第六章-空间解析几何要求与练习(含答案)

合集下载

高等几何教案与课后答案

高等几何教案与课后答案

高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的基本概念和发展历程。

2. 掌握空间解析几何的基本知识。

3. 理解高等几何在数学和物理学中的应用。

教学内容:1. 高等几何的基本概念点的定义向量的定义线和面的定义2. 发展历程古典几何的发展微积分与解析几何的兴起高等几何的发展和应用3. 空间解析几何坐标系和坐标变换向量空间和线性变换行列式和矩阵运算教学重点与难点:1. 重点:高等几何的基本概念,发展历程,空间解析几何。

2. 难点:空间解析几何中的坐标变换和线性变换。

教学方法:1. 采用讲授法,系统地介绍高等几何的基本概念和发展历程。

2. 通过示例和练习,让学生掌握空间解析几何的基本知识。

3. 利用图形和实物,帮助学生直观地理解高等几何的概念。

教学准备:1. 教案和教材。

2. 多媒体教学设备。

教学过程:1. 引入新课:通过简单的几何图形,引导学生思考高等几何的基本概念。

2. 讲解:按照教材的顺序,系统地介绍高等几何的基本概念和发展历程。

3. 示例:通过具体的例子,讲解空间解析几何的基本知识。

4. 练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调重点和难点。

课后作业:1. 复习本节课的内容,整理笔记。

2. 完成教材中的练习题。

教学反思:在课后对教学效果进行反思,根据学生的反馈调整教学方法和内容。

教案章节:第二章向量空间教学目标:1. 掌握向量空间的基本概念。

2. 理解线性变换和矩阵运算。

3. 学会运用向量空间解决实际问题。

教学内容:1. 向量空间向量的定义和运算向量空间的性质向量空间的基底和维度2. 线性变换线性变换的定义和性质线性变换的矩阵表示线性变换的图像3. 矩阵运算矩阵的定义和运算矩阵的逆矩阵矩阵的秩教学重点与难点:1. 重点:向量空间的基本概念,线性变换和矩阵运算。

2. 难点:线性变换的矩阵表示和矩阵的秩。

教学方法:1. 采用讲授法,系统地介绍向量空间的基本概念。

空间解析几何(练习题参考答案)

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=,则14//236( ) A .)4612(-+± B .)612(+± C .)412(-± D .)46(-± 4.若ϕ与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90oD .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________.1.设32+-=,+=2,++-=,则与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。

向量代数与空间解析几何习题详解

向量代数与空间解析几何习题详解

坐标平面所围成; ( 3 ) z = 0, z = a(a > 0) , y = x,x 2 + y 2 = 1 及 x
z x 2 y 2 , z 8 x 2 y2 所围 .
0 在 第 一 卦 限 所 围 成 ;( 4 )
解:(1 )平面 3x 4 y 2z 12 0 与三个坐标平面围成一个在第一卦限的四面体;
,化为 y
1
3 cos t (0 t 2 ) ;
2
99
z 3 sin t
x 1 3 cos
( 2) y 3 sin
(0
z0
2 ).
x a cos 6、 求螺旋线 y a sin 在三个坐标面上的投影曲线的直角坐标方程 .
zb
x2 y2 解:
z0
a2
z y a sin
z x a cos

b;
b.
x0
y0
第六章 向量代数与空间解析几何
习 题 6—3
1、 已知 A(1,2,3) , B(2, 1,4) ,求线段 AB 的垂直平分面的方程 .
解 :设 M ( x, y, z) 是所求平面上任一点,据题意有 | MA | | MB |,
x 12 y 2 2 z 32
x 2 2 y 12 z 4 2,
化简得所求方程 2x 6 y 2 z 7 0 .这就是所求平面上的点的坐标所满足的方程
6、 设平面过原点及点 (1,1,1) ,且与平面 x y z 8 垂直,求此平面方程 .
解: 设所求平面为 Ax By Cz D 0, 由平面过点 (1,1,1) 知平 A B C D 0, 由
r 平面过原点知 D 0 , Q n {1, 1,1},
A B C 0 A C, B 0 ,所求平面方程为

第06章 向量代数与空间解析几何习题详解

第06章 向量代数与空间解析几何习题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程.解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA = ()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+. 解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1)1+=x y ;(2)422=+y x ;(3)122=-y x ;(4)22x y =. 解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面; (4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体;(2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x a y x 解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z =与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x . 4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x 解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x x y ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==t z t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cos y b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ; (3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线. 解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x (2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩. 习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程.解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程.解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以 B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n 所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数),、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线;(2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;(4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程 .440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为:235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程. 解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为: ,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=t z t y t x3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y t x 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=-- 43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ== 4、判别下列直线与平面的相关位置:(1)37423z y x =-+=--与3224=--z y x ;(2)723z y x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; (4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直. 复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b . 解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±. 3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

向量代数与空间解析几何(18)

向量代数与空间解析几何(18)

m
n
p
s {m, n, p},
: Ax By Cz D 0, n {A, B,C},
(s^,n)
2
(s^,n)
2
sin
cos
2
cos
2
.
20
sin
| Am Bn Cp | A2 B2 C 2 m2 n2 p2
直线与平面的夹角公式
直线与平面的位置关系:
y
x
• ••
L
24
旋转曲面方程
总之,位于坐标面上的曲线C,绕其上的 一个 坐标轴转动,所成的旋转曲面方程可以 这样得到 :
曲线方程中与旋转轴相同的变量不动, 而用另两个的变量的平方和的平方根(加正、 负号)替代曲线方程中另一个变量即可.
25
如 yOz坐标面上的已知曲线f ( y, z) 0 绕z轴旋转一周的 旋转曲面方程:
第六章 向量代数与空间解析 几何(二)
主要内容 典型例题 堂上练习题
小结
1
一、主要内容
第4节 平面的方程
关键确定平面的法向量
一、平面的点法式方程
经过点 M 0 (x0 , y0 , z0 ) 法向量为 n {A, B, C} 的平面的点法式方程为:
A(x x0 ) B( y y0 ) C(z z0 ) 0
z
O
y
x
28
z
5. 椭球面
x2 a2
y2 b2
z2 c2
1
O
6. 单叶双曲面
x
x2 a2
y2 b2
z2 c2
1
7. 双z叶双曲面
x2 y2 z2 a2 b2 c2 1
x
y
z

