绵阳市2020版中考数学试卷(II)卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳市2020版中考数学试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)-的倒数是()
A .
B . -
C .
D . -
2. (2分)(2017·濮阳模拟) 如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()
A .
B .
C .
D .
3. (2分)不等式组的解集在数轴上表示如图,则该不等式组是()
A .
B .
C .
D .
4. (2分) (2018八下·禄劝期末) 下列计算错误的是()
A . ÷ =3
B . =5
C . 2 + =2
D . 2 • =2
5. (2分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是()
A . 甲
B . 乙
C . 丙
D . 丁
6. (2分)函数中自变量x的取值范围为()
A . x≥0
B . x≥﹣1
C . x>﹣1
D . x≥1
7. (2分)(2018·成都) 如图,在中,,的半径为3,则图中阴影部分的面积是()
A .
B .
C .
D .
8. (2分)
如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()
A . x<-2
B . -2<x<-1
C . -2<x<0
D . -1<x<0
二、填空题 (共8题;共8分)
9. (1分)分解因式4x2﹣4x+1=________
10. (1分)一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有________秒.
11. (1分)(2018·乐山) 化简的结果是________
12. (1分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________ .
13. (1分)(2011·宁波) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为________.
14. (1分)(2012·南京) 如图,在▱ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=________cm.
15. (1分) (2019八上·通化期末) 如图,等腰三角形 ABC 的底边 BC 长为 4,面积是 12,腰 AB 的垂直平分线 EF 分别交AB,AC 于点 E、F,若点 D 为底边 BC 的中点,点 M 为线段 EF 上一动点,则△BDM 的周长的最小值为 ________
16. (1分)(2018·随州) 如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C 在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为________.
三、解答题 (共10题;共101分)
17. (5分)(2016·怀化) 计算:20160+2|1﹣sin30°|﹣()﹣1+ .
18. (5分)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?
19. (10分) (2016九上·东城期末) 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:
(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;
(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.
20. (10分)如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.
(1)求证:▱ABCD是菱形;
(2) F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO= (AF+AB).
21. (11分)(2018·泸县模拟) 学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).
请根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了________名学生;
(2)将条形统计图补充完整;
(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
22. (10分)仔细阅读下面例题,解答问题:
例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,
∴ ,解得:n=﹣7,m=﹣21.
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
(1)
已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.
(2)
已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.
23. (10分)(2018·沾益模拟) 如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.
(1)求证:△DCF≌△ADG.
(2)若点E是AB的中点,设∠DCF=α,求sinα的值.
24. (10分)已知反比例函数的图象经过点M(2,1)
(1)
该函数的表达式
(2)
当2<x<4时,求y的取值范围(直接写出结果).
25. (20分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x 轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形
(1)
求该抛物线的解析式;
(2)
求点P的坐标;
(3)
求证:CE=EF;
(4)
连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存
在,请说明理由.[注:3+=(+1)2].
26. (10分)(2018·贵阳) 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.
(1)求∠OMP的度数;
(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共101分)
17-1、
18-1、19-1、
19-2、20-1、
20-2、
21-1、
21-2、
21-3、
22-1、22-2、23-1、
23-2、24-1、24-2、
25-1、25-2、25-3、
25-4、26-1、
26-2、。