台山市二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

台山市二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18
C .24
D .36
2. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( ) A .117⎡⎤
⎢⎥⎣⎦
, B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞,
3. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上
的一点,圆M 为三角形12PF F 的内切圆,
PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
,则双曲线C 的离心率是( )
A B .2 C D .2
4. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )
A .(11,12)
B .(12,13)
C .(13,14)
D .(13,12)
5. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )
A .
B .
C .
D .
6. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )
A .20
B .25
C .22.5
D .22.75
7. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )
A .13
B .﹣13
C .9
D .﹣9
8. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )
A .y 2=4x 或y 2=8x
B .y 2=2x 或y 2=8x
C .y 2=4x 或y 2=16x
D .y 2=2x 或y 2=16x
9. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<
10.若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )
A .11
B .12
C .13
D .14
11.已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .(0,]
C .(0,

D .[
,1)
12.在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )
A.4 B.5 C.6 D.7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.
二、填空题
13.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围.
14.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.
15.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.
16.已知直线l的参数方程是(t为参数),曲线C的极坐标方程是ρ=8cosθ+6sinθ,则曲线C上到
直线l的距离为4的点个数有个.
17.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.
18.已知椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,
且θ∈[,],则该椭圆离心率e的取值范围为.
三、解答题
19.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.
(1)若p=,求A∩B;
(2)若A∩B=B,求实数p的取值范围.
20.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).
(Ⅰ)写出曲线C 的普通方程; (Ⅱ)求B 、C 两点间的距离.
21.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P 在该圆上,求线段OP 的最大值和最小值.
22.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
23.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两
人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.
(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.
24.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.
(1)求数列{a n}的通项公式;
(2)若b n=,求数列{b n}的前n项和S n.
台山市二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:二项式(x+)4
展开式的通项公式为T r+1=
•x 4﹣2r ,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a 5,
∴a 3a 7=a 52
=36,
故选:D .
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
2. 【答案】D 【




点:1、导数;2、单调性;3、函数与不等式.
3. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=的距离为
22=
,得a b =,则为等轴双曲
故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
4. 【答案】 A
【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,
当n=2时,满足进行循环的条件,故x=9,y=10,n=3,
当n=3时,满足进行循环的条件,故x=11,y=12,n=4,
当n=4时,不满足进行循环的条件,
故输出的数对为(11,12),
故选:A
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
5.【答案】D
【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),
联立,得(2k2+1)x2+8k2x+8k2﹣2=0,
∵过点M(﹣2,0)的直线l与椭圆有公共点,
∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,
整理,得k2,
解得﹣≤k≤.
∴直线l的斜率k的取值范围是[﹣,].
故选:D.
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.
6.【答案】C
【解析】解:根据频率分布直方图,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位数应在20~25内,
设中位数为x,则
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴这批产品的中位数是22.5.
故选:C.
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
7.【答案】D
【解析】解:由题意,=(﹣8,8),=(3,y+6).
∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,
故选D.
【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.
8.【答案】C
【解析】解:∵抛物线C方程为y2=2px(p>0),
∴焦点F坐标为(,0),可得|OF|=,
∵以MF为直径的圆过点(0,2),
∴设A(0,2),可得AF⊥AM,
Rt△AOF中,|AF|==,
∴sin∠OAF==,
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
∵|MF|=5,|AF|=
∴=,整理得4+=,解之可得p=2或p=8
因此,抛物线C的方程为y2=4x或y2=16x.
故选:C.
方法二:
∵抛物线C 方程为y 2
=2px (p >0),∴焦点F (,0),
设M (x ,y ),由抛物线性质|MF|=x+=5,可得x=5﹣,
因为圆心是MF 的中点,所以根据中点坐标公式可得,圆心横坐标为
=,
由已知圆半径也为,据此可知该圆与y 轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4,
即M (5﹣,4),代入抛物线方程得p 2
﹣10p+16=0,所以p=2或p=8.
所以抛物线C 的方程为y 2=4x 或y 2
=16x .
故答案C .
【点评】本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
9. 【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 10.【答案】A 【解析】
考点:得出数列的性质及前项和.
【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推
理与运算能力,属于中档题,本题的解答中,由“
10
a>,0
d<”判断前项和的符号问题是解答的关键.11.【答案】C
【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,
∵=0,
∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.
又M点总在椭圆内部,
∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.
∴e2=<,∴0<e<.
故选:C.
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
12.【答案】B
二、填空题
13.【答案】[,1].
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,,
所以,=
所以5=1,所以,所以5a2﹣1∈[],
[,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.
14.【答案】[].
【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,
解得p,
∵0≤p≤1,
∴,
故答案为:[].
15.【答案】5.
【解析】二项式定理.
【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利
用(x)n(n∈N+)的通项公式讨论即可.
【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,
当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;
当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;
当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;
当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;
当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.16.【答案】2
【解析】解:由,消去t得:2x﹣y+5=0,
由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,
化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.
又圆心到直线l的距离是,
故曲线C上到直线l的距离为4的点有2个,
故答案为:2.
【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.
17.【答案】3.
【解析】解:∵f(x)=(2x+1)e x,
∴f′(x)=2e x+(2x+1)e x,
∴f′(0)=2e0+(2×0+1)e0=2+1=3.
故答案为:3.
18.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e≤﹣1;
故答案为:[,﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
三、解答题
19.【答案】
【解析】解:(1)当p=时,B={x|0≤x≤},
∴A∩B={x|2<x≤};
(2)当A∩B=B时,B⊆A;
令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;
当p≤4时,应满足,
解得p不存在;
综上,实数p的取值范围p>4.
20.【答案】
【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.
(Ⅱ)依题意,直线l的参数方程为(t为参数),
代入抛物线方程得可得,
∴,t1t2=14.
∴|BC|=|t1﹣t2|===8.
【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.
21.【答案】
【解析】解:(1)ρ2
﹣4
ρcos (θ﹣)+6=0,展开为:ρ2
﹣4×ρ(cos θ+sin θ)+6=0.
化为:x 2+y 2
﹣4x ﹣4y+6=0.
(2)由x 2+y 2﹣4x ﹣4y+6=0可得:(x ﹣2)2+(y ﹣2)2
=2.
圆心C (2,2),半径r=.
|OP|=
=2

∴线段OP 的最大值为2+=3

最小值为2﹣=

22.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32
=3
2

∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2.
23.【答案】
【解析】解:(1)

(2)ξ可取0,1,2,3,4,
P (ξ=0)=(1﹣)2(1﹣)2=;
P (ξ=1)=()(1﹣)
()2+(1﹣)
2
=;
P (ξ=2)
=+
+
=

P (ξ=3)==

P (ξ=4)=
=

∴ξ的分布列为:
1 2 3 4
E ξ=0×
+1×
+2×
+3×
+4×=. 【点评】本题主要考查n 次独立重复实验中恰好发生k 次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.
24.【答案】
【解析】解:(1)由a 2+2,a 3,a 4﹣2成等比数列,

=(a 2+2)(a 4﹣2),
(1+2d )2
=(3+d )(﹣1+3d ),
d 2﹣4d+4=0,解得:d=2, ∴a n =1+2(n ﹣1)=2n ﹣1, 数列{a n }的通项公式a n =2n ﹣1;
(2)b n =
=
=(

),
S n=[(1﹣)+(﹣)+…+(﹣)],
=(1﹣),
=,
数列{b n}的前n项和S n,S n=.。

相关文档
最新文档