高考物理动量定理各地方试卷集合汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动量定理各地方试卷集合汇编
一、高考物理精讲专题动量定理
1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:
(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;
(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32
639
F x =+【解析】 【分析】 【详解】
(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为
4V E =
由欧姆定律得
24A 8A 0.5
E I R =
== (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有
E =2t (V )
4E
I t R
=
= 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43
x L = 又由
F BIL =安
所以
163
F t 安=
即安培力跟时间成正比
所以在1~2s 时间内导体棒所受安培力的平均值
163233N 8N 2
F +=
= 故
8N s I F t =∆=⋅安
(3)因为
43
v
E BLv Bx ==⋅
所以
1.5(m/s)v t =
可知导体棒的运动时匀加速直线运动,加速度
21.5m/s a =
又2
12
x at =
,联立解得 32
639
F x =+
【名师点睛】
本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,
要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.
2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。

现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。

求:
(1)圆弧轨道AB 的半径R;
(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)
【解析】 【详解】
(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:
对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;
(2)对甲乙碰撞过程,由动量守恒定律: ;
若甲与乙碰撞后运动到D 点,由动量定理:
解得t=0.4s
3.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。

一质量为60kg 的运动员在高度为80h m =,倾角为30θ=︒的斜坡顶端,从静止开始沿直线滑到斜面底端。

下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问:
(1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率;
(3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。

【答案】(1)40/m s (2)41.210W ⨯(3)34.810N s ⨯⋅ 方向为竖直向下 【解析】 【分析】
(1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可;
(3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】
(1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212
mgh mv = 到达底端时的速率为:40/v m s =;
(2)滑雪者由滑到斜面底端时重力的瞬时功率为:4
sin 30 1.210G P mg v W =⋅⋅︒=⨯;
(3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动
根据牛顿第二定律0sin 30mg ma =,可以得到:2
sin 305/a g m s =︒=
根据速度与时间关系可以得到:0
8v t s a
-=
= 则重力的冲量为:3
4.810G I mgt N s ==⨯⋅,方向为竖直向下。

【点睛】
本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率
的求法。

4.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s 运动的乙运动员从后去推甲运动员,甲运动员以6m/s 向前滑行,已知甲、乙运动员相互作用时间为1s ,甲运动员质量m 1=70kg 、乙运动员质量m 2=60kg ,求:
⑴乙运动员的速度大小;
⑵甲、乙运动员间平均作用力的大小。

【答案】(1)3m/s (2)F=420N 【解析】 【详解】
(1)甲乙运动员的动量守恒,由动量守恒定律公式
''
11221122m v m v m v m v +=+
得:
'
23m/s v =
(2)甲运动员的动量变化:
'1111-p m v m v ∆= ①
对甲运动员利用动量定理:
p Ft ∆= ②
由①②式可得:
F=420N
5.在水平地面的右端B 处有一面墙,一小物块放在水平地面上的A 点,质量m =0.5 kg ,AB 间距离s =5 m ,如图所示.小物块以初速度v 0=8 m/s 从A 向B 运动,刚要与墙壁碰撞时的速度v 1=7 m/s ,碰撞后以速度v 2=6 m/s 反向弹回.重力加速度g 取10 m/s 2.求: (1) 小物块与地面间的动摩擦因数μ;
(2) 若碰撞时间t =0.05 s ,碰撞过程中墙面对小物块平均作用力F 的大小.
【答案】(1)0.15 (2)130 N 【解析】 【详解】
(1)从A 到B 过程,由动能定理,有:-μmgs =
12mv 12-1
2
mv 02
可得:μ=0.15.
(2)对碰撞过程,规定向左为正方向,由动量定理,有:Ft =mv 2-m (-v 1) 可得:F =130 N.
6.用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别进行研究。

如图所示,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v 。

碰撞过程中忽略小球所受重力。

若小球与木板的碰撞时间为∆t ,求木板对小球的平均作用力的大小和方向。

【答案】2cos mv F t
θ
=∆,方向沿y 轴正方向 【解析】 【详解】
小球在x 方向的动量变化为sin sin 0x p mv mv θθ∆=-=
小球在y 方向的动量变化为cos (cos )2cos y p mv mv mv θθθ∆=--= 根据动量定理y F t p ∆=∆ 解得2cos mv F t
θ
=
∆,方向沿y 轴正方向
7.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面高5m 处,已知运动员与网接触的时间为1.2s .(g 取10m /s 2) 求:(1)运动员自由下落到接触网时的瞬时速度.
(2)若把网对运动员的作用力当做恒力处理,此力的大小是多少. 【答案】(1)8m /s ,方向向下;(2)网对运动员的作用力大小为1500N . 【解析】 【分析】
(1)根据题意可以把运动员看成一个质点来处理,下落过程是自由落体运动,由位移-速度公式即可求出运动员着网前瞬间的速度大小;
(2)上升过程是竖直上抛运动,我们可以算出自竖直上抛运动的初速度,算出速度的变化量,由动量定理求出网对运动员的作用力大小. 【详解】
(1)从h 1=3.2m 自由落体到床的速度为v 1,则:2
112v gh =
代入数据可得:v 1=8m /s ,方向向下;
(2)离网的速度为v 2,则:22210/v gh m s ==,方向竖直向上, 规定向下为正方向,由动量定理得:mgt -Ft =mv 2-mv 1 可得:21
mv mv F mg t
-=-
=1500N 所以网对运动员的作用力为1500N . 【点睛】
本题关键是对运动员的各个运动情况分析清楚,然后结合机械能守恒定律、运动学公式、动量定理列式后联立求解.
8.如图,质量分别为m 1=10kg 和m 2=2.0kg 的弹性小球a 、b 用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变,该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动,某时刻轻绳突然自动断开,断开后,小球b 停止运动,小球a 继续沿原方向直线运动。

