完整word版,北师大版数学七年级下册综合提高练习题
(完整word版)初一数学下册练习题
图 3AC21a初一数学下册练习题一、选择题(每小题3分,满分24分) 1、如图,下列推理正确的是( )A . ∵ ∠1=∠2,∴ AD ∥BCB . ∵ ∠3=∠4,∴ AB ∥CDC . ∵ ∠3=∠5,∴ AB ∥DCD . ∵ ∠3=∠5,∴ AD ∥BC2、如果两条直线被第三条直线所截,那么必定有 ( )A 、内错角相等B 、同位角相等C 、同旁内角互补D 、以上都不对3、如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y <0 B .y >0 C .y ≤0 D .y ≥04、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm 5、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b 6、某多边形的外角和等于内角和的一半,那么这个多边形是( ) A 、五边形 B 、六边形 C 、七边形 D 、八边形 7、下列图形中,不能镶嵌成平面图案的是( )A. 正三角形B. 正四边形C. 正五边形D. 正六边形8、某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠; ⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省( )。
A 、600元 B 、800元 C 、1000元 D 、2700元 二、填空题(每小题3分,满分21分) 9、“如果n 是整数,那么2n 是偶数”其中题设是 ,结论是 ,这是 命题(填真或假).10、如图2,∠ACD=1550,∠B=350,则∠A= 度。
11、如图3,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____ ,∠4的邻补角是______.∠2的补角是_________.12、如图,直线a ∥b,点B 在直线b 上,且A B ⊥BC ,∠1=55°,则∠2的度数为______。
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)
北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
北师大版七年级数学下册第三章 变量之间的关系 综合压轴题练习题(无答案,Word版)
北师大版七年级数学下册第三章变量之间的关系综合压轴题练习1、某城市规定:出租车起步价允许行驶的最远路程为3 千米.超过3 千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8 千米,付了17 元”;乙说:“我乘这种出租车走了18 千米,付了35 元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3 千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x 千米,请写出付费w 元与x 的函数关系式.2、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1y2 与x 之间的函数关系图象如图所示:(1)根据图象,直接写出y1,y2 与x 之间的函数关系;(2)分别求出当x=3,x=5,x=8 时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S 关于x 的函数关系式.3、如图,在正方形ABCD 中,对角线的长为2,动点P 沿对角线BD 从点B 开始向点D 运动,到达点D 后停止运动.设BP=x,△PBC 的面积为S,试确定S 与x 之间的函数表达式,并写出x 的取值范围.(2)某用户想月所缴水费控制在 20 元至30 元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为 m 吨,请用含 m 的代数式表示该用户月所缴水费.5、某市电信局推出上网包月制三种类型,见下表.若不包月或包月后超出的时间,则按每6、下图表示甲、乙两名选手在一次自行车越野赛中,各时间段的平均速度 v (千米/小时) 随时间 t (分)变化的图象(全程),根据图象提供的信息:(1)求这次比赛全程是多少千米;(2)求比赛开始后多少分钟两人相遇.7、上网费包括网络使用费(每月38 元)和上网通信费(每时2 元),某电信局对拨号上网用户实行优惠,具体优惠政策如下:(2)若小敏家8 月份上网90 小时,应缴上网费多少元?8、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3 时,每立方米收费1.0 元,并加收0.2 元的城市污水处理费;超过7m3 的部分每立方米收费1.5 元,并加收0.4 元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3 时,y 与x 之间的函数关系式;(2)写出用水多于7m3 时,y 与x 之间的函数关系式.9、某市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费:每月用电不超过100 度时,按每度0.37 元计费;每月用电超过100 度时,其中超过部分按每度0.50 元计费.(1)用电x 度时,应交电费y 元,当x≤100 和x>100 时,分别写出y 关于x 的关系式.(2)小王家第一季度交纳电费如下:10、如图①,在长方形ABCD 中,AB=10cm,BC=8cm、点P 从A 出发,沿A、B、C、D路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象;(1)根据图②中提供的信息,求a、b 及图②中c 的值;(2)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式;(3)点P 出发后几秒,△APD 的面积S1 是长方形ABCD 面积的14?11、如图,有一边长为5cm 的正方形ABCD 和等腰Rt△PQR,QR=8cm,点B、C、Q、R 在同一条直线上,当C、Q 两点重合时,△PQR 以1cm/秒的速度向左开始匀速运动,设与正方形重合部分的面积为S cm2.(1)求S 与运动时间t(秒)的函数关系式,并指出自变量的取值范围;(2)求S 的最大值.12、如图在矩形ABCD 中,AB=8cm,Bc=6cm,动点P,Q 分别从A,B 向B、C 运动,运动速度为1cm/s,当P、Q 一点停止运动则另一点停止运动.设△PBQ 的面积为y,点P、Q 运动时间为x(s).(1)求y 与x 的函数关系;(2)当x 为多少时,五边形APQCD 的面积最小,并求最小面积.13、如图,长方形ABCD 中,AB=6,CB=8,点P 以2 个单位/s 的速度从A 沿AB 向B 运动,同时点Q 以1 个单位/s 的速度从C 沿CB 向B 运动,当其中的一个点到达终点时,另一个点随之停止运动,设运动时间为t s.(1)当QB=2PB 时,求t 的值;(2)在(1)的条件下,求图中阴影部分的面积.14、四边形ABCD 中,AD∥BC,AB=CD=5,AD=7,BC=13,S 四边形ABCD=40,P 是一动点,沿AD,DC 由A 经D 点向C 点移动,设P 点移动的距离为x.(1)当P 点在AD 上运动时,求△PAB 的面积y 与x 的函数关系式并画出图象;(2)当P 点继续沿DC 向C 点运动时,求四边形ADPB 的面积y 与x 的函数关系式.15、如图①,在长方形ABCD 中,AB=10cm,BC=8cm.点P 从A 出发,沿A、B、C、D 路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象.(1)当点P 在AB 上运动时,△APD 的面积会点P 在BC 上运动时,△APD 面积不点P 在CD 上运动,△APD 面积会(填“增大”或“减小”或“不变”)(2)根据图②中提供的信息,求a、b 及图②中c 的值;(3)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式.。
北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)
北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。
北师大版七年级数学下册几何解答题综合训练(word版、无答案)
几何解答题综合训练北师大版七年级数学下册1、如图,已知∠ECF=70°,∠BCE=50°,∠A=70°,BC∥DE,求∠BDE的度数.2、如图,已知∠ABC=180°-∠A,BD⊥CD于点D,EF⊥CD于点F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.3、如图,∠1=∠2.∠GFA=55°,∠ACB=75°,AQ平分∠FAC,AH∥BD,求∠HAQ 的度数?4、如图,已知∠ABC+∠ECB=180°,∠P=∠Q.试说明:∠1=∠2.5、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.6、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)7、如图,AC∥FE,∠1+∠3=180°.(1)判定∠FAB与∠4的大小关系,并说明理由;(2)若AC平分∠FAB,EF⊥BE于点E,∠4=78°,求∠BCD的度数.8、如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,求∠DGB的度数.9、如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.(1)求证△EFC≌△EGB;(2)若AB=3,AC=5,求AF的长。
10、如图,△ABC中 CD⊥AB,垂足为 D,BE⊥AC垂足为 E,且 AD=AE,BE与CD相交于点F.求证:①△ACD≌△ABE ;②FB=FC.11、在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.当∠EDF绕D点旋转到DE⊥AC于点E时(如图1),易证S△DEF +S△CEF=12S△ABC,(1)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,求证:DE=DF;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,S△DEF +S△CEF=12S△ABC 是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.12、如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B 匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)13、(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD有何数量关系?请直接写出结论。
北师大版七年级数学下册第二章单元测试题及答案全套共20页word资料
