宁南实验中学2018-2019学年高二上学期第二次月考试卷数学卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁南县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设函数的集合
,平面上点的集合
,则在同一直角坐标系中,P 中函数
的图象恰好经过Q 中
两个点的函数的个数是 A4 B6 C8 D10
2. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 4. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则
216
3
n n S a ++的最小值为( )
A .4
B .3 C
.2 D .
92
【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.
5. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个
6. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )
A .3x ﹣1
B .3x+1
C .3x+2
D .3x+4
7. 复数
的虚部为( )
A .﹣2
B .﹣2i
C .2
D .2i
8. 已知{}n a 是等比数列,251
24
a a ==,,则公比q =( ) A .12-
B .-2
C .2
D .12
9. 下列关系式中正确的是( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11°
10.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
11.已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a
12.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
二、填空题
13.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .
14.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .
15.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹
为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;
③曲线E 只关于y 轴对称,但不关于x 轴对称;
④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;
⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。

其中真命题的序号是 .(填上所有真命题的序号)
16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .
17.
-2
3311
+log 6-log 4
2
()= . 18.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
三、解答题
19.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:
70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.072
2.706
3.841
5.024
(参考公式:,其中n=a+b+c+d )
20.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.
21.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.
22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个
对称点为(,0),求θ的最小值.
(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.
23.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.
(Ⅰ)求棱AA1的长;
(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.
24.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设
11(,)A x y ,22(,)B x y .
(1)求证:12y y 为定值;
(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.
宁南县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】本题考查了对数的计算、列举思想
a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;
a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;
a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个
2.【答案】A
【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,
由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,故选:A.
【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题
3.【答案】C.
【解析】由,得:,
即,令,则当时,,
即在是减函数,,
,,
在是减函数,所以由得,,
即,故选
4.【答案】A
【解析】
5. 【答案】B
【解析】解:a ※b=12,a 、b ∈N *

若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;
若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,
所以满足条件的个数为4+11=15个. 故选B
6. 【答案】A
【解析】∵f (x+1)=3x+2=3(x+1)﹣1
∴f (x )=3x ﹣1 故答案是:A
【点评】考察复合函数的转化,属于基础题.
7. 【答案】C
【解析】解:复数=
=
=1+2i 的虚部为2.
故选;C .
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
8. 【答案】D 【解析】
试题分析:∵在等比数列}{a n 中,41,2a 52==a ,2
1,81q 253
=∴==∴q a a . 考点:等比数列的性质. 9. 【答案】C
【解析】解:∵sin168°=sin (180°﹣12°)=sin12°,
cos10°=sin (90°﹣10°)=sin80°.
又∵y=sinx 在x ∈[0,]上是增函数,
∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.
故选:C .
【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.
10.【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C. 11.【答案】A
【解析】解:∵b=(﹣)﹣0.8=20.8<21.2
=a ,且b >1,
又c=2log 52=log 54<1, ∴c <b <a . 故选:A .
12.【答案】A
【解析】解:函数f (x )=
的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点,
即方程f(x)=k有两个不同的实根,
故选:A
二、填空题
13.【答案】5.
【解析】解:P(1,4)为抛物线C:y2=mx上一点,
即有42=m,即m=16,
抛物线的方程为y2=16x,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
14.【答案】x﹣y﹣2=0.
【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),
所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,
故答案为x﹣y﹣2=0.
【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.
15.【答案】①④⑤
解析:∵平面内两定点M(0,﹣2)和N(0,2),动点P(x,y)满足||•||=m(m≥4),
∴•=m
①(0,0)代入,可得m=4,∴①正确;
②令y=0,可得x2+4=m,∴对于任意m,曲线E与x轴有三个交点,不正确;
③曲线E关于x轴对称,但不关于y轴对称,故不正确;
④若P、M、N三点不共线,||+||≥2=2,所以△PMN周长的最小值为2+4,正确;
⑤曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为
2S△MNG=|GM||GN|sin∠MGN≤m,∴四边形GMHN的面积最大为不大于m,正确.
故答案为:①④⑤.
16.【答案】1
【解析】
试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直
【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,
需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是2
12121c c
b b a a ≠=,当直线是斜截式直线方程时,两直线垂直
121-=k k ,两直线平行时,21k k =,21b b ≠.1
17.【答案】33
2
【解析】
试题分析:原式=233331334log log 16log 16log 1622+=+=+=+=。

考点:指、对数运算。

18.【答案】 ﹣2 .
【解析】解:∵曲线y=x n+1(n ∈N *
),
∴y ′=(n+1)x n
,∴f ′(1)=n+1,
∴曲线y=x
n+1
(n ∈N *
)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),
该切线与x 轴的交点的横坐标为x n =,
∵a n =lgx n ,
∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X ~B (3,),
P (X=0)==

P (X=1)==,
P (X=2)=
=,
P(X=3)==,
∴E(X)=3×=2.
(Ⅱ)假设生二胎与年龄无关,
K2==≈3.030>2.706,
所以有90%以上的把握认为“生二胎与年龄有关”.
20.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,
由a n>0可得q>0,且a3﹣a2﹣2a1=0,
化简得q2﹣q﹣2=0,
解得q=2或q=﹣1(舍),
∵a3=a1•q2=4a1=8,∴a1=2,
∴数列{a n}是以首项和公比均为2的等比数列,
∴a n=2n;
(Ⅱ)由(I)知b n=log2a n==n,
∴a n b n=n•2n,
∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,
2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,
两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,
∴﹣S n=﹣n×2n+1,
∴S n=2+(n﹣1)2n+1.
【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.
21.【答案】
【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,
将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,
当动圆与圆O1相外切时,有|O1M|=R+2…①
当动圆与圆O2相内切时,有|O2M|=10﹣R…②
将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,
∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,
所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.
∴2c=6,2a=12,
∴c=3,a=6
∴b2=36﹣9=27
∴圆心轨迹方程为,轨迹为椭圆.
(方法二):由方法一可得方程,移项再两边分别平方得:
2
两边再平方得:3x2+4y2﹣108=0,整理得
所以圆心轨迹方程为,轨迹为椭圆.
【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.22.【答案】
【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得
•=,
求得ω=2.
再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,
∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,
故θ的最小正值为.
(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,
∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.
23.【答案】
【解析】解:(Ⅰ)设AA1=h,
由题设=﹣=10,

即,解得h=3.
故A1A的长为3.
(Ⅱ)∵在长方体中,A1D1∥BC,
∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).
在△O1BC中,AB=BC=2,A1A=3,
∴AA1=BC1=,=,
∴,
则cos∠O1BC===.
∴异面直线BO1与A1D1所成角的余弦值为.
【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.
24.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】
(2 ,进而得
1a =时为定值.
试题解析:(1)设直线AB 的方程为2my x =-,由2
2,4,
my x y x =-⎧⎨=⎩
得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111]
(2)设存在直线:x a =满足条件,则AC 的中点11
2(
,)22
x y E +,AC =,
因此以AC 为直径圆的半径12r AC ==
=E 点到直线x a =的距离12||2
x d a +=-,
所以所截弦长为==
=
当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.
考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.。

相关文档
最新文档