光武初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光武初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)不等式3x+2<2x+3的解集在数轴上表示正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】解:3x-2x<3-2
解之:x<1
故答案为:D
【分析】先求出不等式的解集,再根据不等式的解集作出判断即可。

注意:小于向左边画,用空心圆圈。

2、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()
A. 全区所有参加中考的学生
B. 被抽查的1000名学生
C. 全区所有参加中考的学生的数学成绩
D. 被抽查的1000名学生的数学成绩
【答案】D
【考点】总体、个体、样本、样本容量
【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.
考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.
全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.
故答案为:D
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考
查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.
3、(2分)在实数, ,,中,属于无理数是()
A. 0
B.
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】在实数, ,,中,属于无理数是,
故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.
4、(2分)下列不属于抽样调查的优点是()
A. 调查范围小
B. 节省时间
C. 得到准确数据
D. 节省人力,物力和财力
【答案】C
【考点】抽样调查的可靠性
【解析】【解答】解:普查得到的调查结果比较准确,而抽样调查得到的调查结果比较近似.
故答案为:C
【分析】根据抽样调查的特征进行判断即可.
5、(2分)在下列5个数中①②③④⑤ 2 ,是无理数的是()
A. ①③⑤
B. ①②⑤
C. ①④
D. ①⑤
【答案】D
【考点】无理数的认识
【解析】【解答】解:无理数有:、2
故答案为:D
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,即可求解。

6、(2分)下列各式计算错误的是()
A. B. C. D.
【答案】B
【考点】立方根及开立方
【解析】【解答】A、,不符合题意;
B、,符合题意;
C、,不符合题意;
D、,不符合题意;
故答案为:B.
【分析】求一个数的立方根的运算叫开立方。

(1)根据开立方的意义可得原式=0.2 ;
(2)根据算术平方根的意义可得原式=11;
(3)根据开立方的意义可得原式=;
(4)根据开立方的意义可得原式=-.
7、(2分)不等式x-2>1的解集是()
A.x>1
B.x>2
C.x>3
D.x>4
【答案】C
【考点】解一元一次不等式
【解析】【解答】解:x>1+2,x>3.故答案为:C.
【分析】直接利用一元一次不等式的解法得出答案.一般步骤:①去分母;②去括号;③移项;④合并同类项;
⑤化系数为1.
8、(2分)如图,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于()
A. 52
B. 46
C. 48
D. 50
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:由对顶角的性质和直角三角形两锐角互余,可以求出∠A的度数为52.
故答案为:A
【分析】利用对顶角的性质,可知∠AOC=∠BOD,由直角三角形两锐角互余,可求出∠A的度数.
9、(2分)如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=()
A. 28°
B. 30°
C. 32°
D. 35°
【答案】B
【考点】角的运算,余角、补角及其性质,对顶角、邻补角
【解析】【解答】设∠BOD=5x°,∠AOC=2x°,∵OA⊥OB,∴∠AOB=90°,∴∠BOC=(90-2x)°,∵∠BOD+∠BOC=180°,∴90-2x+5x=180,解得:x=30,∴∠BOC=30°,故答案为:B
【分析】根据图形得到∠BOD与∠BOC互补,∠BOC与∠AOC互余,再由已知列出方程,求出∠BOC的度数.
10、(2分)下列说法中,正确的是()
①②一定是正数③无理数一定是无限小数
④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.
A. ①②③
B. ④⑤
C. ②④
D. ③⑤
【答案】D
【考点】有理数大小比较,算术平方根,近似数及有效数字,无理数的认识
【解析】【解答】解:①∵|-|=,|-|=
∴>
∴-<-,故①错误;
②当m=0时,则=0,因此≥0(m≥0),故②错误;
③无理数一定是无限小数,故③正确;
④16.8万精确到千位,故④错误;
⑤(﹣4)2的算术平方根是4,故⑤正确;
正确的序号为:③⑤
故答案为:D
【分析】利用两个负数,绝对值大的反而小,可对①作出判断;根据算术平方根的性质及求法,可对②⑤作出判断;根据无理数的定义,可对③作出判断;利用近似数的知识可对④作出判断;即可得出答案。

11、(2分)在“同一平面内”的条件下,下列说法中错误的有()
①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系
【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;
②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;
③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;
④同一平面内,不相交的两条直线叫做平行线,故④正确;
⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;
错误的有①⑤
故答案为:B
【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。

即可得出答案。

12、(2分)已知x,y满足关系式2x+y=9和x+2y=6,则x+y=()
A. 6
B. ﹣1
C. 15
D. 5
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:2x+y=9即2x+y﹣9=0……①,
x+2y=6即x+2y﹣6=0……②,
①×2﹣②可以得3x﹣12=0,
∴x=4,代入①式得y=1,
∴x+y=5,故答案为:D.
【分析】观察方程组中同一未知数的系数特点,求出方程组的解,再求出x+y的值即可;或将两方程相加除以3,即可得出结果。

二、填空题
13、(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
14、(1分)如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.
【答案】105°
【考点】对顶角、邻补角,垂线
【解析】【解答】解:∵∠AOC=90°,∠1=15°,
∴∠BOC=∠AOC-∠1=90°-15°=75°,
又∵∠BOC+∠2=180°,
∴∠2=180°-∠BOC=180°-75°=105°.
故答案为:105°.
【分析】根据角的运算结合已知条件得∠BOC=75°,由补角定义得∠2=180°-∠BOC即可得出答案.
15、(1分)方程2x-y= 1和2x+y=7的公共解是________;
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:联立方程组得:
解得:
【分析】解联立两方程组成的方程组,即可求出其公共解。

16、(1分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个
【答案】110
【考点】二元一次方程的解
【解析】【解答】解:设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且
x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④3x+16=2y+51,
即,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.
【分析】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,又k是整数,且0<k<3 ,则k=1或者2,然后分别算出k=1与k=2时,甲和乙分别摸出的球的个数,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,②2x+32=2y+51,③3x+16=y+68,④3x+16=2y+51四个二元一次方程,再分别求出它们的正整数解再根据乙至少摸了两次5个球进行检验即可得出x,y的值,进而根据箱子中的球的个数至少等于两个人摸出的个数之和算出箱子中球的个数的所有情况,再比较即可算出答案。

17、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
18、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
三、解答题
19、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
20、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。

(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。

【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。

(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。

21、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
22、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.
23、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
24、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

25、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),
3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

26、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|
-3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.。

相关文档
最新文档