七年级数学下册第二章相交线与平行线单元测试卷(一)班级姓名学号得分评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍ykw18/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。
(完整版)北师大数学七年级下册第二章相交线与平行线拔高题
北师大数学七年级下第二章拔高题一.选择题(共7小题)1.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D2.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°5.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短6.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°7.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°二.填空题(共8小题)8.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=°.9.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为.10.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=度.11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.12.如图,BE∥CF,则∠A+∠B+∠C+∠D=度.第9题第10题第11题第12题13.如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:.14.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是.15.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是.第13题第14题第15题三.解答题(共11小题)16.如图,AB∥CD,直线EF与AB,CD交于点G,H,GM⊥GE,∠BGM=20°,HN 平分∠CHE,求∠NHD的度数.17.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM 上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.18.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.19.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)20.如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?21.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.22.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.23.已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD 于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.24.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?25.如图,已知直线l1∥l2,点A、B分别在l1与l2上.直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?26.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC =∠F,求证:EC∥DF.一.选择题(共7小题)1.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.2.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°【解答】解:∵EF∥MN,∠1=40°,∴∠1=∠3=40°,∵∠A=30°,∴∠2=∠A+∠3=70°,故选:D.3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.4.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.【解答】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.5.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.6.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°【解答】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°﹣∠BMD=100°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣100°=50°.故选:C.7.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°【解答】解:如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE﹣∠CFE=x﹣18°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x﹣18°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x﹣18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°﹣∠B′FE=180°﹣66°=114°,∴∠AEF=114°.故选:D.二.填空题(共8小题)8.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=15°.【解答】解:∵将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,∴∠E=30°,∠ABC=45°,∵EF∥BC,∴∠DBC=∠E=30°,∴∠ABD=45°﹣30°=15°,故答案为:159.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为56°.【解答】解:∵AD∥BC,∴∠1=∠FEC=62°,由翻折可得:∠FEG=∠FEC=62°,∴∠BEG=180°﹣62°﹣62°=56°,故答案为:56°10.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=36度.【解答】解:∵DE∥BC,∴∠E=∠1,∵∠1=∠2,∴∠1=∠2=∠B,设∠1=∠2=∠B=x,∵2∠D=3∠DBC,∴∠D=3x,∴5x=180°,∴x=36°故答案为36.11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为22°.【解答】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°12.如图,BE∥CF,则∠A+∠B+∠C+∠D=180度.【解答】解:如图所示,由图知∠A+∠B=∠BPD,∵BE∥CF,∴∠CQD=∠BPD=∠A+∠B,又∵∠CQD+∠C+∠D=180°,∴∠A+∠B+∠C+∠D=180°,故答案为:180.13.如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:∠2+∠3﹣∠1=180°.【解答】解:如图,延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠FSR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故答案为:∠2+∠3﹣∠1=180°.14.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是∠α﹣∠β=90°.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故答案为∠α﹣∠β=90°.15.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是74°.【解答】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°﹣37°=53°;∴在△DEF中,∠DEB=180°﹣2∠2=74°.故答案为:74°.三.解答题(共11小题)16.如图,AB∥CD,直线EF与AB,CD交于点G,H,GM⊥GE,∠BGM=20°,HN平分∠CHE,求∠NHD的度数.【解答】解:∵GM⊥GE∴∠EGM=90°∵∠BGM=20°∴∠EGB=∠EGM﹣∠BGM=70°∴∠AGH=∠EGB=70°∵AB∥CD∴∠AGH+∠CHG=180°∴∠CHG=110°∵HN平分∠CHE∴∠NHC=∠CHG=×110°=55°∴∠NHD=180°﹣∠CHN=180°﹣55°=125°17.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.【解答】解:∵AB∥CD∴∠AEM=∠CFM,∵∠AEP=∠CFQ,∴∠MEP=∠MFQ,∴EP∥FQ,∴∠EPM=∠FQM.18.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.19.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=30度,∠FOH=125度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【解答】解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°;∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;故答案为:30,125;(2)∵FO平分∠AFH,HO平分∠CHF,∴∠OFH=∠AFH,∠OHF=∠CHF.∵∠AFH+∠CHF=100°,∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.∵EG∥FH,∴∠EOF=∠OFH,∠GOH=∠OHF.∴∠EOF+∠GOH=∠OFH+∠OHF=50°.∵∠EOF+∠GOH+∠FOH=180°,∴∠FOH=180°﹣(∠EOF+∠GOH)=180°﹣50°=130°.【拓展】∵∠AFH和∠CHI的平分线交于点O,∴∠OFH=∠AFH,∠OHI=∠CHI,∴∠FOH=∠OHI﹣∠OFH=(∠CHI﹣∠AFH)=(180°﹣∠CHF﹣∠AFH)=(180°﹣α)=90°﹣α.20.