空间解析几何习题答案

空间解析几何习题答案

空间解析几何习题答案空间解析几何习题答案在学习数学的过程中,解析几何是一个重要的分支。

它通过坐标系和代数方法来研究几何图形的性质和变换。

而空间解析几何则是解析几何的一个延伸,它研究的是三维空间中的几何图形。

在空间解析几何的学习过程中,我们经常会遇到一些习题,下面我将给出一些空间解析几何习题的解答。

习题一:已知直线L1过点A(1, 2, 3)和点B(4, 5, 6),直线L2过点C(7, 8, 9)且与直线L1垂直,求直线L2的方程。

解答:首先,我们可以求出直线L1的方向向量。

直线L1的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。

因为直线L2与直线L1垂直,所以直线L2的方向向量与直线L1的方向向量垂直,即两个向量的点积为0。

设直线L2的方向向量为(a, b, c),则有3a + 3b + 3c = 0。

再代入直线L2过点C(7, 8, 9),得到7a + 8b + 9c = 0。

所以直线L2的方程为7x + 8y + 9z = d,其中d为常数。

习题二:已知点A(1, 2, 3)和点B(4, 5, 6),求直线AB的方程。

解答:直线AB的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。

设直线AB的方程为x = 1 + 3t,y = 2 + 3t,z = 3 + 3t,其中t为参数。

习题三:已知平面P过点A(1, 2, 3)、点B(4, 5, 6)和点C(7, 8, 9),求平面P的方程。

解答:平面P的法向量可以通过两个方向向量的叉积来得到。

设向量AB为(4-1, 5-2, 6-3),即(3, 3, 3),向量AC为(7-1, 8-2, 9-3),即(6, 6, 6)。

则平面P的法向量为(3, 3, 3) × (6, 6, 6),即(0, 0, 0)。

因为法向量为零向量,所以平面P的方程为0x + 0y + 0z = d,即0 = d,其中d为常数。

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。

1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。

向量代数与空间解析几何(4)

向量代数与空间解析几何(4)

x y
x0 y0
mt nt
(4) 向量式
z z0 py r=r0+st . 式中
x
x0
m
r
y
,
r0
y0
,
s
n
.
z
z0
p
(5) 两点式
x x1 y y1 z z1 . x2 x1 y2 y1 z2 z1
4.点到平面的距离 d Ax0 By0 Cz0 D .
上可以配置无数条直线.
2021/4/22
16
三、同步测试
测试6-1 (一)、填空题(3分4=12分)
1. 已知a=(2, 1, -1), a//b, a b=3, 则b=
答案:1,12
,
1 2
2. 已知A(1, 0, 1), B(2, 3, -1), C(-1, 2, 0), 则ABC的
面积S=
长AB =34, 求点B的坐标.
例6-4 已知 p, q 和 r 两两垂直, 且p =1, q =2, r =3,
求 s=p+q+r的长度.
2021/4/22
9
例6-5 已知p =2, q =3, (pq)=/3, 求以A=3p-4q 和B=p+2q为两邻边的平行四边形的周长.
例6-6 证明恒等式[(a+b) (b+c)] (c+a)=2 (a b) ·c.
1. 求与向量a=2i-j+2k共线且满足方程a x=-18的向量x. 2. 在空间直角坐标系中, l1, l2, l3分别为坐标面xOy, yOz, zOx上各坐标轴之间夹角的平分线, 求他们之间的夹角.
3. 一平面经过点M0(2,-1,1), 且垂直两平面3x-y-z+1=0 与x-y+2z+1=0的交线, 求此平面方程.

空间解析几何习题答案解析(最新整理)

空间解析几何习题答案解析(最新整理)

一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。

大一下半学期高数题答案与试卷(1)

大一下半学期高数题答案与试卷(1)

答案与提示 第十章 微分方程一、选择题 1. B 2. A 3. D 4. B 5. B 6. B 7. C 8. A 9. D 10. B 二、填空题1. 05|2='=+⎧⎨=⎩x y y y 2. 2221+=x y 3. d cot d y x u u u x x ==, 4. 12e e x x y x C x C =+++ 5. p ;p ';0xp p '+= 6. p ;d d p py ;2d 20d pyp p y+= 7. 220'''-+=y y y 三、综合题 1. ⑴ 213ln ||1=++-y x x x ⑵ 21(arctan )2=y x ⑶ 21arctan 2=++y x x C 2. ⑴ 45=+x Cy x⑵ 2(1)e y x y -=+ 3. 22e e x x --4. ⑴ 5712e e x x y C C =+ ⑵ 2e xy x -= ⑶ 212e (cos sin )xy C x C x =+5. 12()e euuf u C C -=+ 6. 22123e e (3)e 2x x x y C C x x ---=++-第六章 空间解析几何与向量代数一、选择题 1. C 2. A 3. B 4. D 5. C 6. A 7. B 8. D 二、填空题1. (,,)---a b c2. 13. ⑴ 120==D D ⑵ 120==B B 且12,D D 不全为0 ⑶ 12120====C C D D4. 5++=x y z5. 6. {}22(,)2+≤x y x y 7. 22450-=z y 8. 22=+z x y 三、综合题1. | r | = 6,错误!未找到引用源。