求:
① 刚分离时,小球a 的速度大小v 1; ② 两球分开过程中,小球a 受到的冲量I 。

【答案】① 0.12m/s ;②
【解析】 【分析】
根据“弹性小球a 、b 用弹性轻绳紧紧的把它们捆在一起,使它们发生微小的形变”、“光滑水平面”“某时刻轻绳突然自动断开”可知,本题考察类“碰撞”问题。

据类“碰撞”问题的处理方法,运用动量守恒定律、动量定理等列式计算。

【详解】
① 两小球组成的系统在光滑水平面上运动,系统所受合外力为零,动量守恒,则:
代入数据求得:
② 两球分开过程中,对a ,应用动量定理得:
9.如图所示,长度为 l 的轻绳上端固定在O 点,下端系一质量为 m 的小球(小球的大小可以忽略、重力加速度为g ).
(1) 在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F 的大小;
(2)由图示位置无初速释放小球,不计空气阻力.求小球通过最低点时: a .小球的动量大小; b .小球对轻绳的拉力大小.
【答案】(1)
;mg tan α;(2)21cos m gl α-()
;()32cos mg α-
【解析】 【分析】
(1)小球受重力、绳子的拉力和水平拉力平衡,根据共点力平衡求出力F 的大小. (2)根据机械能守恒定律求出小球第一次到达最低点的速度,求出动量的大小,然后再根据牛顿第二定律,小球重力和拉力的合力提供向心力,求出绳子拉力的大小. 【详解】
(1)小球受到重力、绳子的拉力以及水平拉力的作用,受力如图
根据平衡条件,得拉力的大小:tan F mg α= (2)a .小球从静止运动到最低点的过程中, 由动能定理:()211cos 2
mgL mv α-=
()21cos v gL α=-
则通过最低点时,小球动量的大小:()21cos P mv m gL α==-
b .根据牛顿第二定律可得:2
v T mg m L -=
()2
32cos v T mg m mg L
α=+=-
根据牛顿第三定律,小球对轻绳的拉力大小为:()32cos T T mg α'==- 【点睛】
本题综合考查了共点力平衡,牛顿第二定律、机械能守恒定律,难度不大,关键搞清小球在最低点做圆周运动向心力的来源.
10.起跳摸高是学生常进行的一项活动。

某中学生身高1.80m ,质量70kg 。

他站立举臂,手指摸到的高度为2.10m.在一次摸高测试中,如果他下蹲,再用力瞪地向上跳起,同时举臂,离地后手指摸到高度为2.55m 。

设他从蹬地到离开地面所用的时间为0.7s 。

不计空气阻力,(g=10m/s 2).求: (1)他跳起刚离地时的速度大小;
(2)从蹬地到离开地面过程中重力的冲量的大小; (3)上跳过程中他对地面平均压力的大小。

【答案】(1)3m/s (2)(2)1000N
【解析】 【分析】
人跳起后在空中运动时机械能守恒,由人的重心升高的高度利用机械能守恒可求得人刚离地时的速度;
人在与地接触时,地对人的作用力与重力的合力使人获得上升的速度,由动量定理可求得地面对他的支持力,再由牛顿第三定律可求得他对地面的平均压力; 【详解】
(1)跳起后重心升高
根据机械能守恒定律:
,解得:

(2)根据冲量公式可以得到从蹬地到离开地面过程中重力的冲量的大小为:
,方向竖直向下;
(3)上跳过程过程中,取向上为正方向,由动量定理
即:,将数据代入上式可得
根据牛顿第三定律可知:对地面的平均压力。

【点睛】
本题中要明确人运动的过程,找出人起跳的高度及人在空中运动的高度,从而正确选择物理规律求解。

11.质量为0.5kg 的小球从h =2.45m 的高空自由下落至水平地面,与地面作用0.2s 后,再以5m /s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻力,g =10m /s 2) 【答案】35N 【解析】
小球自由下落过程中,由机械能守恒定律可知: mgh =
1
2
mv 12; 解得:v 12210 2.457gh =⨯⨯=m /s , 同理,回弹过程的速度为5m /s ,方向竖直向上, 设向下为正,则对碰撞过程由动量定理可知: mgt -F t =-mv ′-mv 代入数据解得:F=35N
由牛顿第三定律小球对地面的平均作用力大小为35N ,方向竖直向下.
12.花样滑冰赛场上,男女运动员一起以速度v 0=2 m/s 沿直线匀速滑行,不计冰面的摩擦,某时刻男运动员将女运动员以v 1=6 m/s 的速度向前推出,已知男运动员的质量为M =60 kg ,女运动员的质量为m =40 kg ,求: (1)将女运动员推出后,男运动员的速度; (2)在此过程中,男运动员推力的冲量大小; 【答案】(1)22
/3
v m s =-;(2) I=160N·s 【解析】 【分析】 【详解】
①设推出女运动员后,男运动员的速度为2v ,根据动量守恒定律
()012M m v mv Mv +=+
解得22
/3
v m s =-
,“﹣”表示男运动员受到方向与其初速度方向相反. ②在此过程中,对运动员有:
10I mv mv =-
解得I=160N·s。

相关文档
最新文档