如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)∵DE平分∠BDC,∴∠2=∠EDF=36°,又∵∠1+∠2=90°,∴∠1=54°,又∵AB∥CD,∴∠BFC=180°﹣∠1=180°﹣54°=126°.21.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.【解答】解:∵AB∥CD,∴∠ADC=∠A=42°,∵∠A﹣∠B=8°,∴∠B=34°,∵AD⊥EF,∴∠AFE=90°,∴∠AEF=48°,∴∠BEC=132°,∵DE平分∠BEC,∴∠BED=∠BEC=66°,∴∠BDE=180°﹣66°﹣34°=80°.22.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.23.已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD 于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.【解答】解:(1)结论:∠ECD=90°+∠ABE.理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠ECD=∠H+∠CEH=90°+∠H,∴∠ECD=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.(3)如图3中,设∠GEF=α,∠EDF=β.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.24.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?①,过E1作E1F∥AB,则E1F∥CD,【解答】解:(1)如图∴∠B+∠1=180°①,∠D+∠1=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°;过E1,E2作E1F∥AB,E2G∥AB,则E1F∥E2G∥CD,(2)如图②,分别∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;过E1,E2,E3作E1F1∥E2F2∥E3F3∥AB,则E1F1∥E2F2∥E3F3∥CD,(3)如图③,分别∴∠B+∠BE1E2=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)?180°,∴∠B+∠D+∠E1+∠E2+⋯+∠E n=(n+1)?180°.25.如图,已知直线l1∥l2,点A、B分别在l1与l2上.直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由如下:【解答】解:(1)如图,当过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:①如图,当点P在在l2下方时,有结论:∠APB=∠PAC﹣∠PBD.理由是:过点P作PE∥l1,则∠APE=∠PAC,又∵l1∥l2,∴PE∥l2,∴∠BPE=∠PBD,∵∠APE=∠APB+∠BPE,∴∠PAC=∠APB+∠PBD,∴∠APB=∠PAC﹣∠PBD;②如图,当点P在l1上方时,有结论:∠APB=∠PBD﹣∠PAC.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又∵l1∥l2,∴PE∥l1,∴∠APE=∠PAC,∵∠BPE=∠APE+∠APB,∴∠PBD=∠PAC+∠APB,∴∠APB=∠PBD﹣∠PAC.26.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC =∠F,求证:EC∥DF.【解答】证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.。
2021-2022学年基础强化北师大版七年级数学下册全册综合测评(含详解)
北师大版七年级数学下册全册综合测评 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某中学开展“筑梦冰雪,相约冬奥”的学科活动,设计几何图形作品表达对冬奥会的祝福.小冬以长方形ABCD 的四条边为边向外作四个正方形,设计出“中”字图案,如图所示.若四个正方形的周长之和为24,面积之和为12,则长方形ABCD 的面积为( ) A .1 B .32 C .2 D .832、如图,点D 是AB 上的一点,点E 是AC 边上的一点,且∠B =70°,∠ADE =70°,∠DEC =100°,则∠C 是( )A .70°B .80°C .100°D .110° ·线○封○密○外3、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .4、小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A .16B .15C .13 D .12 5、下列运算正确的是( ).A .2242a a a +=B .336a a a ⋅=C .()437a a =D .842a a a ÷=6、长方形的长为3x 2y ,宽为2xy 3,则它的面积为( )A .5x 3y 4B .6x 2y 3C .6x 3y 4D .232xy 7、下列事件为必然事件的是( )A .明天是晴天B .任意掷一枚均匀的硬币100次,正面朝上的次数是50次C .两个正数的和为正数D .一个三角形三个内角和小于180︒ 8、如图,已知直线AB ,CD 相交于O ,OA 平分EOC ∠,100EOC ∠=︒,则COB ∠的度数是( )A .110︒B .120︒C .130︒D .140︒ 9、下列图形中不是轴对称图形的是( ). A . B . C . D . 10、若m 2+6m +p 2是完全平方式,则p 的值是( ) A .3B .﹣3C .±3D .9 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若(x +2)(x +a )=x 2+bx ﹣8,则a b 的值为_____.2、下面4个说法中,正确的个数为_______. (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大. (2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只·线○封○密○外红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.3、已知∠A=38°24',则∠A的补角的大小是____.4、如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则△AED的周长=____.5、从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是______.三、解答题(5小题,每小题10分,共计50分)1、为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)根据上表可知,该车油箱的大小为升,每小时耗油升;(2)请求出两个变量之间的关系式(用t来表示Q).(3)当汽车行驶12小时,邮箱还剩多少升油?2、已知230x x --=,求代数式()()()21121x x x -+-+的值. 3、计算:()()()222x y x y x y x +++-- 4、某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用-支出费用)y (元)的变化关系如下表所示(每位乘客的公交票价是固定不变的); (1)在这个变化过程中, 是自变量, 是因变量;(填中文) (2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为 元? (4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达 人. 5、(1)如图1,将一副直角三角尺的直角顶点C 叠放在一起,经探究发现∠ACB 与∠DCE 的和不变.证明过程如下: 由题可知∠BCE =∠ACD =90° ∴∠ACB = +∠BCD . ∴∠ACB =90°+∠BCD . ∴∠ACB +∠DCE =90°+∠BCD +∠DCE =90°+∠BCE ∵∠BCE =90°, ∴∠ACB +∠DCE = . (2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A 重合,则∠DAB 与∠CAE 有怎样的数量关系,并说明理由; ·线○封○密○外(3)如图3,已知∠AOB =α,∠COD =β(α,β都是锐角),若把它们的顶点O 重合在一起,请直接写出∠AOD 与∠BOC 的数量关系.-参考答案-一、单选题1、B【分析】设矩形ABCD 的边AB a ,AD b ,根据四个正方形周长之和为24,面积之和为12,得到3a b +=,226a b +=,再根据222[()()]21ab a b a b =+-+,即可求出答案. 【详解】解:设AB a ,AD b ,由题意得,8824a b +=,222212a b +=,即3a b +=,226a b +=,2223[()()]121(96)22ab a b a b ∴=+-+=-=, 即长方形ABCD 的面积为32, 故选:B .【点睛】本题考查完全平方公式的意义和应用,掌握完全平方公式的结构特征是正确应用的前提.2、B【分析】先证明DE ∥BC ,根据平行线的性质求解.【详解】 解:因为∠B =∠ADE =70° 所以DE ∥BC , 所以∠DEC +∠C =180°,所以∠C =80°. 故选:B . 【点睛】 此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行. 3、D 【分析】 同位角的定义:两条直线a ,b 被第三条直线c 所截,在截线c 的同侧,被截两直线a ,b 的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解. 【详解】 解:A 、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意; B 、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意; C 、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意; D 、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意. 故选:D . 【点睛】·线○封○密○外本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.4、A【分析】根据概率公式直接计算即可,总共6个面,点数为2的一面出现的情况只有1种, 可得点数为2的一面朝上的概率【详解】根据题意,小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为16故选A【点睛】本题考查了简单概率,理解题意是解题的关键.5、B【分析】由题意根据合并同类项和同底数幂的乘法以及幂的乘方和同底数幂的除法逐项进行计算判断即可.