2. ⑴121012--+==x y z ⑵ 112132-+-==-x y z3. 7510-+-=x y z4. 30+=x y 或30-=x y5. 354250+-+=x y z6. 2230-=x y第七章 多元函数微分学一、选择题 1. C 2. C 3. B 4. A 5. D 6. B 7. D 8. B二、填空题1. {}(,)10x y x y x y +>-+≠且 2. 2 3. 2cos 2cos +y x x y 4. 1112250221---++-===x y z x y z5. 6. 3,1 7. 9813 三、综合题1. 22. cos()2∂=+∂z y xy xy x ,2cos()∂=+∂z x xy x y ,2cos()sin()2∂=-+∂∂z xy xy xy x x y2 3. 1d d ln d ln d yz yz yz u yzxx zx x y yx x z -=++ 4.e ,x zf f y x u v∂∂∂=+∂∂∂ ∂∂=∂∂z fxy u5.22d 1)d z y x x y =-+ 6. cos()1cos()11cos()1cos()z yz xyz z xz xyz x xy xyz y xy xyz ∂-∂-==∂-∂-, 第八章 二重积分一、选择题 1. B 2. B 3. D 4. D 5. B 6. C 7. C 8. D 9. B 10. A二、填空题 1. (,)d d Df x y x y ⎰⎰ 2. 连续 3. >;< 4. 41+xy 5. 4π 6. 1 7. 33πa8.422d (,)d xx f x y y ⎰⎰ 9.2221d (,)d y yy f x y x +-⎰⎰ 10. d d x y ;d d r r θ三、计算题 1. ⑴ 1111d (,)d x f x y y --⎰⎰ 或1111d (,)d y f x y x --⎰⎰ ⑵11d (,)d xx f x y y ⎰⎰ 或1d (,)d yy f x y x ⎰⎰⑶ eln 10d (,)d xx f x y y ⎰⎰或1ee d (,)d y yf x y x ⎰⎰⑷122001d (,)d d (,)d x x f x y y x f x y y -+⎰⎰⎰或1201d (,)d yy f x y x -⎰⎰或242222d (,)d d (,)d x x f x y y x f x y y --+⎰⎰⎰⎰或40d (,)d y f x y x ⎰2. 64153. 26π-4. 136. e 2-7.763 8. 2(1e )R π-- 9. 9210. 6π内蒙古农业大学2012—2013学年第二学期经济类《高等数学》(B2)试卷 A一、填空题(每小题2分,共20分) 1. 点()231,,--在第( )卦限2.设(2,1,1),(1,1,2),a b →→=-=-则 (3)(2)a b →→⋅-= ( ). 3.点)1,1,2(到平面22100x y z ++-=的距离( )4. 1(,)ln(1)f x y x y =+-的定义域为( )5.(,)f x y =35(,)f =( )6. 设z xy =, 则 =dz ( ).7. 已知22dz x dx y dy =+,则2zx y∂=∂∂( ).8. 若 D={(y x ,)︱0201,x y ≤≤≤≤}, Dd σ=⎰⎰( ).9. 一阶线性微分方程sin 1xy y x x '+=的通解是( ).10. 特征方程2320r r +-=对应的二阶常系数齐次线性微分方程为( ). 二、选择填空题(每小题2分,共20分)1.过点(2,3,1)且垂直z 轴的平面方程为( )A 1z = B. 3y = C. 2x = D. 230x y z ++= 2. 03sin limx y xyx →→=( ) A 4 B. 2 C. 3 D. 1 3. 22limx y x yx y →→=+().A. 0B. 不存在C. 2D. 14. 已知32(,)f x y x y =, 则 (1,1)x f =( )A. 1B. 2C. 4D. 35.22{(,)9}D x y x y =+≤则Dd σ⎰⎰=( )A. 18πB. 14πC. 16πD. 12π6.已知平面2433x y z ++=与平面29x ky z +-=垂直,则k =( )A. 0B. 2C. 1D. 37. 设三个向量,,a b c →→→满足0a b c →→→→++=,那么a b →→⨯= ( ).A. b a →→⨯ B. b c →→⨯ C. c b →→⨯ D. a c →→⨯8. 就二元函数而言,下列说法正确的是 ( ).A. 可导一定连续B. 连续一定可导C. 可导、连续互为充要条件D. 可导、连续彼此无关 9. 微分方程ydx xdy =通解是( ).A. 22y x c -= B. y c x = C. y x c -= D. y x c += 10. 下列方程是三阶微分方程的是( )A. 2y y x '-= B. 32()y y x '''-= C. 23()30y y '+= D. 22y y x '''=+4 三、判断题(每小题2分,共20分)1. 空间任意两个向量(自由向量)一定是共面的 ( )2. 此式子()a b c →→→⨯⋅表示一个数 ( ) 3. (2,1,3),(1,1,2),a b →→==则 a b →→⨯9= ( ) 4.r i j k →→→→=++是单位向量. ( )5. 2222lim x y x y x y→→-=-2 . ( )6. 已知z x y =+,则 dz dx dy =+. ( )7. 已知2229x y z ++=,则z xx z∂=-∂ ( ) 8.(,)Df x y d σ=⎰⎰(,)Df x y dxdy ⎰⎰. ( )9.()10,y dy f x y dx ⎰⎰=()1,xdx f x y dy ⎰⎰. ( )10.微分方程1y ''=的通解是y =12c x c +. ( ) 四、计算题(每小题8分,共40分)1. 求平行于y 轴且过点1P (1,5,1)-及2322(,,)P -的平面方程2.已知22z u v =+,,u xy v x y ==-, 求 dz 3. 求23223(,)f x y x x y y =++-的极值.4. 计算Dxy d σ⎰⎰, 其中D 是由直线0,y x y ==和1x =所围成的闭区域.5. 求微分方程320y y y '''-+=满足初始条件00,1x x yy =='==的特解内蒙古农业大学 2012—2013学年第二学期经济类《高等数学》(B2)试卷 A 评分参考一、填空题(每小题2分,共20分)1.(六)2. ( 6).3. ( 1 ) 4. ( 1x y +->02,x y +≠ )5. ( 4 )6. ( ydx xdy + )7. ( 0 ).8. ( 2 ) .9. (1(cos )x c x-+ ). 10. ( 320y y y '''+-= ).二、选择填空题(每小题2分,共20分)1. A 2. C. 3. B. 4. D. 5. A. 6. C. 7. B. 8. D 9. B. 10. D. 三、判断题(每小题2分,共20分)1. √2. √3. ×4.×5. ×6. √7. √8. √9. × 10. × 四、计算题(每小题8分,共40分)1. 解 平行于y 轴的平面方程为 0Ax Cz D ++= 此平面过1P (1,5,1)-和2322(,,)P -得 0320,A C D A C D ++=-+= 解得 3255,A D C D =-=- 带入 3250x z +-= 2. 解22z z u z vuy v x u x v x∂∂∂∂∂=+=+∂∂∂∂∂,22z z u z v ux v y u y v y ∂∂∂∂∂=+=-∂∂∂∂∂ 2222()()z zdz dx dy uy v dx ux v dy x y∂∂=+=++-∂∂ 3. 解22236,f f x y y x y ∂∂=+=-∂∂ 令00,f fx y ∂∂==∂∂ 得 12121102,x x y y =-=-⎧⎧⎨⎨==⎩⎩ 222222066,,f f fy x x y y∂∂∂===-∂∂∂∂ (1)1110x y =-⎧⎨=⎩ 220612,,,A B C AC B ===--=-<0, 1110x y =-⎧⎨=⎩ 不是极值点.(2)2212x y =-⎧⎨=⎩ 220612,,,A B C AC B ===-=>0,A >0,∴(,)f x y 在12(,)-取得极小值125(,)f -=-4. 解112000120x Dx xy d dx xydy xy σ==⎰⎰⎰⎰⎰1301128x dx ==⎰5. 解 2320r r -+=, 解得 1212,r r ==, 通解为 212x x y c e c e =+ 2122x xy c e c e '=+ , 由 00,1x x yy =='== 得 1212021,c c c c +=+=解得 1211,c c =-=, 特解为 2x xy e e =-+内蒙古农业大学2013—2014学年第二学期经济类《高等数学》(B2)试卷 A一、填空题(每小题2分,共20分)1.设(2,1,1),(1,1,2),a b →→=-=-则 a b →→⨯= ( ). 2. 过点(3,2,1)且垂直y 轴的平面方程为( )63. 22123limx y x y x y →→+=+( )4. (,)arccos x f x y y=,则12(,)f =( )5. 1(,)f x y x y =-间断点为( )6. 已知2(,)f x y xy =, 则 (1,1)y f =( )7.设33z x y =+, 则 =dz ( ). 8.交换积分顺序()10,y dy f x y dx ⎰⎰=( )9.微分方程1y ''=的通解是( ).10. 特征方程2330r r -+=对应的二阶常系数齐次线性微分方程为( ). 二、选择填空题(每小题2分,共20分)1.设(1,1,2),(2,1,2),a b →→=-=-则 (2)(3)a b →→⋅-= ( ).A 18 B. 19 C. 20 D. 21 2.点312(,,)-到平面2230x y z -+-=的距离( )A 1 B. 2 C. 3 D. 4 3. 103lim(1)xx y xy →→+=( )A 2e B. e C. 1 D. 3e4. 已知dz ydx xdy =+,则2zx y∂=∂∂( ). A. 0 B. 3 C. 1 D. 2 5.22{(,)9,0}D x y x y x =+≤≥则Dd σ⎰⎰=( )A. 12πB. 10πC. 11πD. 9π6.已知平面2433x y z ++=与直线12312x y z k ---==-平行,则k =( )A. 0B. 2C. 1D. 37.已知()u f xy =, 则uy∂=∂( ) A. ()f xy ' B. ()xf xy ' C. ()yf xy ' D. ()xyf xy ' 8.设三个向量,,a b c →→→满足0a b c →→→→++=,那么a b →→⨯= ( ).A. b c →→⨯ B. b a →→⨯ C. c b →→⨯ D. a c →→⨯9. 微分方程xdx ydy =通解是( ).A. 22y x c -= B. y c x = C. y x c -= D. y x c += 10. 可分离变量的微分方程的是( )A. 32()y y x ''-= B. 22y x y '= C. 23()30y y '+= D. 2y y x '-= 三、判断题(每小题2分,共20分)1. 空间任意三个向量(自由向量)一定是共面的. ( )2. 2433,,πππαβγ===是某一向量的方向角. ( ) 3. 2sin lim 2x y xy y →→=。

