数学倒推归纳法经典例题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学倒推归纳法经典例题及解析
一、什么是倒推归纳法
倒推归纳法呢,就像是我们走迷宫的时候从出口往入口找路一样。

它是一种特殊的数学归纳法啦。

通常我们先从比较大的数或者比较复杂的情况开始考虑,然后逐步往小的数或者简单的情况推导。

比如说,有这么一个例题。

二、经典例题
例题:证明对于所有的正整数n,有1 + 3 + 5 + … + (2n - 1)=n²。

三、解析
1. 当n = 1的时候呢,左边就是1,右边就是1² = 1,等式成立。

这就像是我们搭积木的第一块,很重要哦。

2. 假设当n = k(k是一个比较大的正整数啦)的时候这个等式成立,也就是1+3 + 5+…+(2k - 1)=k²。

3. 现在我们要证明当n = k + 1的时候等式也成立。

当n = k + 1的时候,左边就变成了1+3 + 5+…+(2k - 1)+(2(k + 1)- 1)。

根据我们之前的假设,1+3 + 5+…+(2k - 1)=k²,所以现在左边就等于k²+(2(k + 1)- 1)=k²+2k + 1。

而右边呢,当n = k + 1的时候,(k + 1)²=k²+2k + 1。

左边等于右边,所以当n = k + 1的时候等式也成立。

从这个例题就可以看出倒推归纳法的厉害之处啦。

它可以让我们在证明一些关于正整数的命题的时候,有一个新的思路。

就像我们在解决生活中的问题一样,有时候从结果往前推,反而更容易找到解决的办法呢。

再看一个例题哈。

四、例题
证明不等式(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。

五、解析
1. 当n = 1的时候,左边就是(1 + 1/2)=3/2,3/2肯定是小于4的,这第一步就走通啦。

2. 假设当n = k的时候不等式成立,也就是(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。

3. 当n = k + 1的时候,左边就变成了(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)(1 + 1/2^(k + 1))。

因为我们假设当n = k的时候不等式成立,所以(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4,那么现在左边就小于4×(1 + 1/2^(k + 1))。

我们可以发现4×(1 + 1/2^(k + 1))是小于4的。

所以当n = k + 1的时候不等式也成立。

倒推归纳法在数学里就像一把神奇的钥匙,可以打开很多难题的大门呢。

它让我们从复杂的情况开始,慢慢简化,最后得到我们想要的结果。

就像我们把一团乱麻一点点理顺一样,超级有趣。

相关文档
最新文档