【详解】解:A. 2222a a a +=,此选项运算错误;B. 336a a a ⋅=,此选项运算正确;C. ()1432a a =,此选项运算错误;D. 844a a a ÷=,此选项运算错误.故选:B.【点睛】本题考查整式的混合运算,熟练掌握合并同类项和同底数幂的乘法以及幂的乘方和同底数幂的除法是解答本题的关键.6、C【分析】根据长方形面积公式和单项式乘以单项式的计算法则求解即可.【详解】 解:由题意得:长方形的面积为3x 2y •2xy 3=6x 3y 4, 故选C . 【点睛】 本题主要考查了单项式乘以单项式,熟知相关计算法则是解题的关键. 7、C 【详解】 解:A 、“明天是晴天”是随机事件,此项不符题意; B 、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意; C 、“两个正数的和为正数”是必然事件,此项符合题意; D 、“一个三角形三个内角和小于180 ”是不可能事件,此项不符题意; 故选:C . 【点睛】 本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键. 8、C 【分析】 先根据角平分线的定义求得∠AOC 的度数,再根据邻补角求得∠BOC 的度数即可. 【详解】 ·线○封○密·○外解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=1∠EOC=50°,2∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.9、C【分析】根据称轴的定义进行分析即可.【详解】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【分析】根据完全平方公式,即可求解.【详解】解:∵269++是完全平方式,m m∴29p = ,解得:3p =± .故选:C 【点睛】 本题主要考查了完全平方式的应用,熟练掌握()2222a b a ab b +=++ 和()2222a b a ab b -=-+是解题的关键. 二、填空题 1、116 【分析】 先计算等号左边,再根据等式求出a 、b 的值,最后代入求出a b 的值. 【详解】 解:∵(x +2)(x +a )=x 2+(2+a )x +2a , 又∵(x +2)(x +a )=x 2+bx ﹣8, ∴x 2+(2+a )x +2a =x 2+bx ﹣8. ∴2+a =b ,2a =﹣8. ∴a =﹣4,b =﹣2. ∴a b =(﹣4)﹣2 =21(4)- =116. 故答案为:116. 【点睛】 ·线○封○密○外本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a 、b 的值是解决本题的关键.2、0【分析】有概率的定义:某事件发生可能性的大小,可对(1)进行判断;根据等可能性可对(2)进行判断;根据概率的取值范围:0()1P A ≤≤,可对(3)进行判断;根据不可能事件的概率为0,可对(4)进行判断.【详解】(1)中即使概率是99%,只能说取出红球的可能性大,但是仍然有取出不是红球的可能,所以(1)错误;(2)因为有三个球,机会相等,所以概率应该是13,所以(2)错误;(3)概率的取值范围是0()1P A ≤≤,不可能达到200%,所以(3)错误;(4)概率为0,说明事件是不可能事件,故不可能取到红球,所以(4)错误.故答案为:0.【点睛】本题考查概率的定义,关键是理解概率是反映事件可能性大小的量,概率小的又可能发生,概率大的有可能不发生,一定发生的事件是必然事件,概率为1,可能发生也可能不发生的事件是随机事件,概率为01P <<,一定不发生的事件是不可能事件,概率为0.3、141°36′【分析】根据补角的定义即可求解.【详解】解:∠A 的补角 =180°- 38°24'= 141°36′ .故答案为:141°36′【点睛】本题考查了补角的定义,熟知补角的定义“如果两个角的和是180°,则这两个角互为补角”是解题关键. 4、7 【分析】 根据折叠的性质,可得BE =BC =6,CD =DE ,从而AE =AB -BE =2,再由△AED 的周长=AD +DE +AE ,即可求解. 【详解】 解:∵沿过点B 的直线折叠这个三角形,使得点C 落在AB 边上的点E 处, ∴BE =BC =6,CD =DE , ∵AB =8, ∴AE =AB -BE =2, ∴△AED 的周长=AD +DE +AE =AD +CD +AE =AC +DE =5+2=7. 故答案为:7 【点睛】 本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键. 5、14 【分析】 根据概率公式直接计算即可解答. 【详解】 解:从中随机抽出一张牌,牌面所有可能出现的结果由4种,且它们出现的可能性相等,其中出现3的倍数的情况有1种, ·线○封○密·○外∴ P(牌面是3的倍数)=1 4故答案为:1 4【点睛】此题考查了概率公式的运用,解题的关键是确定整个事件所有可能的结果,难度不大.三、解答题1、(1)100,6;(2)Q=100-6t;(3)28【分析】(1)根据表中数据即可得到结论;(2)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(3)令关系式中t=12,计算Q即可.【详解】解:(1)据上表可知,该车油箱的大小为100L,每小时耗油100-94=6 (L);(2)由表格中的数据可得,Q=100-6t;(3)令t=12,则Q=100-6×12=28(L)【点睛】本题主要考查了变量关系的表示,解答本题的关键是观察表格,列出表达式.2、代数式的值为9.【分析】先把230x x--=变形为23-=x x,然后利用完全平方公式以及多项式乘多项式,将式子去括号展开,并合并同类项,然后将2x x-整体代入化简的式子中求值即可.【详解】解:由230x x --=可得:23-=x x ,()()()21121x x x -+-+ 2221221x x x x x =-+++-- 233x x =-23()x x =- ∴原式23()339x x =-=⨯=, 故该代数式的值为9. 【点睛】 本题主要是考查了完全平方公式以及多项式乘多项式、整体代入法求解代数式的值,熟练利用完全平方公式以及多项式乘多项式,把整式进行化简,这是解决该题的关键. 3、2xy 【分析】 先根据完全平方公式计算,再合并同类项即可 【详解】 解:()()()222x y x y x y x +++-- =2222222x xy y x y x +++--=2xy . 【点睛】 本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a ±b )2=a 2±2ab +b 2;平方差公式是(a +b )(a -b )=a 2-b 2. 4、 (1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500. ·线○封○密○外【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;(2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3) ∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4) ∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.5、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】解:(1)由题可知∠BCE =∠ACD =90°,∴∠ACB =∠ACD +∠BCD ,∴∠ACB =90°+∠BCD ,∴∠ACB +∠DCE=90°+∠BCD +∠DCE=90°+∠BCE , ∵∠BCE =90°, ∴∠ACB +∠DCE =180°, 故答案为:∠ACD ,180°; (2)∠DAB +∠CAE =120°, 理由:由题可知∠DAC =∠EAB =60°, ∴∠DAB =∠DAC +∠CAB , ∴∠DAB =60°+∠CAB , ∴∠DAB +∠CAE =60°+∠CAB +∠CAE =60°+∠EAB , ∵∠EAB =60°, ∴∠DAB +∠CAE =120°; (3)∵∠AOB =α,∠COD =β, ∴∠AOD =∠COD +∠AOC =β+∠AOC , ∴∠AOD +∠BOC =β+∠AOC +∠BOC ·线○封○密○外=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.。
北师大版七年级数学下册第2章相交线与平行线同步达标测试(Word版含答案)
北师大版七年级数学下册《第2章相交线与平行线》同步达标测试(附答案)一.选择题(共10小题,满分40分)1.三条直线相交,交点最多有()A.1个B.2个C.3个D.4个2.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.6.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b7.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个8.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A.22°B.46°C.68°D.78°9.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°10.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交二.填空题(共8小题,满分40分)11.如图,∠B的内错角是.12.如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.13.如图,将一张长方形的纸条折叠,若∠1=70°,则∠2的度数为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=度.15.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25°,∠2=75°,则∠B=.16.若一个角的补角等于它的余角4倍,则这个角的度数是度.17.小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A,B,C,D,E,F,G,然后将点A,B,C,D,E,F,G顺次首尾连接,发现AG恰好经过点C,且∠B﹣∠DCG=115°,∠B﹣∠D=10°,若AG∥EF,则∠E=m°,这里的m=.18.如果两个角的两边分别平行,其中一个角为45°,则另一个角的度数为.三.解答题(共5小题,满分40分)19.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC =26°时,求∠BOE的度数.20.如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.23.