空间解析几何习题

空间解析几何习题

4.设 AM MB ,证明:对任意一点 O ,有 OM 1 (OA OB) 。 2
5.已知两点 M1 (0, 1, 2) 和 M 2 (1, 1, 0) ,用坐标表示式表示向量 M1M 2 及 2M1M 2 。 6.向量 a 4i 4 j 7k 的终点 B 的坐标为(2,-1,7),求它的始点 A 的坐标,并求 a 的模及其方向余弦。 7.已知三力 F1 (1, 2, 3), F2 (2, 3, 4), F3 (3, 4, 5) 同时作用于一点,求合力 F 的 大小和方向余弦。
5.已知向量 a, b, c 满足条件 a b c O ,证明 a b b c c a 。
3.在 ABC 中,设 M , N , P 分别为 BC , CA AB 的中点,试用 a BC, b CA, c AB 表示向量 AM , BN , CP 。
习题 0—3
(2) a b 。 |a| |b|
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

向量代数与空间解析几何相关概念和例题

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数向量及其运算目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;重点与难点重点:向量的概念及向量的运算。

难点:运算法则的掌握过程:一、向量既有大小又有方向的量称作向量通常用一条有向线段来表示向量,有向线段的长度表示向量的大小.有向线段的方向表示向量的方向•向量的表示方法有两种:a、AB向量的模:向量的大小叫做向量的模,向量a、AB的模分别记为|a'|、|AB| .单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量.记作0规定:0方向可以看作是任意的,相等向量:方向相同大小相等的向量称为相等向量平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反.就称这两个向量平行记作a // b规定:零向量与任何向量都平行,二、向量运算向量的加法向量的加法:设有两个向量a与b.平移向量使b的起点与a的终点重合.此时从a 的起点到b的终点的向量c称为向量a与b的和.记作a+b .即c=a+b .当向量a与b不平行时.平移向量使a与b的起点重合.以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和a b向量的减法:设有两个向量a与b .平移向量使b的起点与a的起点重合.此时连接两向量终点且指向被减数的向量就是差向量。

T T T T TAB =AO OB =0B -CA .2、向量与数的乘法向量与数的乘法的定义:向量a与实数,的乘积记作 a .规定■ a是一个向量.它的模它的方向当■ >0时与a相同.当■ <0时与a相反,(1) 结合律,(七)=±a)=C;L)a ;(2) 分配律(kj a = 'a;'(a b) =■ a …b例1在平行四边形ABCD中.设AB =a . AD二b试用a和b表示向量MA’、MB’、MC‘、MD .其中M是平行四边形对角线的交点----- ■> ----- i ---- i A解:a 〜b = AC = 2 AM 于是MA = (a 亠b),因为MC —MA” .所以MC =1(a b).又因 T b = BD =2 MD .所以MD =2(b_a).由于MB =—MD“ .所以MB‘=2(a—b).定理1设向量a式0.那么.向量b平行于a的充分必要条件是:存在唯一的实数,.使b二,a,三、空间直角坐标系过空间一个点O,作三条互相垂直的数轴,它们都以O为原点。

向量代数与空间解析几何知识题详解

向量代数与空间解析几何知识题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面. 7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,21≤⎪⎩⎪⎨⎧==x y z(3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴,即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3,-1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), 、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ )解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C)⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z 解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为⎩⎨⎧==+.0,1222z y x 解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解:(1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos32=≠=,所以0≠B),令CBC'=,则有0='+zCy,由题设得22222212)5(112153cos++'++⨯'+⨯+⨯=πCC,解得3='C或13C'=-,于是所求平面方程为03=+zy或03=-zy.6、一平面过直线⎩⎨⎧=+-=++4,05zxzyx且与平面01284=+--zyx垂直,求该平面方程;解法1:直线⎩⎨⎧=+-=++4,05zxzyx在平面上,令x=0,得54-=y,z=4,则(0,-54,4)为平面上的点.设所求平面的法向量为n=},,{CBA,相交得到直线的两平面方程的法向量分别为1n={1,5,1},2n={1,0,-1},则直线的方向向量s=1n⨯2n=11151-kji={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅ns={-5,2,-5}•},,{CBA=CBA525-+-=0,因为所求平面与平面01284=+--zyx垂直,则}8,4,1{},,{--⋅CBA=CBA84--=0,解方程组{5250,480,A B CA B C-+=--=⇒2,5,2A CB C=-⎧⎪⎨=-⎪⎩所求平面方程为0)4()54(25)0(2=-++---zCyCxC,即012254=+-+zyx.解法2:用平面束(略)7、求既与两平面1:43x zπ-=和2:251x y zπ--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

高等数学B2习(讲稿)例题解答

高等数学B2习(讲稿)例题解答

高等数学(B Ⅱ)复习例题解答第六章: 空间解析几何初步(1)向量平行和垂直的充要条件:例1 求{3,2,1}=a ,{6,4,}k =b ,若//a b ,则k = ;若⊥a b ,则k = 。

【解】//a b 32164k⇔==,故2k =;⊥a b 362410k ⇔⨯+⨯+⨯=,故26k =- 例2 求与{1,2,3}=a 及=+b i j 都垂直的单位向量。

【解】设{,,}x y z =c 与,a b 都垂直,则2300x y z x y ++=⎧⎨+=⎩ 或 33x zy z=⎧⎨=-⎩故与a 及b 都垂直的单位向量为03,1}===-c c c(2)求向量的模、方向余弦及方向角和两向量的夹角的方法:例1已知两点1}M =和2{3,0,2}M =,试求向量12M M 的模、方向余弦及方向角。

【解】由于12{34,01}{1,}M M =--=-,则 12(2M M =-=又因为1212111{1,}{,}222M M M M =-=-故方向余弦为 11cos ,cos cos 222αβγ=-=-= 方向角为 23,cos ,cos 343πππαβγ===例2 已知向量a 与b 的夹角为23π,又3,4==a b ,计算(32)(2)-⋅+a b a b 。

【解】22(32)(2)344-⋅+=-+⋅a b a b a b a b22222344cos(,)3344434cos613π=-+=⨯-⨯+⨯⨯⨯=-a b a b a b 例3 设0++=a b c ,又3,1,2===a b c ,则⋅++=a b bc ca ( ) A. 1 B. 7 C. 1- D.7- 【解】选D. 注意到()()2()++⋅++=⋅+⋅+⋅+⋅++a b c a b c a a b b c c a b bc ca(3)求平面方程的方法:例1 已知平面π与平面204570x y z --+=平行且相距6个单位,求π的方程。

