电源中最重要的两个部分——PWM控制集成电路和功率开关管MOSFET集成在一块芯片上,构成PWM/MOSFET合二为一集成芯片,使外部电路简化,其工作频率高达100kH z,交流输入电压85~265V,AC/DC转换效率高达90%。

对200W以下的开关电源,采用TOPSwitch作为主功率器件与其他电路相比,体积小、重量轻,自我保护功能齐全,从而降低了开关电源设计的复杂性,是一种简捷的SMPS(SwitchModePowerSupply)设计方案。

TOPSwitch系列可在降压型,升压型,正激式和反激式等变换电路中使用。

但是,在现有的参考文献以及PI公司提供的设计手册中,所介绍的都是用TOPSwitch制作单端反激式开关电源的设计方法。

反激式变换器一般有两种工作方式:完全能量转换(电感电流不连续)和不完全能量转换(电感电流连续)。

这两种工作方式的小信号传递函数是截然不同的,动态分析时要做不同的处理。

实际上当变换器输入电压在一个较大范围发生变化,和(或者)负载电流在较大范围内变化时,必然跨越两种工作方式,因此,常要求反激式变换器在完全能量和不完全能量转换方式下都能稳定工作。

但是,要求同一个电路能实现从一种工作方式转变为另一种工作方式,在设计上是较为困难的。

而且,作为单片开关电源的核心部件高频变压器的设计,由于反激式变换器中的变压器兼有储能、限流、隔离的作用,在设计上要比正激式变换器中的高频变压器困难,对于初学者来说很难掌握。

笔者采用TOP225Y设计了一种单端正激式开关电源电路,实验证明该电路是切实可行的。

下面介绍其工作原理与设计方法,以供探讨。

1 TOPSwitch系列应用于单端正激变换器中存在的问题TOPSwitch的交流输入电压范围为85~265V,最大电压应力≤700V,这个耐压值对于输入最大直流电压Vmax=265×1.4=371V是足够的,但应用在一般的单端正激变换器中却存在问题。

单端正激开关电源设计

单端正激开关电源设计

《开关电源》作品设计论文设计题目:单端正激开关电源设计学院名称:电子与信息工程学院专业:电气工程及其自动化班级:电气091班姓名:陈永杰学号:指导教师:孔中华2012 年 5 月25 日摘要开关电源非常广泛地应用在通讯、计算机、汽车和消费电子产品等领域。

电源设备用以实现电能变换和功率传递,是各种电子设备正常工作的基础,而高频高效小型开关电源又是开关电源发展的必然趋势,在通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等领域得到了越来越多的广泛应用。

在深入研究分析各种开关电源原理和特点的基础上,根据导师根据项目布置的指标要求,论文设计了一种单端正激式高频单路输出开关电源。

该开关电源的特点是以单端正激式为主拓扑,以电流型控制芯片UC3842和高频变压器为核心,采用EMI滤波器、MOSFET、输出滤波电路、采样反馈通道等主要元器件和电路模块,实现了单路稳定输出。

论文所设计的开关电源输入为市电220V交流,输出电压为10V直流电压,输出最大电流为40A,开关频率为200KHZ。

论文采用面积乘积法(AP),确定了高频变压器的原副边形式以及铁芯材料的选择,设计了输出电路、系统补偿器以及启动电路和EMI滤波电路。

论文设计好后,对所设计的单端正激式高频开关电源电路系统进行全面仿真,仿真结果表明,各项指标符合要求。

而后,做出实物,调试显示:该开关电源的输出电压调整特性、负载调整率、输出纹波、动态响应、温度变化等均满足了项目的指标要求,并且具有良好的过载、短路保护特性和波形特性,各项技术指标能够达到信息平台的供电要求。

关键词:高频开关电源;单端正激式;AP法变压器目录摘要 (II)第1章绪论 (1)1.1 开关电源简介 (1)1.2设计要求 (2)1.2.1设计任务 (2)1.2.2设计要求 (2)1.2.3设计内容 (2)第2章开关电源设计 (3)2.1 400W单端正激开关电源总体设计方案 (3)2.2 具体方案设计 (4)2.2.1 主电路设计 (4)2.2.2 基于UC3842控制电路设计 (6)2.2.3 变压器设计 (10)2.2.4 主要开关变换电路设计 (15)2.2.5 辅助电源的设计 (19)第3章元件选取 (22)3.1 控制元件参数 (22)3.2 变压器设计元件参数选择 (23)3.2.1 工频变压器设计参数 (23)3.2.2 高频变压器设计参数 (26)第4章设计总结 (36)参考文献 (37)附录 (38)第1章绪论1.1开关电源简介电源[power supply; power source] 向电子设备提供功率的装置。

