罗庄区三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
罗庄区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设命题p :,则
p 为( )
A .
B .
C .
D .
2. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
3. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )
A .3
B .
C .
D .
4. 为了得到函数y=sin3x 的图象,可以将函数y=
sin (3x+
)的图象( )
A .向右平移
个单位 B .向右平移
个单位
C .向左平移个单位
D .向左平移个单位
5. 下列推断错误的是( )
A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”
B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0
C .若p 且q 为假命题,则p ,q 均为假命题
D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件
6. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1
B .﹣1
C .2
D .﹣2
7. 若⎩⎨⎧≥<+=-)2(,2)
2(),2()(x x x f x f x 则)1(f 的值为( )
A .8
B .8
1 C .
2 D .21
8. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力. 9. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .
B .
C .
D .
10.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
11.若实数x ,y 满足,则(x ﹣3)2+y 2
的最小值是( )
A .
B .8
C .20
D .2
12.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1
B .2
C .3
D .4
二、填空题
13.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .
14.当0,1x ∈()时,函数()e 1x
f x =-的图象不在函数2
()g x x ax =-的下方,则实数a 的取值范围是
___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
15.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .
16.在△ABC 中,已知
=2,b=2a ,那么cosB 的值是 .
17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.
18.函数f(x)=log(x2﹣2x﹣3)的单调递增区间为.
三、解答题
19.平面直角坐标系xOy中,圆C1的参数方程为(φ为参数),以坐标原点为极点,x轴正半
轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.
(1)写出圆C1的普通方程及圆C2的直角坐标方程;
(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.
20.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
:不等式选讲
21.本小题满分10分选修45
已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;
Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.
22.某小组共有A 、B 、C 、D 、E 五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下
(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
23.已知函数f (x )=﹣x 2+ax ﹣lnx (a ∈R ).
(I )当a=3时,求函数f (x )在[,2]上的最大值和最小值; (Ⅱ)函数f (x )既有极大值又有极小值,求实数a 的取值范围.
24.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直
线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.
罗庄区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】【知识点】全称量词与存在性量词
【试题解析】因为特称命题的否定是全称命题,p为:。
故答案为:A
2.【答案】B
【解析】解:由a2≠1,解得a≠±1.
∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.
∴“a≠1”是“a2≠1”的必要不充分条件.
故选:B.
【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
3.【答案】B
【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,
则F(,0),
依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,
则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|==.
即有当M,P,F三点共线时,取得最小值,为.
故选:B.
【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.
4.【答案】A
【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,
即可得到y=sin[3(x+﹣)]=sin3x的图象,
故选:A.
【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.
5.【答案】C
【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;
对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;
对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;
对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.
综上所述,错误的选项为:C,
故选:C.
【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.
6.【答案】B
【解析】解:由z=y﹣x得y=x+z,
作出不等式组对应的平面区域如图:
平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最小,
此时最小值为﹣2,即y﹣x=﹣2,则x﹣y﹣2=0,
当y=0时,x=2,即A(2,0),
同时A也在直线kx﹣y+2=0上,代入解得k=﹣1,
故选:B
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.
7.【答案】B
【解析】
试题分析:()()3
1
1328
f f -===
,故选B 。
考点:分段函数。
8. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
9. 【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
故答案为:B 10.【答案】 D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=
,
故选:D .
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,
属于基础题.
11.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P (3,0)到平面区域的最短距离d min =
,
∴(x ﹣3)2+y 2
的最小值是:
.
故选:A .
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
12.【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2
﹣y=0,x ∈R ,y ∈R}═{(x ,y )
|} 将x 2﹣y=0代入x 2+y 2
=1, 得y 2
+y ﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个, 故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题
二、填空题
13.【答案】3
2
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义 14.【答案】[2e,)-+∞
【解析】由题意,知当0,1x ∈()时,不等式2
e 1x
x ax -≥-,即21e x x a x +-≥恒成立.令()21e x
x h x x
+-=,
()()()2
11e 'x x x h x x
-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,x
k x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()
2
11e '0x x x h x x
-+-=
>,∴()h x 在()0,1x ∈为递增,∴
()()12e h x h <=-,则2e a ≥-.
15.【答案】0 【解析】
【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.