第六章空间向量与空间解析几何简介

第六章空间向量与空间解析几何简介

Q2
y
图 6-14
2. 向量的坐标表示
❖ 定理2 向量 AB在轴 u上的投影,等于向量的模乘以
轴与向量夹角 的余弦,即

Pr ju AB A1B1 | AB | cos
(6-4)
❖ 证 如图6-16所示,过 A 引轴 u与轴 u平行且有相同
的正方向,那么,AB 与u 轴的夹角也等于 ,且
有Pr ju AB Pr ju AB,
个相同的单位长度,这样的三条坐标轴就构成了一个空间直
角坐标系,记为O-xyz.
❖ 空间两点M1M2之间的距离公式
M1M 2 (x2 x1)2 ( y2 y1)2 (z2 z1)2
OM x2 y2 z2
z R M
z
R2
R1
R M1
P
M2
Q
N
O
P
x
图 6-13
Qy
O P1 P2
x
Q1
平面,且 a,b,ab 符合右手规则
食指
(图 6-19),从几何上看|ab|等于 b
以 a、b 为邻边的平行四边形的面
a
拇指
图 6-19
积.
向量积满足以下规律和性质:
(1)b a=-a b; (2)结合律:( a)b=a( b)= (ab); (3)分配律:(a+b) c=a c+b c;
注 向量的减法不适合交换律和结合律.
3. 向量与数的乘法(数乘)
❖ 设 是一个数,a为一向量.向量a与 的乘积a 仍为一向量,我们规定:
❖ 当 0时, a与 a同方向,模|a |= |a |; ❖ 当 0时, a与 a方向相反;|a |=| ||a|; ❖ 当 0时, a是零向量. ❖ 由定义即可得向量的数乘满足以下运算规律: ❖ (1)结合律:(ka) k(a) (k)a

高数课本例题(考试用)

高数课本例题(考试用)

