香洲区一中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香洲区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. i 是虚数单位,i 2015等于( )
A .1
B .﹣1
C .i
D .﹣i
2. 设函数f (x )=
的最小值为﹣1,则实数a 的取值范围是( )
A .a ≥﹣2
B .a >﹣2
C .a ≥﹣
D .a >﹣
3. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.
A .
B .
C .
D .
4. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①
()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④
⎩⎨
⎧=≠=0
,00
|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4
【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.
5. 定义运算
,例如
.若已知
,则
=( )
A .
B .
C .
D .
6. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;
④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )
A .1
B .2
C .3
D .4
7. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z << 8. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )
A . 1±
B . 4±
C .
D .2
±9. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直 10.设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111]
11.如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C
与B 1C 1所成的角为( )
A .30°
B .45°
C .60°
D .90°
12.执行如图所示的程序框图,则输出的S 等于( )
A .19
B .42
C .47
D .89
二、填空题
13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .
14.不等式()2110ax a x +++≥恒成立,则实数的值是__________.
15.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是
16.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
17.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 . 18.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .
三、解答题
19.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE=3AF ,BE 与平面ABCD 所成角为60°.
(Ⅰ)求证:AC ⊥平面BDE ;
(Ⅱ)求二面角F ﹣BE ﹣D 的余弦值;
(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.
20.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.
(1)求顶点C 的坐标; (2)求△ABC 的面积.
21.如图所示,在正方体1111ABCD A BC D 中. (1)求11AC 与1B C 所成角的大小;
(2)若E 、F 分别为AB 、AD 的中点,求11AC 与
EF 所成角的大小.
22.求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.
23.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;
(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,
求BK的取值范围.
24.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨
迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
香洲区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:i2015=i503×4+3=i3=﹣i,
故选:D
【点评】本题主要考查复数的基本运算,比较基础.
2.【答案】C
【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,
当x=时,取得最小值﹣1;
当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,
即有f(x)在(﹣∞,)递减,
则f(x)>f()=a﹣,
由题意可得a﹣≥﹣1,
解得a≥﹣.
故选:C.
【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.
3.【答案】D
【解析】解:设从第2天起每天比前一天多织d尺布m
则由题意知,
解得d=.
故选:D.
【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.
4.【答案】B
第5.【答案】D
【解析】解:由新定义可得,
====.
故选:D.
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
6.【答案】B
【解析】解:∵①若m∥l,m⊥α,
则由直线与平面垂直的判定定理,得l⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
7. 【答案】A 【解析】
考
点:对数函数,指数函数性质. 8. 【答案】B 【解析】
试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于
1
2
r
,即1=
,解得a =,故选B. 1 考点:直线与圆的位置关系.
【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于1
2
r 是解答的关键.
9. 【答案】C
【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 10.【答案】D 【解析】
考
点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.
11.【答案】C
【解析】解:因为几何体是棱柱,BC ∥B 1C 1,则直线A 1C 与BC 所成的角为就是异面直线A 1C 与B 1C 1所成的角.
直三棱柱ABC ﹣A
1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,BA 1=
,
CA 1=,
三角形BCA 1是正三角形,异面直线所成角为60°.
故选:C .
12.【答案】B
【解析】解:模拟执行程序框图,可得 k=1 S=1
满足条件k <5,S=3,k=2 满足条件k <5,S=8,k=3 满足条件k <5,S=19,k=4 满足条件k <5,S=42,k=5
不满足条件k <5,退出循环,输出S 的值为42. 故选:B .
【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S ,k 的值是解题的关键,属于基础题.
二、填空题
13.【答案】 6 .
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;
∴判断框中的条件为i <6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
14.【答案】1a = 【解析】
试题分析:因为不等式()2
110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足2
(1)40
a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨
-≤⎩,解得1a =.1
考点:不等式的恒成立问题. 15.【答案】(],1-∞
【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。
考点:函数图象的应用。
16.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==
海里,
则这时船与灯塔的距离为海里.
故答案为
.
17.【答案】 m >1 .
【解析】解:若命题“∃x ∈R ,x 2
﹣2x+m ≤0”是假命题,
则命题“∀x ∈R ,x 2
﹣2x+m >0”是真命题,
即判别式△=4﹣4m <0, 解得m >1,
故答案为:m>1
18.【答案】(0,5).
【解析】解:∵y=a x的图象恒过定点(0,1),
而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,
∴函数f(x)=a x+4的图象恒过定点P(0,5),
故答案为:(0,5).
【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.
三、解答题
19.【答案】
【解析】
【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;
(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;
(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.
【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.
因为ABCD是正方形,所以AC⊥BD,
从而AC⊥平面BDE.…(4分)
解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.
因为BE与平面ABCD所成角为600,即∠DBE=60°,
所以.
由AD=3,可知,.
则A(3,0,0),,,B(3,3,0),C(0,3,0),
所以,.
设平面BEF的法向量为=(x,y,z),则,即.
令,则=.
因为AC⊥平面BDE,所以为平面BDE的法向量,.
所以cos.
因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)
(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).
则.
因为AM∥平面BEF,
所以=0,即4(t﹣3)+2t=0,解得t=2.
此时,点M坐标为(2,2,0),
即当时,AM∥平面BEF.…(12分)
20.【答案】
【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.∵直线AC⊥BH,∴k AC k BH=﹣1.
∴,
直线AC的方程为,
联立
∴点C的坐标C(1,1).
(2),
∴直线BC的方程为,
联立,即.
点B 到直线AC :x ﹣2y+1=0的距离为.
又,
∴
.
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
21.【答案】(1)60︒;(2)90︒. 【解析】
试
题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形, 所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角. 由11AB AC B C ==可知160B CA ∠=︒, 即11AC 与BC 所成的角为60︒.
考点:异面直线的所成的角.
【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.
22.【答案】
【解析】解:(1)由椭圆+=1,得a2=8,b2=4,
∴c2=a2﹣b2=4,则焦点坐标为F(2,0),
∵直线y=x为双曲线的一条渐近线,
∴设双曲线方程为(λ>0),
即,则λ+3λ=4,λ=1.
∴双曲线方程为:;
(2)由3x﹣4y﹣12=0,得,
∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),
∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:
y 2=16x 或x 2=﹣12y .
【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双
曲线方程是关键,是中档题.
23.【答案】
【解析】解:(Ⅰ)证明:正方形ABCD 中,CD BA ,正方形ABEF 中,EF BA .…
∴EF
CD ,∴四边形EFDC 为平行四边形,∴CE ∥DF .…
又DF ⊂平面ADF ,CE ⊄平面ADF ,∴CE ∥平面ADF . … (Ⅱ)解:∵BE=BC=2,CE=,∴CE 2
=BC 2+BE 2
.
∴△BCE 为直角三角形,BE ⊥BC ,…
又BE ⊥BA ,BC ∩BA=B ,BC 、BA ⊂平面ABCD ,∴BE ⊥平面ABCD . … 以B 为原点,
、
、
的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则B (0,0,0),
F (0,2,2),A (0,2,0),
=(2,2,0),
=(0,2,2).
设K (0,0,m ),平面BDF 的一个法向量为=(x ,y ,z ).
由,
,得
可取=(1,﹣1,1),…
又
=(0,﹣2,m ),于是sin φ=
=
,
∵30°≤φ≤45°,∴,即…
结合0<m <2,解得0
,即BK 的取值范围为(0,4﹣
].…
【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.
24.【答案】(1) 2
4y x ;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,
(1),
y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系.
【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)
0)((0)('
'<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件
),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('x
f不恒等于的参数的范围.。