【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, ∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点, ∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),
=(﹣1,0,﹣1),
=(1,﹣1,﹣1),
=﹣1+0+1=0,
∴A1E⊥GF,
∴异面直线A1E与GF所成的角的余弦值为0.
故答案为:0.
16.【答案】.
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.17.【答案】0.9
【解析】解:由题意,=0.9,
故答案为:0.9
18.【答案】(﹣∞,﹣1).
【解析】解:函数的定义域为{x|x>3或x<﹣1}
令t=x 2
﹣2x ﹣3,则y=
因为y=在(0,+∞)单调递减
t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增 由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1) 故答案为:(﹣∞,﹣1)
三、解答题
19.【答案】
【解析】解:(1)由圆C 1的参数方程为(φ为参数),可得普通方程:(x ﹣2)2+y 2
=4,即
x 2﹣4x+y 2=0.
由圆C 2的极坐标方程为ρ=4sin θ,化为ρ2=4ρsin θ,∴直角坐标方程为x 2+y 2
=4y .
(2)联立,解得,或.
∴圆C 1与圆C 2相交,交点(0,0),(2,2).
公共弦长=
.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角方程、两圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.
20.【答案】
【解析】解:(1)…
=
…
定义域是(0,7]…
(2)∵,…
当且仅当
即x=6时取=…
∴y ≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
21.【答案】
【解析】Ⅰ当7m =时,函数)(x f 的定义域即为不等式1270x x ++-->的解集.[来 由于
1(1)(2)70x x x ≤-⎧⎨-+--->⎩,或12
(1)(2)70
x x x -<<⎧⎨
+--->⎩, 或2(1)(2)70x x x ≥⎧⎨++-->⎩
. 所以3x <-,无解,或4x >.
综上,函数)(x f 的定义域为(,3)
(4,)-∞-+∞
Ⅱ若使2)(≥x f 的解集是R ,则只需min (124)m x x ≤++--恒成立. 由于124(1)(2)41x x x x ++--≥+---=-
所以m 的取值范围是(,1]-∞-.
22.【答案】
【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有: (A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6个. 由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.
选到的2人身高都在1.78以下的事件有:(A ,B ),(A ,C ),(B ,C )共3个.
因此选到的2人身高都在1.78以下的概率为p=
;
(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:
(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10个.
由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有: (C ,D )(C ,E ),(D ,E )共3个.
因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=
.
【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题.
23.【答案】
【解析】解:(Ⅰ)a=3时,f ′(x )=﹣2x+3﹣=﹣
=﹣
,
函数f (x )在区间(,2)仅有极大值点x=1,故这个极大值点也是最大值点,
故函数在[,2]最大值是f (1)=2,
又f (2)﹣f ()=(2﹣ln2)﹣(+ln2)=﹣2ln2<0,故f (2)<f (),
故函数在[,2]上的最小值为f(2)=2﹣ln2.
(Ⅱ)若f(x)既有极大值又有极小值,则必须f′(x)=0有两个不同正根x1,x2,即2x2﹣ax+1=0有两个不同正根.
故a应满足⇒⇒,
∴函数f(x)既有极大值又有极小值,实数a的取值范围是.
24.【答案】
【解析】解:(Ⅰ)∵,∴a=c,
∴b2=c2
∴椭圆方程为+=1
又点A(1,)在椭圆上,
∴=1,
∴c2=2
∴a=2,b=,
∴椭圆方程为=1 …
(Ⅱ)设直线BD方程为y=x+b,D(x
,y1),B(x2,y2),
1
与椭圆方程联立,可得4x2
+2bx+b2﹣4=0
△=﹣8b2+64>0,∴﹣2<b<2
x1+x2=﹣b,x1x2=
∴|BD|==,
设d为点A到直线y=x+b的距离,∴d=
∴△ABD面积S=≤=
当且仅当b=±2时,△ABD的面积最大,最大值为…
(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k
==2﹣,k2==﹣2
1
此时k1+k2=0,猜想λ=1时成立.
证明如下:k
1+k 2=
+=2+m
=2﹣2=0
当λ=1,k 1+k 2=0,故当且仅当λ=1时满足条件…
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应
用,考查分析问题解决问题的能力.。