高等数学下册例题第六章 向量代数与空间解析几何6.1 空间直角坐标系例1 在z 轴上求一点M ,使点M 到点A (1,0,2)和到点B (1,-3,1)的距离相等.解 因为所求的点M 在z 轴上,故M 的坐标应为(0,0,z ),根据题意,有解得 z=-3,即点M 的坐标是(0,0,-3).例2 已知一动点M (x,y,z )到两个点A (1,2,3)和B (-1,-3,0)的距离总是相等,求点M 的坐标所满足的方程. 解 由已知条件,有=两端平方后整理,得:2x+5y+3z-2=0,即动点坐标应满足这个三元一次方程.6.2 向量及其线性运算 向量在轴上的投影例1 在∆ABC 中,D,E 是BC 边上的三等分点(见图6.12),设AB =a,AC =b,试用a,b 表示AD ,AE .解:由三角形法则,有BC =b-a,再由数与向量乘积定义,有1111(),(),3333BD BC b a EC BC b a ==-==- ABD AEC ∆∆从及中可得11+(b-a)=(b+2a),3311()(2).33AD AB BD a AE AC CE AC EC b b a b a =+==+=-=--=+例2 用向量的运算来证明:三角形两腰中点的连线平行于底边且其长度为底边的一半.证:见图6.13.设,,AB a AC b ==则1111,,2222,11()22AD AB a AE AC b BC AC AB b a DE AE AD b a BC=====-=-=-=-= 例3:=(4,3,0)=4i+3j,b=(1,-2,2)=i-2j+2k,+|a|.a 设求a 2b 及 解+2=(4i+3j)+2(i-2j+2k)=4i+3j+2i-4j+4k=6i-j+4k.a b42,21,3,0.A AB AB 例:设已知两点(B (),求向量的方向余弦、方向角:及与同向的单位向量解==-1,1||=-1AB AB ((有 cos 12,α=-cos 12,β=cos 2,γ=-B23,,.334πππαβγ=== 与AB 同向的单位向量为0111(,,222||a AB AB ==--125=,cos =,|a|=3, a.33a x y αβ例:设向量与轴、轴的夹角余弦为 cos 且求向量解 cos 2=3γ±,有||cos xa a = 1=3=1=|a|cos =2,=|a|cos = 2.3y z a a αβγ⨯±, 所求的向量有两个,分别是+2+2i+2-2.i j k j k 及6(21,7),4-47.B x y z A -例:一向量的终点在,它在轴、轴和轴上的坐标依次为,和,求该向量起点的坐标解,,,=2-x,-1-,7-)=4-472-x,--,-=(,-,), x=-2,y=3,z=0,-2,3,0.A AB y z AB 设点的坐标为(x y z )则(,又由已知条件知(.,),所以有(1y 7z )447因此得即所求点的坐标为()6.3 向量乘积2221|a|=1,|b|=2,|c|=4,a,b,c ++,||.3a s=a (a+b+c)=a a+a b+a c =|a|+|a||b|cos (a,b)+|a||c|cos (a,c) =1+12cos+14cos=4.33|s|==(++)(s a b c a s s s s a b c a πππ∧∧=⋅⋅⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯⋅⋅例:设两两夹角均为,求及解 222++) =+++2(++)=1+2+4+2(12cos +14cos+24cos)333=35 |s|=35.b c a a b b c c a b a c b c πππ⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯⨯⨯即2222222.ABC A=622|BC|=a,|CA|=b,|AB|=c,=2cos . 6.9=,=,=,=-,|c|==(-)(a-b)=|a|+|b|-2a b ab CB a CA b Ab c c a b c c a b θθ∠+-⋅⋅例:利用向量的数量积来证明三角形的余弦定理证明 在三角形中,设(见图.),要证c ()设则有 从而 |a||b|cos (,).|a|=,|b|=,|c|=,(,)=,69a b a b c a b θ∧∧⋅由即可得到公式(.).例3:证明向量)()(c a a c b ⋅-⋅与向量c 垂直.证 根据向量垂直的条件,只要两个向量的数量积为零,就说明这两个向量是垂直的.注意到b c ⋅与c a ⋅都是数量,由数积的运算律,有[)()(c a a c b ⋅-⋅]c ⋅=0))(())(b =⋅⋅-⋅⋅c b c a c a c (从而证明了这两个向量是相互垂直的.例4:一质点在力F=4i+2j+2k 的作用下,从点A (2,1,0)移动到点B (5,-2,6),求F 所做的功,及F 与AB 间的夹角.解 由数量积的定义知,F 所做的功是W=F s ⋅,其中s=AB =3i-3j+6k是路程向量,故W=F s ⋅=(4i+2j+2k )(⋅3j-3j+6k)=18 如果力的单位是牛顿(N ),位移的单位是米(m ),则F做的功是18焦耳(J). 再由向量间夹角的余弦公式,有cos θ=|s | |F | s F ⋅=2222226)3(322418+-+++=21, a bcCAB图6.22因此,F 与s 的夹角为θ=3π. 例5:求向量a=(5,-2,5)在b=(2,1,2)上的投影. 解 由公式 a b ⋅=a b Prj |b | ,有.641410210||Prj |b |b =+++-=⋅=b b a a 例6:设|a|=2,|b|=3,6),(πθ==∧b a ,且u=a+2b,v=3a+b,求以u,v 为邻边的平行四边形的面积.解 以u,v 为邻边的平行四边形的面积,就是向量υμ⨯的模.由向量积的运算律,有 υμ⨯=(a+2b)⨯(3a+b)=b b a b b a a a ⨯+⨯+⨯+⨯2323=060+⨯+⨯+a b b a =b a b a b a ⨯-=⨯-⨯56再根据 ∧=b)a sin||||||,(b a c ,得到 156sin325sin ||||5||5|5|||=⨯⨯⨯==⨯=⨯-=⨯πθb a b a b a v u ,即所求的平行四边形的面积是15.例7:设a=(1,2,-2),b=(-2,1,0).求b a ⨯及与a,b 都垂直的单位向量.解 b a ⨯=k j i k j i kj i 54212-2102210122012221++=+----=--. 由向量积的定义可知,若c=a b ⨯,则同时有b c a c ⊥⊥及(-c 也是如此),因此所求的单位向量为).542(155)542(5421||1222k j i k j i c c ++±=++++±=±例8:求以A(1,2,-1),B(-2,3,1),C(1,1,2)为顶点的三角形的面积.解 )3,1,0(,2,1,3-AB -==AC )(,所要求的三角形面积S 是以AC 、AB 为邻边的平行四边形面积的一半,因此)3,9,5(310213AC AB =--=⨯kj i,.115219812521||21=++=⨯=AC AB S例9:设a=(-2,3,1),b=(0,-1,1),c=(1,-1,4),问这三个向量是否共面? 解 所谓三个向量共面,是指三个向量在一个平面上,或者经过平行移动后可以置于一个平面上,因为b a r ⨯=与a,b 所确定的平面垂直,所以当a,b,,c 三个向量共面时,应该有0,=⋅⊥c r c r 即.计算如下:).2,2,4(110132=--=⨯=kj i b a r所以有.010824)4()224(≠=+-=+-⋅++=⋅k j i k j i c r因此所讨论的三个向量不共面.例10:设向量a,b,c 满足条件0a =⨯+⨯+⨯a c c b b ,试证a,b,c 共面. 证 等式两边都与c 做数量积,得c c a c c b b a ⋅=⋅⨯+⨯+⨯0)(,即 0)()()(=⋅⨯+⋅⨯+⋅⨯c a c c c b c b a ,因为)(c b ⨯与c 垂直,故0)(=⋅⨯c c b ,同样有0)(=⋅⨯c a c ,从而得到0)(=⋅⨯c b a ,即[a b c]=0,这就证明了三向量a,b,c 是共面的.6.4 平面及其方程 例1:求此平面方程平面的法向量为设一平面过点),3,2,1(),2,0,1(0=-n M解:根据平面的点法式方程,有(x-1)+2(y-0)+3(z+2)=0, 整理得,x+2y+3z+5=0.例2:123(1,0-1),(2,1,2),(-1,1-4).M M M 求过三点,,的平面方程 121312131(1,1,3),(2,13),(63,3)(6,3,3),-6x-1)3(0)3(1)0230.M M M M n M M M M n M y z x y z ==--⨯=--=----++=+--=解:,平行于,,取在三点中任取一点,这里取点,由平面的点法式方程,得方程为(整理得例3:.y )22,3()1,51(21轴,求其方程,且平行于,及,过两个点一平面--∏M M 解 因为的形式为轴平行,故其一般方程与由于所求的平面,0z y =++∏D C Ax 点12M M ∏∏和都在上,其坐标应当满足的方程,将这两个点的坐标代入到 这个方程中得到A+C+D=0, 3A-2C+D=0,将A 和C 看成未知数,解这个方程组,得A=.52,53D C D -=-将这个结果代入到平面方程中,得的方程为后整理得消去∏=+-D D D Dx ,0z 5253-3x+2z-5=0.例4:求两平面x-4y+z-2=0与2x-2y-z-5=0的夹角.解 ,3||,18||,9),1,2,2(),1,4,1(n 212121===⋅--=-=n n n n n.4,221839||||||cos 2121πϕϕ===⋅=即n n n n 例5:求.0622)3,2,1(0的距离到平面点=--+-z y x P 解 .3)2(21|63222)1(1|222=-++-⨯-⨯+-⨯=d6.5 空间直线及其方程例1:.),0,13()20,1(21求其方程,及,过点一直线--M M L 解1212,(31,10,02)(2,1,2),M M s s M M ==---+=-因直线过这两个点,故可取直线的方向向量为利用点)得所求直线方程为由式(与19.6,1s M.22121x +=-=-z y 例2:求过点(2,1,4)且垂直于平面y-3z+2=0的直线方程.解 所求直线L 平行于已知平面的法向量,即可以取直线的方向向量为 S=(0,1,-3),从而所求的直线方程可以写为.341102x --=-=-z y 此时2-x 并不表示除式,上述方程应理解为 ⎪⎩⎪⎨⎧=--=-.23411x z y例3:把直线L 的一般方程⎩⎨⎧=+-+=-+-,0422052z y x z y x化为直线的标准式方程和参数方程.解 取 x=0,得⎩⎨⎧=+-=-+,04205y 2-z y z 解得 y=-2,z=1,即得直线上的一个点为(0,-2,1)取s=.5432-1212-1kj i k j i ++=故L 的标准方程为,51423-=+=z y x 参数方程为⎪⎩⎪⎨⎧+=+-==.51423t z t y tx例4:求直线.06231221的交点与平面=++-=-+=-z y x zy x 解 将直线用参数方程来表示,有x=1+2t,y=-2-t,z=3t,将其代入到平面方程中,有(1+2t )-(-2-t)+6t+6=0,即9t+9=0,得t=-1,所以得到x=-1,y=-1,z=-3, 即交点为(-1,-1,-3).例5:求点的距离到直线332217x )1,1,1(0-=-=-z y P .解 过0P 作一垂直于已知直线的平面,该平面为(x-1)+2(y-1)+3(x-1)=0,即x+2y+3z-6=0,再求直线L 与平面的交点.用上例的方法求得交点为P(6,0,0),由两点间的距离公式,得0P ,P 两点间的距离为d=1125++=33. 即所求的点线距离是33.例6:求两直线间的夹角与11232x 134-11+=-=-+==-z y z y x 解 s 1=(1,-4,1),s 2=(-2,2,1)由式(6.22)有 ,22918|9|||||||cos 2121=-=⋅=s s s s θ得θ=4,4ππ即两直线间的夹角为.例7:判断是否在同一平面内?和两直线42311:21111:21-=+=-==+z y x L z y x L 若在同一平面内,求两直线的交点,若不在同一平面内,求两直线间的距离及公垂线方程(见图6.40).解 在直线L 1上任取一点,如取M 1(-1,0,1),在直线L 2上任取一点,如取M 2(0,-1,2),得向量1212(1,1,1),(1,1,2),(1,3,4)M M s s =-==两条直线的方向向量分别是,,22243121121k j i kj i s s +--==⨯得 1212()20,s s M M ⨯⋅=≠故这三个向量不共面,因此这两条直线不在一个平面上.求公垂线L ,设L 与L 21,L 的交点分别是点A,B ,因为的方向故L L L L L ,,21⊥⊥L 2向量s 上,故和分别在,由于点取2121,)1,1,1(),1,1,1(2)//(s L L B A s s s -=--=⨯ 可设两个点的坐标为A(-1+t 1,1t ,1+21t ),B(22242,31,t t ++-),有 212121(1,31,421),AB t t t t t t =-+---+ 由于//s,AB 故有112411311t 121212-+-=--=+-t t t t t . 从上式可得到一个二元一次方程组⎩⎨⎧+--=+---=+-),124(113112121212t t t t t t t t 即⎩⎨⎧-=-=23522122t t t解此方程组,得t 两点的直线过于是得到B A B A t ,).6,2,1(),317,37,34(.1,3721==为公垂线,故公垂线方程为,161211-x ,316212311--=-=--=-=-z y z y x 即 还可以得到L 123||3L d AB ==与间的距离为例8:求平面2x+y+z+3=0与直线⎩⎨⎧=+-=-+.,05205x 间的夹角z x y解 平面的法向量为n=(2,1,1),用向量积求得直线的方向向量为s=(-1,1,-2), Sin ,216|3||s ||n ||s n |=-=⋅=ϕ 即所求直线与平面的夹角为.6πϕ=例9:求直线⎩⎨⎧=++=++=-+.,上上的投影直线上的z y 在平面x z x-y z-y x 00101解 过已知直线的平面束为,0)1(1x =++-+--+z y x z y λ)( 即 (,0)1()1()1()1=+-++-+-++λλλλz y x该平面与x+y+z=0垂直的条件是(1+,01)1(1)1(1)=⋅+-+⋅-+⋅λλλ 由此得λ=-1,得平面方程为y-z-1=0. 所求的投影直线为⎩⎨⎧=++=--001y z y x z .6.6 曲面及其方程例1:求半径为R ,球心在点M 0,(000,,z y x )的球面方程.解 设M (x,y,z )是球面上的任一点,则点M 到点M 0的距离总是为常数R ,由两点的距离公式,有R = 则球面方程为.2222000x x y y z z R -+-+-=()()()例2:一曲面上的点到z 轴的距离为常数R ,求曲面方程.解 设M(x,y,z)是曲面上任一点,则点M 到点M 0(0,0,z)的距离就是点M 到z 轴的距离,有已知条件,有,00222R z z y x =-+-+-)()()(即 x 222R y =+.例3:方程?026222表示怎样的曲面=-+++y x z y x 解 将方程变形为,10)1()3(222=+-++z y x这是一个球心在(-3,1,0),半径为10的球面方程.例4:将yOz 平面上的椭圆12222=+cz b y分别绕y 轴和z 轴旋转一周,求所得到的旋转曲面方程.解 绕z 轴旋转时,旋转曲线方程为,cz b )y x (1222222=++± 即为 .122222=++cz b y x 绕y 轴旋转时,旋转曲面方程为.122222=++c z x b y例5:求xOy 面上的曲面y=x 2绕y 轴旋转所得到的旋转曲面方程. 解 用22x y +±代替曲面方程中的x 即可得旋转面方程,所以 ,)(222z x y +±= 即为 y =x 22z +,例6:直线L 绕另一个与L 相交的直线旋转一周,所得的旋转曲面称为圆锥面.两直线的交点称为圆锥面的顶点,两直线的夹角α(20πα<<)称为圆锥面的半顶角.试求顶点在坐标原点,半顶角为α的圆锥面方程. 解 设yOz 面上过原点的直线L 的方程为 αcot z y =, 当L 绕z 轴旋转时,旋转曲面方程为 z=αcot x 22y +±, 两端平方后,得 ),(2222y x k z += 其中k=cot 4.παα=当时,圆锥面方程为222z y x +=. 6.7空间曲线及方程例1 方程组⎩⎨⎧==++325222z z y x 表示怎样的曲线?解 方程组中的第一个方程表示球心在圆点,半径为5的球面,第二个方程表示平行于x O y 面的平面,方程组则表示球面与平面的交线,该交线是以点(0,0,3)为圆心,半径为4,在平面z=3上的圆。

