苏科七年级初一数学下学期 二元一次方程组试卷及答案百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科七年级初一数学下学期 二元一次方程组试卷及答案百度文库
一、选择题
1.已知关于x ,y 的方程x 2m ﹣n ﹣2
+4y m
+n +1
=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1
B .m =-1,n =1
C .14m ,n 33
=
=- D .1
4,33
m n =-=
2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )
A . 4.50.51y x y x =-⎧⎨=+⎩
B . 4.521y x y x =+⎧⎨=-⎩
C . 4.5
0.51y x y x =+⎧⎨=+⎩
D . 4.5
21y x y x =-⎧⎨=-⎩
3.同时适合方程2x+y=5和3x+2y=8的解是( )
A .12
x y =⎧⎨=⎩
B .21x y =⎧⎨=⎩
C .31x y =⎧⎨=⎩
D .31x y ==-⎧⎨⎩
4.已知2
2x y =-⎧⎨=⎩
是方程kx +2y =﹣2的解,则k 的值为( )
A .﹣3
B .3
C .5
D .﹣5
5.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )
A .351200
16x y x y +=⎧⎨+=⎩
B .3
5 1.2606016x y x y ⎧+
=⎪⎨⎪+=⎩
C .35 1.216x y x y +=⎧⎨+=⎩
D .3
51200606016
x y x y ⎧+
=⎪⎨⎪+=⎩
6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )
A .若他买55本笔记本,则会缺少120元
B .若他买55支笔,则会缺少120元
C .若他买55本笔记本,则会多出120元
D .若他买55支笔,则会多出120元
7.已知关于x 、y 的方程组22331x y k
x y k +=⎧⎨
+=-⎩
以下结论:①当0k =时,方程组的解也是
方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③
B .①②④
C .①③④
D .②③④
8.《九章算术》是我国东汉初年编订的一部数学经典著作。

在它的“方程”一章里,一次方
程组是由算筹布置而成的。

《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。

把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是
3219
423x y x y +=⎧⎨
+=⎩
,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x 的值为3,则被墨水所覆盖的图形为
A .
B .
C .
D .
9.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( ) A .m=-2,n=3
B .m=2,n=3
C .m=-3,n=2
D .m=3,n=2
10.若关于x ,y 的二元一次方程组432x y k
x y k +=⎧⎨-=⎩
的解也是二元一次方程2310x y +=的
解,则x y -的值为( ) A .2 B .10 C .2- D .4
11.已知关于x ,y 的方程组232x y a
x y a
-=-⎧⎨
+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,
x ,y 的值互为相反数;②2
x y =⎧⎨
=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x
﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 12.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )
A .m=1,n=0
B .m=0,n=1
C .m=2,n=1
D .m=2,n=3
二、填空题
13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.
14.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.
15.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天. 16.甲乙两人共同解方程组515(1)
42(2)ax y x by +=⎧⎨
-=-⎩
,由于甲看错了方程(1)中的a ,得到方程
组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为5
4x y =⎧⎨=⎩
;计算
2019
2018
110a
b ⎛⎫+-= ⎪⎝⎭
________.
17.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.
18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的
3
5
,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 19.方程组11111
21132x y x z y z ⎧+=⎪⎪
⎪+=⎨⎪⎪+=⎪⎩
的解为______.
20.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________
21.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.
22.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 23.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 24.若
是满足二元一次方程
的非负整数,则
的值为___________.
三、解答题
25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .
例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.
(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.
(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?
(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
27.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).
(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)
(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.
①若1b n =-,求证:直线l x ⊥轴;
②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.
28.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间
大人票价
学生票
根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.
(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;
(2)求参加活动的总人数;
(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.
29.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.
(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;
(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.
30.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且
a、b、c满足
346
24 a b c
a b c
+-=


-+=-⎩
.
(1)若a没有平方根,判断点A在第几象限并说明理由.
(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;
(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 31.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:
经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元. (1) 求a 、b 的值;
(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案? (3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案. 32.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3
x y z
M x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}1234
1,2,333
M -++-=
=,{}min 1,2,31-=- 请用以上材料解决下列问题:
(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;
②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使
{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存
在,请求出a ,b ,c 的值;若不存在,请说明理由.
33. 学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?
34.a 取何值时(a 为整数),方程组24
20x ay x y +=⎧⎨-=⎩
的解是正整数,并求这个方程组的解.
35.已知1
2x y =⎧⎨=⎩
是二元一次方程2x y a +=的一个解.
(1)a=__________;
(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点
作直线,你有什么发现?
x013
y620
36.对于两个不相等的实数a、b,我们规定符号}
max{,?
a b表示a、b中的较大值,
}
min{,?
a b表示a、b中的较小值.如:}
max{2,4?4=,}
min{2,4?2=,
按照这个规定,解方程组:
}
}
1
{,?
{?
3
{39,311?4
max x x y
min x x y
-=
++=
.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据二元一次方程的概念列出关于m、n的方程组,解之即可.
【详解】
∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,