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一.选择题(共10小题,满分40分)1.解:如图:,交点最多3个,故选:C.2.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.5.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.6.解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角,C选项正确,符合题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.7.解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.解:∵OB平分∠COD,∠BOD=22°,∴∠BOC=22°,∵BO⊥AO,∴∠BOA=90°,∴∠AOC=∠BOA﹣∠BOC=90°﹣22°=68°;故选:C.9.解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.10.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.二.填空题(共8小题,满分40分)11.解:∠B的内错角是∠BAD;故答案为:∠BAD.12.解:∵∠1+∠2=60°,∠1=∠2,∴∠1=×60°=30°,∴∠AOD=180°﹣30°=150°.故答案为:150°.13.解:由题意可得,∠3=∠1+∠2,∵∠3+∠1=180°,∠1=70°,∴∠3=110°,∴∠1+∠2=110°,∴∠2=110°﹣∠1=110°﹣70°=40°,故答案为:40°.14.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.15.解:∵m∥n,∴∠3=∠2=75°,∴∠BAC=∠3﹣∠1=75°﹣25°=50°,∵∠C=90°,∴∠B=90°﹣∠BAC=90°﹣50°=40°.故答案为:40°16.解:设这个角为x度,则:180﹣x=4(90﹣x).解得:x=60.故这个角的度数为60度.17.解:延长ED交AG于点H,∵AG∥EF,∴∠E=∠CHD,∴∠CHD=∠CDE﹣∠DCG,∵∠B﹣∠DCG=115°,∠B﹣∠CDE=10°,∴∠CDE=∠B﹣10°,∠DCG=∠B﹣115°,∴∠E=∠CHD=∠B﹣10°﹣(∠B﹣115°)=105°,故答案为:105.18.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.其中一个角为45°,若两角相等,则另一个角的度数为45°;若两角互补,则另一个角的度数为180°﹣45°=135°;故答案为:45°或135°.三.解答题(共5小题,满分40分)19.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.20.证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠CP A,∵∠BAE=∠CPF,∴∠P AE=∠APF,∴AE∥PF.21.∠AED=∠C.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).22.解:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠FEB+∠ABE=180°.∵∠ABE=120°,∴∠FEB=180°﹣∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=95°.23.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
七年级数学全册单元测试卷专题练习(word版
七年级数学全册单元测试卷专题练习(word版一、初一数学上学期期末试卷解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。
1.6 完全平方公式 北师大版数学七年级下册素养提升卷(含解析)
第一章 整式的乘除6 完全平方公式基础过关全练知识点1 完全平方公式1.(2023浙江绍兴中考)下列计算正确的是( )A.a6÷a2=a3B.(-a2)5=-aC.(a+1)(a-1)=a2-1D.(a+1)2=a2+12.添加下列选项中的一项,能使多项式9x2+1构成完全平方式的是( )A.9xB.-9xC.9x2D.-6x3.(2023陕西西安莲湖月考)下列等式成立的是( )A.(x-y)2=x2-xy+y2B.(x+3y)2=x2+9y2C.x-12y2=x2―xy+14y2D.(m-9)(m+9)=m2-94.(2023陕西西安碑林期中)若(2x-y)2+A=(2x+y)2,则代数式A=( )A.-4xyB.4xyC.-8xyD.8xy5.【易错题】【分类讨论思想】如果x2+(m-1)x+9是一个完全平方式,那么m的值是 .6.计算:(1)(m+2n)2-(3m-n)2;(2)(1-x-y)(1-x+y);(3)(2023甘肃兰州城关一模)(3a-b)2-b(a+b)-a2.知识点2 完全平方公式的应用7.(2023江苏南京建邺期中)如图,通过计算正方形的面积,可以得到的公式是( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab8.【教材变式·P27T3】计算:1022= ;982= .9.若(x+y)2=9,(x-y)2=5,则xy= .10.如图,有三种卡片,其中边长为a的正方形卡片1张,长、宽分别为a、b的长方形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为 .11.【一题多解】已知x+y=6,x2+y2=22.求:(1)xy的值;(2)(x-y)2-4的值.12.【新独家原创】杨老师让同学们计算当a=0.59,b=-0.64时,代数式a2+(a-2b)2-2(a+b)2-2b2+8ab的值.小刚说,不用给出a,b的值就可以求出结果.你认为他的说法正确吗?请说明你的理由.能力提升全练13.(2023四川成都中考,3,★☆☆)下列计算正确的是( )A.(-3x)2=-9x2B.7x+5x=12x2C.(x-3)2=x2-6x+9D.(x-2y)(x+2y)=x2+4y214.(2023河北保定十七中期中,10,★★☆)下列等式成立的是( )A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)215.(2023河南郑州五十二中月考,10,★★☆)如图,两个正方形的边长分别为a、b,且满足a+b=10,ab=12,则图中阴影部分的面积为( )A.100B.32C.144D.3616.【一题多解】(2023陕西西安月考,15,★★★)若(2023-x)(x-2021)= -2022,则(2023-x)2+(x-2021)2的值为 .17.(2020四川攀枝花中考,17,★★☆)已知x=3,将下面代数式先化简,再求值.(x-1)2+(x+2)(x-2)+(x-3)(x-1).18.(2023河北保定一中分校阶段测试,22,★★★)某中学九年级的学生人数比八年级学生人数多.做广播操时,九年级排成的是一个规范的长方形方阵,每排(3a+b)人,站有(2a+2b)排;八年级站的正方形方阵,排数和每排人数都是2(a+b),其中a>b.(1)试求该学校九年级比八年级多多少名学生;(用a与b的代数式表示)(2)当a=10,b=2时,求该学校九年级比八年级多多少名学生.19.(2023河北中考,21,★★★)现有甲、乙、丙三种长方形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个长方形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.图1 图2图3素养探究全练20.【运算能力】请观察下列各式的规律,回答问题:272=(27+7)×20+72=729;322=(32+2)×30+22=1024;562=(56+6)×50+62=3136;……(1)请根据上述规律填空:382= = ;(2)我们知道,任何一个两位数(个位上的数字为n,十位上的数字为m)都可以表示为10m+n,根据上述规律写出:(10m+n)2= ,并用所学知识说明你的结论的正确性.21.【数形结合思想】【几何直观】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把该长方形均分成四块小长方形,然后按图2的方式拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图2中阴影部分的面积.方法1: ;方法2: .(3)观察图2,你能写出代数式(m+n)2,(m-n)2,mn之间的等量关系吗?(4)根据(3)中的等量关系,解决如下问题:若a+b=-7,ab=6,求a-b的值.答案全解全析基础过关全练1.C A.a6÷a2=a4,原计算错误,不符合题意;B.(-a2)5=-a10,原计算错误,不符合题意;C.(a+1)(a-1)=a2-1,原计算正确,符合题意;D.(a+1)2=a2+2a+1,原计算错误,不符合题意.故选C.2.D 3.C A.原式=x2-2xy+y2,故A不符合题意;B.(x+3y)2=x2+6xy+9y2,故B不符合题意;y2,故C符合题意;C.原式=x2-xy+14D.原式=m2-81,故D不符合题意,故选C.4.D A=(2x+y)2-(2x-y)2=4x2+4xy+y2-(4x2-4xy+y2)=4x2+4xy+y2-4x2+4xy-y2=8 xy.故选D.5. 答案 7或-5解析 易错点:容易丢掉一次项系数为负数的情况.∵x2+(m-1)x+9是完全平方式,∴x2+(m-1)x+32=x2±2×x×3+32,∴m-1=±6,∴m=7或-5,故答案为7或-5.6. 解析 (1)原式=(m2+4mn+4n2)-(9m2-6mn+n2)=-8m2+10mn+3n2.(2)原式=(1-x)2-y2=1-2x+x2-y2.(3)原式=(9a2-6ab+b2)-(ab+b2)-a2=9a2-6ab+b2-ab-b2-a2=8a2-7ab.7.A 这个正方形的边长为a+b,因此面积为(a+b)2,组成这个正方形的四个图形的面积分别为a2,ab,ab,b2,因此有(a+b)2=a2+2ab+b2,故选A.8. 答案 10 404;9 604解析 1022=(100+2)2=1002+2×100×2+22=10 000+400+4=10 404.982=(100-2)2=1002-2×100×2+22=10 000-400+4=9 604.9. 答案 1解析 (x+y)2=x2+2xy+y2=9①,(x-y)2=x2-2xy+y2=5②,①-②可得4xy=4,解得xy=1.10. 答案 a+3b解析 由题意可知,16张卡片的总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴这个正方形的边长为a+3b.11. 解析 (1)∵x+y=6,x2+y2=22,∴2xy=(x+y)2-(x2+y2)=62-22=14,∴xy=7.