解析几何答案

解析几何答案

《解析几何》习题与解答§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆;(3)直线;(4)相距为2的两点。

2. 设点O是正六边形ABCDEF的中心,在矢量、、、、、、、、、、和中,哪些矢量是相等的?[解]:在正六边形ABCDEF中,相等的矢量对是:3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-1,连结AC, 则在∆BAC中,KL AC.与方向相同;在∆DAC中,NM AC. 与方向相同,从而KL=NM且与方向相同,所以=.4. 如图1-2,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、;(2) 、;(3) 、;(4) 、;(5) 、.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量应满足什么条件?(1)(2)(3)(4)(5)[解]:(1)所在的直线垂直时有;(2)同向时有(3)且反向时有(4)反向时有(5)同向,且时有§1.3 数量乘矢量1试解下列各题.⑴化简.⑵已知,,求,和.⑶从矢量方程组,解出矢量,.解⑴⑵,,.2已知四边形中,,,对角线、的中点分别为、,求.解.3设,,,证明:、、三点共线.证明∵∴与共线,又∵为公共点,从而、、三点共线.4在四边形中,,,,证明为梯形.证明∵∴∥,∴为梯形.5. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量, ,可以构成一个三角形.[证明]:从而三中线矢量构成一个三角形。

高数空间解析几何学空间直角坐标系

高数空间解析几何学空间直角坐标系

2 cos , 2 1 cos . 2
20
2 , . 设P2 的坐标为( x , y , z ) , 3 3 x 1 x 1 1 cos x 2, P1 P2 2 2
y0 y0 2 cos y 2, P1 P2 2 2 z3 z3 1 z 4, z 2, cos 2 P1 P2 2
2 2
空间两点间距离公式
特殊地:若两点分别为 M ( x , y , z ) , O (0,0,0)
d OM x 2 y 2 z 2 .
5
第二节
向量及其运算
M2
一、向量的概念
向量:既有大小又有方向的量.
M1 向量表示:a 或 M1 M 2 以 M 1 为起点,M 2 为终点的有向线段. 向量的模: 向量的大小.| a | 或 | M1 M 2 |
2 2 2
2
2
2
,
,
a x a y a z 0 时, cos
cos
方向余弦的特征
az a x a y az
2 2 2
.
cos cos cos 1
2 2 2
特殊地:单位向量的方向余弦为
a 0 a {cos , cos , cos }. |a |
a
2a
1 a 2
向量的数乘符合下列运算规律:
(1)结合律: ( a ) ( a ) (2)分配律: ( )a a a (a b ) a b
9
(1)结合律: ( a ) ( a ) ( )a (2)分配律: ( )a a a (a b ) a b

高等函数与解析几何第六章习题

高等函数与解析几何第六章习题

习题6.1习题6.1.1 检验下述集合关于所规定的运算是否构成实数域上的线性空间?(1)次数等于n )1(≥n 的全体实系数多项式所组成的集合关于多项式的加法及实数与多项式的数量乘法;(2)设A 是一个n 级方阵,A 的实系数多项式)(A f 的全体所组成的集合,关于矩阵的加法及数量乘法;(3)全体实对称(反对称,上三角)矩阵,关于矩阵的加法及数量乘法;(4)平面上不平行于已知向量α的所有向量所组成的集合,关于向量的加法及实数与向量的数量乘法;(5)},|),{(R b a b a V ∈=,定义加法及数量乘法为),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(2a k k kb ka b a k -+= ; (6)所有平面向量所组成的集合,关于通常的向量加法及如下定义的数量乘法 0=α k ;(7)所有平面向量所组成的集合,关于通常的向量加法及如下定义的数量乘法 αα= k ;(8)全体正实数所组成的集合,定义加法及数量乘法为ab b a =⊕,k a a k = 。