221
11
m n
m n
--=


++=


23
m n
m n
-=


+=


解得:
1
1
m
n
=


=-


故选:A.
【点睛】
本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.
2.C
解析:C
【分析】
根据题中的等量关系即可列得方程组.
【详解】
设木头长为x尺,绳子长为y尺,
∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,
∴y=x+4.5,
∵将绳子对折再量木头,则木头还剩余1尺,
∴0.5y=x+1,
故选:C.
【点睛】
此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.
3.B
解析:B
【分析】
根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.
【详解】
解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;
方法二:由题意,得
25, 328
x y
x y
+=


+


=,②
①×2-②得,x=2,
代入①得,2×2+y=5,y=1
故原方程组的解为
2,
1. x
y
=⎧

=⎩
故选:B.
【点睛】
本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.
4.B
解析:B
【分析】

2
2
x
y
=-


=

代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把22x y =-⎧⎨=⎩
代入方程得:﹣2k +4=﹣2,
解得:k =3, 故选B . 【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
5.B
解析:B 【分析】
根据路程=时间乘以速度得到方程35 1.26060
x y +=,再根据总时间是16分钟即可列出方程组. 【详解】
∵她去学校共用了16分钟, ∴x+y=16,
∵小颖家离学校1200米, ∴
35
1.26060
x y +=, ∴3
5 1.2606016
x y x y ⎧+
=⎪⎨⎪+=⎩, 故选:B. 【点睛】
此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.
6.D
解析:D 【分析】
设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】
设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6
∴()253063055210x x x +--=-,即买55个笔记本缺少210元
()256303055120y y y ++-=+,即买55支笔多出120元
故选D .
【点睛】
本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.
7.B
解析:B 【分析】
①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】
解:①把k=0代入方程组得:20
231
x y x y +=⎧⎨
+=-⎩,
解得:2
1
x y =-⎧⎨
=⎩,
代入方程得:左边=-2-2=-4,右边=-4, 左边=右边,此选项正确; ②由x+y=0,得到y=-x , 代入方程组得:31
x k
x k -=⎧⎨-=-⎩,即k=3k-1,
解得:12
k =
, 则存在实数1
2
k =
,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩,
解不等式组得:321x k y k =-⎧⎨=-⎩

∵1y x ->-,
∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】
此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.
8.C
解析:C
【分析】
根据3219423
x y x y +=⎧⎨+=⎩,结合图1可判断出:(1)前面两列为方程的左边,后两列表示一个数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5;因此,设被墨水所覆盖的图形表示的数字为k ,列出方程组求解即可.
【详解】
由题意可知,(1)前面两列为方程的左边,后两列表示一个数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5,
设被墨水所覆盖的图形表示的数字为k ,则有:
211427x y x ky +=⎧⎨+=⎩
将3x =代入可解得:53y k =⎧⎨=⎩
根据图形所表示的数字规律,可推出3k =代表的图形为“|||”.
故答案为:C.
【点睛】
本题考查了二元一次方程组的解法及实际应用,根据图1和其方程组判断出图形所表示的数字是解题关键,此型题较为新颖,是近年来的常考点.
9.B
解析:B
【分析】
根据同类项的定义可得关于m 、n 的方程组,解方程组即可求出答案.
【详解】
解:由题意得:3942n m n =⎧⎨+=⎩,解得:23m n =⎧⎨=⎩
. 故选:B .
【点睛】
本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键.
10.D
解析:D
【分析】
把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值.
【详解】
432x y k x y k +=⎧⎨-=⎩
①②,
①-②得:5k y =
, 把5k y =代入②得:115k x =, 把115k x =,5k y =代入2310x y +=,得:11231055
k k ⨯+⨯= 解得:2k =, ∴225x =,25
y =, ∴222455x y -=
-=. 【点睛】
本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
11.B
解析:B
【分析】
把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩
代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案.
【详解】
解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11
x y =-⎧⎨=⎩, ②把20
x y =⎧⎨=⎩代入方程组得到a =1,不符合题意. ③当a =﹣1时,原方程组为242x y x y -=⎧⎨
+=-⎩,解得02x y =⎧⎨=-⎩, 当02
x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨
=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③.
故选:B .
【点睛】
本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.
12.C
解析:C
【分析】
根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.
【详解】
解:根据题意,得121m n m n -=⎧⎨+-=⎩
, 解得21m n =⎧⎨=⎩
. 故选:C .
二、填空题
13.95
【详解】
设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95.
故答案为95.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是设出未知
解析:95
【详解】
设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组
14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩
,即这个两位数为95. 故答案为95.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.
14.【分析】
设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和
解析:c
【分析】
设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.
【详解】
设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,
∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,
又∵x y x y +>-,48=24×2=12×4=8×6,
∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩
, 解得13x =,11y =或8x =,4y =或7x =,1y =,
符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,
同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,
∴C 买了7件,c 买了11件.
由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .
故答案为:c .
【点睛】
本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.
15.24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃
解析:24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.
【详解】
解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:
969620606030a b x a b x +⎧⎨+⎩
== 解得:b=103
x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=
103x ,a=1600x 代入得:y=24(天). 故答案为:24.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在
生长是解答此题的关键.
16.0
【分析】
根据题意,将代入方程(2)可得出b的值,代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.
【详解】
解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2
解析:0
【分析】
根据题意,将
3
1
x
y
=-