(2)解法一(公式变形法):∵x+y=6,xy=7,(x-y)2=(x+y)2-4xy,∴(x-y)2-4=(x+y)2-4xy-4=62-4×7-4=36-32=4.解法二(直接代入法):∵x2+y2=22,xy=7,(x-y)2=x2+y2-2xy,∴(x-y)2-4=x2+y2-2xy-4=22-2×7-4=4.12. 解析 小刚的说法是正确的,理由如下:∵原式=a2+a2-4ab+4b2-2a2-4ab-2b2-2b2+8ab=0,∴小刚的说法是正确的.能力提升全练13.C A.(-3x)2=9x2,故原计算错误,不符合题意;B.7x+5x=12x,故原计算错误,不符合题意;C.(x-3)2=x2-6x+9,故原计算正确,符合题意;D.(x-2y)(x+2y)=x2-4y2,故原计算错误,不符合题意.故选C.14.B A.(-x-1)2=(x+1)2,故本选项不合题意;B.(-x-1)2=(x+1)2,故本选项符合题意;C.(-x+1)2=(x-1)2,故本选项不合题意;D.(x+1)2=(1+x)2,故本选项不合题意.故选B.15.B 如图所示,∵a+b=10,∴(a+b)2=a 2+b 2+2ab=100,∵ab=12,∴a 2+b 2+24=100,即a 2+b 2=76,则两个正方形的面积之和为76,∴S 阴影=S 正方形ABCD +S 正方形CGEF -S △ABD -S △BEF =a 2+b 2-12·a 2-12b(a +b)=12(a 2+b2―ab)=12×(76-12)=32,故选B.16. 答案 4 048解析 解法一(整体思想):∵(2 023-x)(x-2 021)=-2 022,∴(2 023-x)2+(x-2 021)2=[(2 023-x)+(x-2 021)]2-2(2 023-x)(x-2 021)=4-2(2 023-x)(x-2 021)=4-2×(-2 022)=4 048.故答案为4 048.解法二(换元法):设2 023-x=a,则x-2 021=2-a,则(2 023-x)(x-2 021)=a(2-a)=2a-a2=-2 022,∴(2 023-x)2+(x-2 021)2=a2+(2-a)2=2a2-4a+4=2(a2-2a)+4=4 048.故答案为4 048.17. 解析 (x-1)2+(x+2)(x-2)+(x-3)(x-1)=x2+1-2x+x2-4+x2-x-3x+3=3x2-6x,当x=3时,原式=3×32-6×3=27-18=9.18. 解析 (1)(3a+b)(2a+2b)-[2(a+b)]2=6a2+6ab+2ab+2b2-4(a2+2ab+b2)=6a2+6ab+2ab+2b2-4a2-8ab-4b2=2a2-2b2,则该学校九年级比八年级多(2a2-2b2)名学生. (2)当a=10,b=2时,原式=2×102-2×22=192.答:该学校九年级比八年级多192名学生.19. 解析 (1)依题意得,S甲=a2,S乙=a,S丙=1,∴S1=S甲+3S乙+2S丙=a2+3a+2,S2=5S乙+S丙=5a+1,∴S1+S2=(a2+3a+2)+(5a+1)=a2+8a+3,∴当a=2时,S1+S2=22+8×2+3=23.(2)S1>S2,理由如下:∵S1=a2+3a+2,S2=5a+1,∴S1-S2=(a2+3a+2)-(5a+1)=a2-2a+1=(a-1)2,∵a>1,∴S1-S2=(a-1)2>0,∴S1>S2.素养探究全练20. 解析 (1)382=(38+8)×30+82=1 444.(2)由规律可得(10m+n)2=(10m+n+n)×10m+n2,证明:(10m+n)2=(10m)2+2×10m×n+n2=100m2+20mn+n2=(10m+n+n)×10m+ n2.21. 解析 (1)m-n.(2)(m-n)2;(m+n)2-4mn.(3)(m-n)2=(m+n)2-4mn.(4)∵a+b=-7,ab=6,∴(a-b)2=(a+b)2-4ab=(-7)2-4×6=49-24=25,故a-b=5或-5.。
(完整word版)北师大版数学七年级下册综合提高练习题
MDCBAED CBAdcb a432121FEDCA1DCB A北师大版七年级下册数学期末试题一、填空题(每空2分,共30分) 1.在代数式24,,,,1,5,232a b a ab a b x x a +-++中,单项式有个;其中次数为2的单项式是;系数为1的单项式是。
2.计算:322(5)7mnm n -⋅=。
3.计算:2)3(xy =___________,))((y x y x -+=。
4.某细胞的直径为0.00000015米,这个数用科学记数法表示为米。
5.北京市土地面积为16807.8千米2。
这个数保留2个有效数字的近似数是千米2。
6.如图,∠1=65°,∠3+∠4=180°,则∠2= °。
第6题 第7题 第9题 第10题7.如图,ΔABD ≌ΔACE ,点B 和点C 是对应顶点,AB=8cm ,BD=7cm,AD=3cm ,则DC=_____cm 。
8.在三角形中,已知两边分别为3和7,则第三边x 的取值范围是。
9.如图,∠A =29°,∠B =44°,则∠1=。
10.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是(图中每一块方砖除颜色外完全相同)。
11.在Rt △ABC 中,∠C =90°,∠A 是∠B 的2倍,则∠A =________º。
12.如图,ΔABC 中,AB 的垂直平分线交AC 与点M 。
若CM=4cm , BC=5cm ,AM=6cm ,则ΔMBC 的周长=_____________cm 。
. 二、选择题(每小题3分,共27分) 13.下面计算错误的是( ) A.66aa a ⋅=;B.422c c c ÷=;C.2222x x x +=;D.236(2)8y y =.14.计算02123-⎛⎫⨯ ⎪⎝⎭的结果是( )A .34 B .4- C .34- D .4115.掷一颗均匀的骰子(正方体,各面标1-6这6个数字),6点朝上的概率为( )A .0B .21C .1D .6116.如图,已知:D A ∠=∠,21∠=∠,下列条件中能使ΔABC ≌ΔDEF 的是( )A .B E ∠=∠ B .BC ED =C .EF AB = D .CD AF =17、下列三角形不不一定全等的是( )DCB AO B At (秒)S (米)012648A 、有两条边和一个角对应相等的两个三角形B 、有两个角和一条边对应相等的两个三角形C 、斜边和一个锐角对应相等的两个直角三角形D 、三条边对应相等的两个三角形18.下列图形中对称轴最多的是( )A .线段B .等边三角形C .正方形D .钝角19.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。
北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)
北师大版七年级数学下册第四章三角形达标测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C点拨:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA点拨:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm点拨:由CN∥AB,点E为AC的中点,可得∠EAM=∠ECN,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.SSS15.1<c<7;3<m<17点拨:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5点拨:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA). 选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。
最新北师大版七年级数学下册 期末试卷检测(提高,Word版 含解析)
最新北师大版七年级数学下册期末试卷检测(提高,Word版含解析)一、解答题1.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)2.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.3.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.4.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.二、解答题6.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.7.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.8.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 9.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).10.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.三、解答题11.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.12.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).13.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、解答题1.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.2.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.4.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD =110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG ,∵EH 平分∠BEG ,∴∠GEH =12∠BEG ,∴∠PEH =∠PEG -∠GEH =12∠FEG -12∠BEG =12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二、解答题6.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN∥EF∴MN∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC-∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.7.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.8.