铁岭实验中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁岭县实验中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知命题p:对任意x∈R,总有3x>0;命题q:“x>2”是“x>4”的充分不必要条件,则下列命题为真命题的是()
A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q
2.设等比数列{a n}的公比q=2,前n项和为S n,则=()
A.2 B.4 C.D.
3.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF的面积为()
A.B.C.D.2
4.已知函数f(x)=xe x﹣mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是()
A.B. C.D.
5.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底
数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()
A.h()B.h()C.h()D.h()
6.函数的定义域是()
A.[0,+∞)B.[1,+∞)C.(0,+∞)D.(1,+∞)
7.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()
A.4 B.5 C.6 D.7
8. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
9. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )
A .112
B .114
C .116
D .120
10.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<
11.阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120 12.椭圆
=1的离心率为( )
A .
B .
C .
D .
二、填空题
13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.
14
()23k x =-+有两个不等实根,则的取值范围是 .
15.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .
17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;
②当且仅当
x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .
18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )
﹣a)﹣1有三个零点,则a的取值范围是_____.
三、解答题
19.已知函数,.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求函数的单调递增区间.
20.已知函数f(x)=lnx﹣a(1﹣),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.
21.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(C U A)∩(C U B);
(III)C U(A∪B).
22.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∪B,(∁U A)∩(∁U B);
(2)若集合C={x|x>a},A⊆C,求a的取值范围.
23.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭
圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
24.已知函数f(x)=2cosx(sinx+cosx)﹣1
(Ⅰ)求f(x)在区间[0,]上的最大值;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.
铁岭县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,
q:“x>2”是“x>4”的必要不充分条件,即q为假命题,
则p∧¬q为真命题,
故选:D
【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础
2.【答案】C
【解析】解:由于q=2,

∴;
故选:C.
3.【答案】B
【解析】解:抛物线y2=4x的准线l:x=﹣1.
∵|AF|=3,
∴点A到准线l:x=﹣1的距离为3
∴1+x A=3
∴x A=2,
∴y A=±2,
∴△AOF的面积为=.
故选:B.
【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.
4.【答案】C
【解析】解:设g(x)=xe x,y=mx﹣m,
由题设原不等式有唯一整数解,
即g(x)=xe x在直线y=mx﹣m下方,
g′(x)=(x+1)e x,
g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,
故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),
结合函数图象得K PA≤m<K PB,
即≤m<,

故选:C.
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.
5.【答案】B
【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]
=x x(lnx+1),
令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,
∴h(x)在(0,)递减,在(,+∞)递增,
∴h()最小,
故选:B.
【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.
6.【答案】A
【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,
因为2>1,所以指数函数y=2x为增函数,则x≥0.
所以函数的定义域为[0,+∞)
故选A
【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.
7. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 8. 【答案】B
【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .
【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.
9. 【答案】B
【解析】解:根据频率分布直方图,得; 该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20 +120×0.02×20+140×0.01×20 =114. 故选:B .
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
10.【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数,
∴(25)(80)(11)f f f -<<,故选D. 11.【答案】C
【解析】解析:本题考查程序框图中的循环结构.12
1123
m
n n n n n m S C m
---+=
⋅⋅⋅⋅
=,当8,10m n ==时,82101045m n C C C ===,选C .
12.【答案】D
【解析】解:根据椭圆的方程=1,可得a=4,b=2

则c=
=2

则椭圆的离心率为e==,
故选D .
【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.
二、填空题
13.
【答案】 6
【解析】解:过A
作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==

所以四棱锥A ﹣BB 1D 1D 的体积为V==6.
故答案为:6.
14
.【答案】53,124⎛⎤
⎥⎝⎦
【解析】
试题分析:作出函数
y =
()23y k x =-+的图象,
如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
22
4
k -=
=+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 15.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
16.【答案】 2 .
【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.
∴4m
+2n
≥2
=2=2.
当且仅当4m =2n
,即2m=n ,
即n=,m=时取等号.
∴4m
+2n
的最小值为2

故答案为:2
17.【答案】 ①②④ .
【解析】解:①连结BD ,B ′D ′,则由正方体的性质可知,EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.
②连结MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积
最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF 的面积最小.所以②正确.
③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈[0,]时,EM 的长度由大变小.当x ∈[,1]时,EM 的长度由小变大.所以函数L=f (x )不单调.所以③错误.
④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确. 故答案为:①②④.
【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.
18.【答案】1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x x
e
+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2,
即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x
x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
三、解答题
19.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)由已知

,即

时,
(Ⅱ)当时,递增
即,令,且注意到
函数的递增区间为
20.【答案】
【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.
当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;
当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
综上述:a≤0时,f(x)的单调递增区间是(0,+∞);
a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;
当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,
令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,
由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.
所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.
因此,a=1.
(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.
由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.
猜想当n≥3,n∈N时,2<a n<.
下面用数学归纳法进行证明.
①当n=3时,a3=+ln2,故2<a3<.成立.
②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.
则当n=k+1时,a k+1=1++lna k,
由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,
所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,
h()=1++ln<1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.
综上可得,n>1时[a n]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.
21.【答案】
【解析】解:如图:
(I)A∩B={x|1<x≤2};
(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}
(C U A)∩(C U B)={x|﹣3≤x≤0};
(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.
【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.
22.【答案】
【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},
∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);
(2)∵集合C={x|x>a},
∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.
23.【答案】
【解析】解:(Ⅰ)∵椭圆C1:的离心率为,
∴a2=2b2,
令x2﹣b=0可得x=±,
∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,
∴2=2b,
∴b=1,
∴C1、C2的方程分别为,y=x2﹣1;…
(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0
∴x=0或x=k1,∴A(k1,k12﹣1)
同理可得B(k2,k22﹣1)…
∴S1=|MA||MB|=•|k1||k2|…
y=k1x﹣1与椭圆方程联立,可得D(),
同理可得E()…
∴S2=|MD||ME|=••…

若则解得或
∴直线AB的方程为或…
【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.
24.【答案】
【解析】(本题满分为12分)
解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1
=sin2x+2×﹣1 =sin2x+cos2x
=sin(2x+),
∵x∈[0,],
∴2x+∈[,],
∴当2x+=,即x=时,f(x)min=…6分
(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,
∴sin(+)=,
∴+=,
∴B=,
由正弦定理可得:b==∈[1,2)…12分
【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.。

相关文档
最新文档