=-

代入方程(2)可得出b的值,
5
4
x
y
=


=

代入方程(1)可得出a的
值,将a与b的值代入所求式子即可得出结果.【详解】
解:根据题意,将
3
1
x
y
=-


=-

代入方程组中的4x-by=-2得:-12+b=-2,即b=10;

5
4
x
y
=


=

代入方程组中的ax+5y=15得:5a+20=15,即a=-1,

2019
2018
1
10
a b
⎛⎫
+-

⎝⎭
=1-1=0.
故答案为:0.
【点睛】
此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.17.【分析】
先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.
【详解】
解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且
解析:【分析】
先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.
【详解】
解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,
∵每种规格都要有且每个盒子均恰好装满,
∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,
则10x+9y+6z=108,
∴x=10896
10
--
y z

3(3632)
10
--
y z

∵0<x<10,且为整数,
∴36﹣3y﹣2z是10的倍数,
即:36﹣3y﹣2z=10或20或30,
当36﹣3y﹣2z=10时,y=262
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,
∴26﹣2z=3或6或9或12或15或18或21或24,
∴z=23
2
(舍)或z=10或z=
17
2
(舍)或z=7或z=
11
2
(舍)或z=4或z=
5
2
(舍)
或z=1,
当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3
当z=1时,y=8,x=3,
当36﹣3y﹣2z=20时,y=162
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,
∴16﹣2z=3或6或9或12或15或18或21或24,
∴z=13
2
(舍)或z=5或z=
7
2
(舍)或z=2或z=
1
2
(舍)
当z=5时,y=2,x=6,当z=2时,y=4,x=6,
当36﹣3y﹣2z=30时,y=62
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,
∴z=3
2
(舍)
即:满足条件的不同的装法有6种,
故答案为6.
【点睛】
此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.
18.【分析】
根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.
【详解】
设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均
捐书数量为本,
设甲班
解析:【分析】
根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.
【详解】
设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2
x 本, 设甲班有y 人,乙班有(80﹣y )人.
根据题意,得
xy +(x +5)(80﹣y )+
2x •40=3(5)1205x +⨯ 解得:y =284035855
x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,
共捐书10×64+15×16+5×40=1080.
答:甲、乙、丙三班共捐书1080本.
故答案为1080.
【点睛】
此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.
19.【分析】
先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.
【详解】
解:由方程组,可得:,
所以④,
由可得:,由可得:,由可得
综上所述方程组的解是.
【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩
【分析】
先将三个方程依次标号,然后相加可得
11194
x y z ++=④,由④-①,④-②,④-③即可得出答案.
【详解】 解:由方程组1111121132x y x z
y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩

②③
,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194
x y z ++=④, 由-④①可得:154,45
z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4
x = 43
x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩
.
【点睛】
本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.
20.【解析】
【分析】
题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.
【详解】
两组条件:每人分七两,则剩余四两;
解析:7498x y x y
+=⎧⎨-=⎩ 【解析】
【分析】
题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.
【详解】
两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;
解:
74
98
x y x y
+=⎧

-=⎩
【点睛】
本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.
21.3x-5y-8
【解析】
【分析】
根据等式的性质,移项即可解题.
【详解】
解:∵3x-5y-z=8,
∴z=3x-5y-8(移项).
【点睛】
本题考查了等式的性质,属于简单题,熟练运用移项是解
解析:3x-5y-8
【解析】
【分析】
根据等式的性质,移项即可解题.
【详解】
解:∵3x-5y-z=8,
∴z=3x-5y-8(移项).
【点睛】
本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.
22.【解析】
【分析】
设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x
解析:32 15
【解析】
【分析】
设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x、y,进一步代入求得答案即可.
【详解】
设1个进口1小时开进x辆车,1个出口1小时开出y辆,车位总数为a,由题意得:
82375%23275%x y a x y a ()()-=⎧⎨-=⎩
解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩
. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215
(小时). 故答案为
3215
. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 23.3,20,77.
【解析】
先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.
解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包
根据题
解析:3,20,77.
【解析】
先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.
解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包
根据题意可列方程组,
100341007x y x z x y ++=⎧⎪⎨++=⎪⎩
①② ②-3×①,得
77020
z y =+ 要使x 、y 、z 均为正整数,
则3,20,77x y z ===
故答案为3、20、77
点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.
24.0或6
【解析】。

相关文档
最新文档