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析 【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3t ,则∠AOC=30°+6t ,由题意列出方程,解方程即可;(4)根据转动速度关系和OC 平分∠MOB ,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON 与OC 重合;(2)∵MN ∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t 秒后,MN ∥AB ,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.9.(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD=12∠ECD,∠HAF=12∠HAD,进而得出∠F=12(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD∠=∠,12NQG AQG∠=∠,180MQG QGR∠+∠=︒,再通过等量代换即可得出∠MQN=12∠ACB.【详解】解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD =12∠ECD ,∠HAF =12∠HAD ,∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB , ∴∠ECD =∠B , ∵AH //BC , ∴∠B+∠HAB =180°, ∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下:GR 平分QGD ∠,12QGR QGD ∴∠=∠.GN 平分AQG ∠,12NQG AQG ∴∠=∠.//QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.三、解答题11.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案; (2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=12∠COA,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【详解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.12.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠DBC=12∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.13.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.14.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.15.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
完整word版北师大版七年级下册数学培优压轴题2
北师大版七年级下册数学培优压轴题一.解答题(共8小题)1.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF 时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.CD上的点,分别是边BC、EAB=AD,∠B=∠D=90°,、FABCD2.(1)如图,在四边形中,;BAD.求证:且∠EF=BE+FDEAF=∠(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,EAF=∠BAD,(1且∠)中的结论是否仍然成立?1延长线上的点,、、F分别是边BCCD3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E()中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数∠BAD,(且∠1EAF= 量关系,并证明.B=∠E=30°..如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠3 边上时,恰好落在AB,固定△ABC,使△DEC绕点C旋转,当点D1()操作发现:如图2 ;填空:①线段DE与AC的位置关系是②设△BDC的面积为S,△AEC的面积为S,则S与S的数量关系是.2112(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S的数量关系21仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究:已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB 交BC于点E(如图4).若S=S,请直接写出相应的BF上存在点F,使的长. BA 在射线BDEDCF△△2为边AP、PBA,B重合),分别以2a1,已知线段AB的长为,点P是AB上的动点(P不与4.如图 PBD.向线段AB的同一侧作正△APC和正△AP= ;与△PBD 的面积之和取最小值时,(直接写结果)(1)当△APC(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)5.如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;2、点K在线段BD 上,且四边形AKNC为等腰梯形(AC∥KN,如图2).附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF 的形状,并说明理由.36.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F 是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.7.已知:等边三角形ABC;(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.48.认真阅读材料,然后回答问题:1,)=a+b我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b323222322 +bb+3ab=(a+b)a+b ()=a,…+3a(a+b)=a)+2ab+b,(a+b n取正整数时可以单独列成表中的a+b)展开式的各项系数进一步研究发现,当n下面我们依次对(形式:,用你发现的规律回答下列上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”问题:n)(1)多项式(a+b?并预测第三项的系数;的展开式是一个几次几项式n)展开式的各项系数之和.(2)请你预测一下多项式(a+b n(n取正整数)的展开式的各项系数之和为S,(结果用a+b(3)结合上述材料,推断出多项式()含字母n的代数式表示).5北师大版七年级下册数学培优压轴题参考答案与试题解析1、【解答】∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,CF=BF;∵∠MBN=60°,BE=BFBE,,∴△BEF为等边三角形;∠∴∠ABE=CBF=30°,∴ AE=BE+BF=BE=EFAE+CF=;∴图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE 和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.2.【解答】(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△∠∠∴∠1+∠3=2+∠3=AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.6∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.EAF=∠BAD∠.∠EAD=∠DAF+∠EAD=DAF∴∠BAG=∠,AG=AF.∴∠BAG+∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG;∴EF=BE﹣FD.3.【解答】(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;CD=AC=AB,∴BD=AD=AC,B=30°,∠C=90°,∴②∵∠根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S=S;故答案为:DE∥AC;S=S;2211(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S=S;21(3)如图,过点D作DF∥BE,易求四边形BEDF是菱形,所以BE=DF,111且BE、DF上的高相等,此时S=S;过点D作DF⊥BD,∵∠ABC=60°,FD∥BE,11△BDE△DCF12BD=∠ABC=30°,∠FDB=90°,∴∠FDF=∠D=ABC=60°,∵BF=DF,∠F∠ABC=60°,∴∠FF21122111∴△DFF是等边三角形,∴DF=DF,∵BD=CD,∠ABC=60°,点D是角平分线上一点,2112DCB=×60°=30°,∴∠CDF=180°﹣∠BCD=180°﹣30°=150°,∠∴∠DBC= 1∠CDF=360°﹣150°﹣60°=150°,∴∠CDF=∠CDF,∵在△CDF和△CDF中,21221,∴△CDF≌△CDF(SAS),∴点F也是所求的点,221ABD=×60°=30°, DE是角平分线上一点,∥AB,∴∠DBC=∠BDE=∠ABC=60∵∠°,点D=, F+F=BFBF=,∴=BF,==2cos304,∴又∵BD=4BE=×÷°÷+21121.或的长为故BF7x)?(2a=x﹣?x+(2a﹣x)BP=2a 4.【解答】(1)设AP的长是x,则﹣x,∴S+S PBD△APC△22 ax+aa,当x=;﹣=x=时△﹣﹣APC与△PBD的面积之和取最小值,故答案为:=a APC=60°,的移动而变化,理由:∵△APC是等边三角形,∴PA=PC,∠(2)α的大小不会随点P CPB,BPD,∴∠APD=∠∵△BDP是等边三角形,∴PB=PD,∠BPD=60°,∴∠APC=∠°,∠QAP+∠QAC+ACP=120APD≌△CPB,∴∠PAD=∠PCB,∵∠∴△°;°﹣120°=60∴∠QCP+∠QAC+∠ACP=120°,∴∠AQC=180 是等边三角形,)此时α的大小不会发生改变,始终等于60°.理由:∵△APC(3 ,APC=∠BPD是等边三角形,∴APC=60°,∵△BDPPB=PD,∠BPD=60°,∴∠∴PA=PC,∠°,QAC+∠ACP=120PAD=∠PCB,∵∠QAP+∠≌△∴∠APD=∠CPB,∴△APDCPB,∴∠°=60°.∠ACP=120°,∴∠AQC=180°﹣120∠∴∠QCP+QAC+P ,交AN延长线于点C作CP⊥AC【解答】5.