解 (1)不能构成实数域上的线性空间。

因为两个n 次多项式的和未必是n 次多项式,即集合对加法不封闭。

(2)能构成实数域上的线性空间。

设A 的实系数多项式)(A f 的全体构成的集合为V ,即{()|()[]}V f A f x R x =∈。

对(),()f A g A V ∀∈,有(),()[]f x g x R x ∈,由于()()()[]f x g x h x R x +=∈,所以()()()f A g A h A V +=∈。

对,()k R f A V ∀∈∀∈,有()[]f x R x ∈,由于()[]kf x R x ∈,所以()kf A V ∈。

即V 对矩阵的加法和数量乘法封闭,而且容易验证定义中八条算律均成立。

(3)能构成实数域上的线性空间。

下面对实对称矩阵情形加以说明,其余类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 要求与练习
一、学习要求
1、理解空间直角坐标系,理解向量的概念及其表示.
2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法.
3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
7、了解空间曲线在坐标平面上的投影,会求其方程.
二、练习
1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量.
解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的
分向量2k ;(2)AB =
;(3)AB
; (4)AB 382)
i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -.
解:()2
220||||||2||||cos60a b a b a b a b +=
+=++=
(
)
2
220||||||2||||cos60a b a b
a b a b -=
-=+-=7.
3、已知向量{2,2,1}a =,{8,4,1}b =-,求
(1)平行于向量a 的单位向量; (2)向量b 的方向余弦.
解(1)2223a =
+=平行于向量a 的单位向量221
{,,}333±;
(2)2849b =+=,向量b 的方向余弦为:841,,999
-.
4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标.
解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求
(1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;
(3)以a 、b 为边的平行四边形的面积以及夹角余弦. 解(1)()6,1,10,137c a b c =⨯=--=,0
6,1,10)
c ±
--; (2)()
cos ,17
a b a b a b
⋅=
=
⋅; (3)()sin ,137S a b a b a b =⨯=⋅=()
4
cos ,1751
a b =
; 6、设0a b c ++=,||3a =,||2b =,||4c =,求a b b c c a ++. 解:(
)
2
22220a b c
a b c a b b c c a ++=+++++=,所以a b b c c a ++=29/2-;
7、求参数k ,使得平面29x ky z +-=分别适合下列条件: (1)经过点(5,4,6)--; (2)与平面2433x y z ++=垂直; (3)与平面230x y z -+=成
4
π
的角; (4)与原点相距3个单位;
解:7、(1)2; (2)1; (3)2
±
; (4)2±; 8、已知平面平行于y 轴,且过点(1,5,1)P -和(3,2,1)Q -,求平面的方程.
解:设平面方程为:0Ax By D ++=,将(1,5,1)P -和(3,2,1)Q -代入求得
1,1, 2.A B D ===-该平面方程为:20x z +-=.
9、已知平面过(0,0,0)O 、(1,0,1)A 、(2,1,0)B 三点,求该平面方程.
解:设平面方程为:0Ax By Cz ++=,将(1,0,1)A 、(2,1,0)B 代入平面方程得,
1,2,1,A B C ==-=-,该平面方程为20x y z --=.
10、求过点(1,2,1)M ,且垂直于已知两平面0x y +=与510y z +-=的平面方程. 解:两平面的法向量为:()()121,1,0,0,5,1n n ==,所示平面的法向量为:
()()()121,1,00,5,11,1,5n n n =⨯=⨯=-,则所示的平面方程为:540x y z -+-=.
11、把直线1
24
x y z x y z -+=⎧⎨
++=⎩化为对称式方程及参数方程.
解:两平面的法向量为:()()121,1,1,2,1,1n n =-=,则直线的方向向量为:
()()()121,1,12,1,12,1,3s n n =⨯=-⨯=-,取直线上一点为:(1,1,1),则直线对称式方
程为:111,213x y z t ---===-参数方程为:12113x t
y t z t
=-⎧⎪=+⎨⎪=+⎩
.
解二:若取点为:(0,-3/2,5/2) ,则直线对称式方程为:3/25/2
213
x y z --==
- , 参数方程为:2,3/2,35/2x t y t z t =-=+=+.
12、求过点(0,2,4)且与平面21x z +=及32y z -=都平行的直线方程.
解:两平面的法向量为:()()121,2,2,0,1,3n n ==-,则直线的方向向量为:
()()()111,2,20,1,32,3,1s n n =⨯=⨯-=-,则直线方程为:
24231
x y z t --===-,或2234x t
y t z t =-⎧⎪
=+⎨⎪=+⎩
13、一直线过点(2,3,4)A -且和y 轴垂直相交,求其方程.
解:过点(2,3,4)A -的直线与y 轴垂直相交的交点为(0,-3,0),直线的方向向量为:
(2,0,4),所以直线方程为:231204x y z -++==
,即30
2124
y x z +=⎧⎪
⎨-+=⎪⎩. 14.将xoz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程。

解:由坐标面上的曲线绕一坐标轴旋转时生成的曲面方程的规律,所得的旋转曲面的方程为()x z y 52
2
2=+±,即x z y
522
=+。

15.画出下列各方程所表示的曲面:
(1)2
2
222⎪⎭
⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x ;(2)14922=+z x ;(3)22x z -=。

16.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形?
17.说明下列旋转曲面是怎样形成的?
(1)14
222
=+-z y x ;(2)()222
y x a z +=-。

解:(1)由xoy 坐标面上的双曲线14
2
2
=-y x ,绕y 轴旋转一周或是yoz 坐标面上的双曲线14
22
=+-z y ,绕y 轴旋转一周得到。

(2)是yoz 坐标面上关于z 轴对称的一对相交直线()22
y a z =-,即a y z +=和
a y z +-=中之一条绕z 轴旋转一周;
或是xoz 坐标上关于z 轴对称的一对相交直线()22
x a z =-,即a x z +=和a x z +-=中之一条,绕z 轴旋转一周。

18.指出下列方程组在平面解析几何与空间解析几何中分别表示什么图形?
(1)⎩⎨⎧-=+=3215x y x y ;(2).3
19
42
2⎪⎩
⎪⎨⎧==+y y x 解:(1)在平面解析几何中表示两直线的交点;在空间解析几何中表示两平面的交线;
(2)在平面解析几何中表示椭圆与其一切线的交点;在空间解析几何中表示
椭圆柱面19
42
2=+y x 与其切平面3=y 的交线。

19.分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0
16
22
222
22y z x z y x 的柱面方程。

解:10.从方程组中消去x 得:162322=-z y ,此方程即母线平行于x 轴且通过已知曲线的柱面方程;
20.从方程组中消去y 得:162322=+z x ,此方程即母线平行于y 轴且通过此曲线的柱面方程。

20.求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。

解:由1=+z x ,得x z -=1,代入9222=++z y x ,消去z 得
()912
22=-++x y x ,即82222=+-y x x ,这就是通过球面9222=++z y x 与平
面1=+z x 的交线,并且母线平行于z 轴的柱面方程,将它与0=z 联系,得:
⎩⎨
⎧==+-0
8
2222z y x x ,即为所求的投影方程。

相关文档
最新文档