单端正激电路的分析和设计

单端正激电路的分析和设计

单端正激电路的分析和设计单端正激电路的分析和设计一、工作原理如图:Q1导通时,副边二极管D1导通,D2截止,电网通过变压器T1向负载R L输送能量,此时输出滤波电感L0储存能量。

当Q1截止时,电感的储能通过续流二极管D2向负载释放,D1截止。

N3与二极管D3串联起到去磁复位的作用。

注意:复位绕组对变压器工艺的要求,要求耦合好又要绝缘好。

还有其它形式复位电路如RCD复位电路LCD复位电路输出电压V0= N S ×T ON ×EN P TN S/N P为副边原边匝比T ON/T为导通时间与周期的比,即导通占空比E为原边绕组电压二、正激电路的设计设计前我们要给定电路设计的一些指标参数,总结为:1、开关频率2、输入电压范围:Vin min—Vin max3、输出负载范围:Io min—Io max4、输出电压范围:Vo min—Vo max5、滤波电感电流的纹波: △I L f6、输出电压纹波:△Vo第一步:工作频率的确定工作频率对电源体积以及特性影响很大,必须很好地选择。

工作频率高时,输出滤波器和输出变压器可小型化,过渡响应速度快。

但主开关元件、输出二极管、输出电容以及输出变压器的磁芯,还有电路设计等都受到限制。

另外,还要注意输出变压器绕组匝数。

第二步:最大导通时间(Ton max)的确定。

Ton max=T×Dmax对于正向激励D选为0.4~0.45较适宜。

Dmax是设计电路时的一个重要参数,它对主开关元件,输出二极管的耐压与输出保持时间,输出变压器以及输出滤波器的大小,变换效率等都有很大影响。

第三步:变压器次级输出电压的计算Vs min= (Vo max+V L+V F)×TTon maxVs min:变压器次级最低电压Vo max:最大输出电压V L:电感线圈压降V F:输出侧二极管的正向压降第四步:变压器匝比N的计算N= Vin minVs minVin min: 变压器初级最低电压Vs min:变压器次级最低电压第五步:变压器初级绕组匝数的计算因为作用电压是一个方波,一个导通期间的伏秒值与初级绕组匝数关系N P= Vin min ×Ton max×108(Bm-Br)×SN P:初级绕组匝数Vin min:变压器初级最低电压Ton max:最大导通时间Bm-Br:磁感应强度S:磁芯有效截面积第六步:次级绕组匝数的计算Ns=Np/NN为匝比第七步:输出滤波电感的计算L=Vs min-(V F+Vo max)×T on max △I L△I L为I O的15%—20%另外,功率开关器件电流电压耐量的确定,变压器原副边绕组线径的确定。

半桥逆变器由两个单端正激式变换电路组合原理

半桥逆变器由两个单端正激式变换电路组合原理

半桥逆变器由两个单端正激式变换电路组合原理整流电路是将输入工频交流电源变换成逆变器工作所需的直流电源,而逆变器是将整流后的直流电压变换成高频交流电压(或电流),完成DC/AC的转换功能,满足中频电炉性能及工艺技术要求。

一般民用中频电炉的输出功率不大,DC/AC变换器电路通常采用单管或半桥结构。

工业中频电炉电源要求具有大的输出功率,特别是用于金属热处理、熔炼等中频电炉电源,输出功率在几百千瓦至上千千瓦,变换器的电路几乎都采用全桥电路结构。

半桥逆变器电路半桥逆变器实际上也是由两个单端正激式变换电路组合而成,其中,.个桥臂由两个特性相同、容量相等的电容器承担,每个电容器承受1/2的直流母线电压,另一桥臂由两个受脉宽调制(PWM)信号控制驱动的半导体功率开关管承担,故称半桥变换器,即Half-Bridge Converterso控制功率器件开关的驱动信号互补,相差180度,两个PWM驱动信号之间留有死压时间,防止信号扰动时导致两个功率开关器件同时导通,造成器件损坏及逆变失败。