△DEF是等腰三角形;证明:如图,过点 ACP;∠ACB,∠BAD=∠ABCRt△中AB=AC;∴∠BAC=90°,∠ACB=45°∴∠PCN=∵;;∴△BAD≌△ACPCAP∠BAM=∠BAM+∠CAP=90°;∴∠ABD=∠∵AM⊥BD;∴∠ABD+ ;CPN≌△CENCE=CPP;∵AD=CE;∴;∵CN=CN;∴△AD=CP∴,∠ADB=∠;∴△DEF是等腰三角形.ADBCEN=∠;∴∠FDE=∠FED∴∠P=∠CEN;∴∠P AM 的延长线于点⊥C作CPAC,交附加题:△DEF为等腰三角形;证明:过点;;∵AM⊥BD°;∴∠BAC=90°,∠ACB=45PCN=∠ACB=∠ECN;∴∠△∵RtABC中AB=AC ;∠AD=CP,∠D=P;∴;∴△°;∴∠∠∴∠ABD+∠BAM=BAM+∠CAP=90ABD=∠CAPBAD ≌△ACP ;∠≌△CPNCEN;∴∠P=E;∴△;又∵,∵AD=ECCE=CPCN=CN 为等腰三角形.;∴△∠∴∠D=EDEF 82)成立.在直线NE上,(EN与MF相等(或EN=MF),点F6.【解答】(1)判断:AB=AC=BC.,∵△ABC是等边三角形,∴和△NF,证明△DBMDFN全等(AAS)连接DF, MDF=60°,°,∠FDN+∠是三边的中点,∴EF=DF=BF.∵∠BDM+∠MDF=60F 又∵D,E,,FDN∴∠BDM=∠°,DFN=∠FDB=60DBM≌△DFN,∴BM=FN在△DBM和△DFN,∠中,,∴△,∥BDEF是△ABC的中位线,∴EFBCNF∥BD,∵E,F分别为边AC,的中点,∴∴.,∴MF=ENF在直线NE上,∵BF=EF∴ DE,、MF=NE成立).连接DF(3)如图③,MF与EN相等的结论仍然成立(或 DN=DM,NDE=∠FDM,由(2)知DE=DF,∠MF=NE.≌△DMFDNE和△DMF,∴中,∴△DNE在△;°,,∵∠BPC=120,使至EPE=PC,连接CEAP=BP+PC7.【解答】,(1)证明:延长BP PCE=60°,,∠,∴△CPE为等边三角形,∴CP=PE=CE∴∠CPE=60°,又PE=PC ,PCE+∠BCP∠ACB=∠PCE,∴∠ACB+BCP=∠,∠∵△ABC为等边三角形,∴AC=BCBCA=60°,∴∠.AP=BP+PC,∵BE=BP+PE,∴AP=BE(,∴△即:∠ACP=∠BCEACP≌△BCESAS),∴,B'CPB'ADBPDABAD2()证明:在外侧作等边△′,则点在三角形′外,连接,9∵∠APD=120°∴由(1)得PB′=AP+PD,在△PB′C中,有PB′+PC>CB′,∴PA+PD+PC>CB′,∵△AB′D、△ABC是等边三角形,∴AC=AB,AB′=AD,∠BAC=∠DAB′=60°,∴∠BAC+∠CAD=∠DAB′+∠CAD,即:∠BAD=∠CAB′,∴△AB′C≌△ADB,∴CB′=BD,∴PA+PD+PC>BD.1的展开式是一次二项式,此时第三项的)时,多项式(1)∵当n=1a+b8.【解答】解:(0=,系数为:21=,时,多项式(a+b)的展开式是二次三项式,此时第三项的系数为:当n=23,的展开式是三次四项式,此时第三项的系数为:当n=3时,多项式(a+b)3=4,…时,多项式(的展开式是四次五项式,此时第三项的系数为: a+b)6=当n=4n n+1;)∴多项式(a+b项式,第三项的系数为:的展开式是一个n次nn展开式的各项系数之和为:2;)(2)预测一下多项式(a+b11,a+b时,多项式()1+1=2=2展开式的各项系数之和为:3()∵当n=122展开式的各项系数之和为:1+2+1=4=2)当n=2时,多项式(a+b,33n=3当时,多项式(a+b)展开式的各项系数之和为:1+3+3+1=8=2,44)a+b展开式的各项系数之和为:1+4+6+4+1=16=2,…时,多项式(当n=4nn a+b∴多项式()展开式的各项系数之和:.S=21 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MDCBAED CBAdcb a432121FEDCBA1DCB A北师大版七年级下册数学期末试题一、填空题(每空2分,共30分) 1.在代数式24,,,,1,5,232a b a ab a b x x a +-++中,单项式有个;其中次数为2的单项式是;系数为1的单项式是。
2.计算:322(5)7mnm n -⋅=。
3.计算:2)3(xy =___________,))((y x y x -+=。
4.某细胞的直径为0.00000015米,这个数用科学记数法表示为米。
5.北京市土地面积为16807.8千米2。
这个数保留2个有效数字的近似数是千米2。
6.如图,∠1=65°,∠3+∠4=180°,则∠2= °。
第6题 第7题 第9题 第10题7.如图,ΔABD ≌ΔACE ,点B 和点C 是对应顶点,AB=8cm ,BD=7cm,AD=3cm ,则DC=_____cm 。
8.在三角形中,已知两边分别为3和7,则第三边x 的取值范围是。
9.如图,∠A =29°,∠B =44°,则∠1=。
10.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是(图中每一块方砖除颜色外完全相同)。
11.在Rt △ABC 中,∠C =90°,∠A 是∠B 的2倍,则∠A =________º。
12.如图,ΔABC 中,AB 的垂直平分线交AC 与点M 。
若CM=4cm , BC=5cm ,AM=6cm ,则ΔMBC 的周长=_____________cm 。
. 二、选择题(每小题3分,共27分) 13.下面计算错误的是( ) A.66aa a ⋅=;B.422c c c ÷=;C.2222x x x +=;D.236(2)8y y =.14.计算02123-⎛⎫⨯ ⎪⎝⎭的结果是( )A .34 B .4- C .34- D .4115.掷一颗均匀的骰子(正方体,各面标1-6这6个数字),6点朝上的概率为( )A .0B .21C .1D .6116.如图,已知:D A ∠=∠,21∠=∠,下列条件中能使ΔABC ≌ΔDEF 的是( )A .B E ∠=∠ B .BC ED =C .EF AB = D .CD AF =17、下列三角形不不一定全等的是( )DCB AO B At (秒)S (米)012648A 、有两条边和一个角对应相等的两个三角形B 、有两个角和一条边对应相等的两个三角形C 、斜边和一个锐角对应相等的两个直角三角形D 、三条边对应相等的两个三角形18.下列图形中对称轴最多的是( )A .线段B .等边三角形C .正方形D .钝角19.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。
如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是( )A .12∶51B .15∶21C .15∶51D .12∶21第19题 第20题 第21题20.小强和小敏练短跑,小敏在小强前面12米。
如图,OA 、BA 分别表示小强、小敏在短跑中的距离S (单位:米)与时间t (单位:秒)的变量关系的图象。
根据图象判断小强的速度比小敏的速度每秒快( ) A .2.5米 B .2米 C .1.5米 D .1米21.如图,ΔABC 中,∠A 、∠B 的角平分线相交于点D 。
若∠ADB=130°,则∠C 等于( ) A .80° B .50° C .40° D .20° 三、计算题(每小题4分,共24分) 22.225(3)2(35)x x x x +----; 23.)1()2(2--+a a a ;24.22(3)3a b b a ⎡⎤+-÷⎣⎦; 25. )2)(13(-+x x ;26.化简求值:()()[]()xy yx xy xy ÷+--+422222,其中251,10-==y x27.已知一个角的余角比它的补角的2倍小200°,求这个角。
路程S /千米时间t / 时111210981614121086420LEDC BAFEOABC四 .作图题:28.请你以直线DE 为对称轴画出三角形ABC 的对称图形(不写作法,要保留作图痕迹)(5分)ABCDE五、简答题:29.要测量河两岸相对两点A ,B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的l 的垂线上取点E ,使A 、C 、E 三点在一条直线上,这时ED 的长就是A ,B 两点间的距离。
你知道为什么吗?说说你的理由。
(4分)30.图为一位旅行者在早晨8时从城市出发到郊外所走的路程S (单位:千米)与时间t (单位:时)的变量关系的图象。
根据图象回答问题:(6分)(1)在这个变化过程中,自变量是____,因变量是______。
(2)9时, 12时所走的路程分别是多少? (3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度 是多少?31.如图:已知:△ABC 中,∠ABC 、∠BCA 的平分线,交于点O ,过点O 画EF ∥BC 交AB 于点E ,AC 于点F ; 写出图中相等的线段,并说明理由;(4分)32.如图,已知:BD AB⊥,BD ED ⊥,CD AB =,DE BC =,那么AC 与CE 有什么关系?写出你的猜想并说明理由。
(4分)AEB C DEDBCAP33.如图,一张等腰直角三角形的纸片ABC,沿斜边AB上一点P剪下两个等腰直角三角形PBD和P AE,以及一个矩形PDCE.已知BC=10,设DC=x,(1) 用含x的表达式来表示DP的长;(2) 设△PBD和△P AE的面积和是y,那么y与x的关系式是什么?(3) 要使y尽可能小,x应取什么值?(5分)34、一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ACB的斜边AB 的中点处,设AC=BC=a.(1)如图①,两个三角尺的重叠部分为△ACM,则重叠部分的面积为();(2)如图①中的△MNK绕顶点M逆时针旋转45°,得到图②,此时重叠部分的面积为()(3)如果将△MNK绕顶点M旋转到不同于的位置图①、图②,如图③,猜想此时重叠部分的面积为多少?并试着加以验证.35.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.36、如图,已知:ΔABC 中,AB=AC ,∠BAC=90°,AE 是过A 的一条直线,且B 、C 在AE 的两侧,BD ⊥AE 于D ,CE ⊥AE 于E.(1)ΔABD 与ΔCAE 全等吗?BD 与AE 、AD 与CE 相等吗?为什么? (2)BD 、DE 、CE 之间有什么样的等量关系?(写出关系式即可)(3)若直线AE 绕A 点旋转,如图(2),其它条件不变,那么BD 与DE 、CE 的关系如何?说明理由。
37.右图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图。
根据图回答问题。
(1).图象表示了那两个变量的关系?哪个是自变量?哪个是因变量? (2). 9时,10时30分,12时所走的路程分别是多少? (3).他休息了多长时间?(4).他从休息后直至到达目的地这段时间的平均速度是多少?38、认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,ABCDE(1)ABCDE(2)试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:39、如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.。