标准的半桥逆变电路结构图。

R1、R2为桥臂电容器Cl、C2的均压和电荷泄放电阻,并确保R1=R2,Cl=C2,制造过程中应对上述四个元件进行检测,挑选配对使用。

功率开关器件通常在高频加热电源中使用场效应晶体管MOSFET及绝缘栅双极性晶体管IGBT,其工作状态受PWM驱动脉冲控制,并接于VT1、VT2上的二极管VD1、VD2用于电感电流续流、能量再生通路。

通常这两个二极管封装在功率器件内部,外部不必另接二极管在半桥逆变器的两桥臂中点A、B接负载。

对电磁中频电炉电源而言,可直接串联谐振电路的加热绕组L,及谐振补偿电容Cr,或者通过匹配变压器输出,匹配变压器的一次侧NP接在两桥臂的中点A、B,二次与加热绕组L,和谐振电容Cr连接。

图3-15是半桥变换器电路的波形图,说明两个功率开关器件VT1、VT2和PWM驱动信号Ugl、Ug2的相位关系,桥臂中点电压Ugl与Ug2、的对应关系。

单端正激变压器的设计

单端正激变压器的设计

单端正激变压器的设计开关电源变压器是高频开关电源的核心元件。

其作用为:磁能转换、电压变换和绝缘隔离。

开关变压器性能的好坏不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。

高频开关变压器的设计主要包括两部分:绕组设计及磁芯设计。

本文将对应用在高频下的单端正激变压器的设计方法及磁芯的选择给出较为详细的论述。

1 单端正激变压器原理单端正激变压器的原理图。

单端正激变压器又称"buck"转换器。

因其在原边绕组接通电源Vi的同时把能量传递到输出端而得名。

正激式变压器的转换功率通常在50~500 W之间。

输出电压Vo由匝比n、占空比D和输入电压Vi确定。

当PWM控制器输出正脉冲,功率开关导通,变压器的初级绕组通过电流,此电流由两部分组成,一部分为磁化电流即流经等效开环电感上的电流,另一部分足与输出电流等效的初级电流,他和初次级匝比成正比,和输出电流成正比。

储存在电感上的能量必须在功率开关关断后下一次开启前泄放掉,以便使磁通复位。

N3为去磁绕组。

2 变压器磁芯的选用原则高频开关电源中的变压器从性能价格比考虑,MnZn功率铁氧体材料是最佳的选择。

应用于高频开关电源变压器中的铁氧体应具有以下磁特性:高饱和磁通密度或高的振幅磁导率,在工作频率范围有低的磁芯总损耗,较低的温度系数,较高的居里温度。

磁芯损耗Pc主要由磁滞损耗Ph和涡流损耗Pe(包括剩余损耗Pr)组成,即:磁滞损耗Ph正比于直流磁滞回线的面积,并与频率成正比关系。

即:对于工作频率在100kHz以下的功率铁氧体磁芯,降低磁滞损耗是最重要的,为降低损耗,即要降低矫顽力Hc、剩余磁感应强度。

要达到此目的,须从两方面着手,一是从配方成分方面,尽量使磁晶各项异性常数k→0,磁滞伸缩常数→0;二是在工艺上要做到高密度、大晶粒、均匀完整、另相少、内应力小、气孔少。

3 单端正激变压器的设计步骤(1)了解变压器的各项指标要求;(2)选取磁芯材质确定△B值;(3)计算磁芯的AP值,确定磁芯型号规格;(4)计算初次级绕线匝数;(5)计算线径dw。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单端正激式变换器电路设计
如图所示,当开关管V1导通时,输入电压Uin全部加到变换器初级线圈W1'两端,去磁线圈W1''上产生的感应电压使二极管V2截止,而次级线圈W2上感应的电压使V3导通,并将输入电流的能量传送给电感Lo和电容C及负载;与此同时在变压器中建立起磁化电流,当V1截止时,V3截止,Lo上的电压极性反转并通过续流二极管V4继续向负载供电,变压器中的磁化电流则通过W1''、V2向输入电源Uin释放而去磁;W1''具有钳位作用,其上的电压等于输入电压Uin,在V1再次导通之前,T中的去磁电流必须释放到零,即T中的磁通必须复位,否则,变压器T将发生饱和导至V1损坏。

通常W1'=W1'',采用双线并绕耦合方式的占空比<0.5,否则T将饱和。

单端正激式变换器波形如下图所示。

相关文档
最新文档