吉水县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉水县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设i
是虚数单位,是复数z 的共轭复数,若
z
=2
(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
2. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β
C .α与β相交,且交线垂直于l
D .α与β相交,且交线平行于l
3. 如果执行如图所示的程序框图,那么输出的a=( )
A .2 B
. C .﹣1 D .以上都不正确
4. 已知a=21.2,b=
(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a 5. 设函数
y=的定义域为M ,集合N={y|y=x 2
,x ∈R},则M ∩N=( )
A .∅
B .N
C .[1,+∞)
D .M
6. 有以下四个命题: ①

=,则x=y . ②若lgx 有意义,则x >0. ③若x=y
,则
=

④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②
B .①③
C .②③
D .③④
7. 若集合A={x|1<x <3},B={x|x >2},则A ∩B=( ) A .{x|2<x <3} B .{x|1<x <3} C .{x|1<x <2} D .{x|x >1}
8. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .
3
B .
2
C .
3
D .
4
9. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
( )
A .2013
B .2014
C .
2015 D .20161111]
10.已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )
①∀n ∈N *,f n (x )≤
恒成立
②若f n (x )为常数函数,则n=2
③f 4(x )在[0,]上单调递减,在[,
]上单调递增.
A .0
B .1
C .2
D .3
11.已知椭圆Γ:22
221(0)x y a b a b
+=>>的焦距为2c ,左焦点为F ,若直线y x c =+与椭圆交于,A B 两
点,且3AF FB =,则该椭圆的离心率是( )
A .
14
B .
12
C D
12.在△ABC 中,b=,c=3,B=30°,则a=( )
A .
B .2
C .
或2
D .2
二、填空题
13.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}
(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:
①若(1,4)(,)λμ-∈Ω,则1λμ==;
②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)
(,2)(1,5)μλΩΩ=;
⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .
14.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 15.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .
16.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
17.设集合 {}{}
22
|27150,|0A x x x B x x ax b =+-<=++≤,满足
A
B =∅,{}|52A B x x =-<≤,求实数a =__________.
18.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
三、解答题
19.(本小题满分12分)
从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:
上一年的出险次数 0 1 2 3 4 5次以上(含5次) 下一年保费倍率
85% 100% 125% 150% 175% 200%
连续两年没有出险打7折,连续三年没有出险打6折
经验表明新车商业车险保费与购车价格有较强的线性相关关系,下面是随机采集的8组数据(,)x y (其中x (万元)表示购车价格,y (元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、
(31,4560)、(37,5500)、(45,6500),设由这8组数据得到的回归直线方程为:1055y bx =+.
(1)求b ;
(2)广东李先生2016年1月购买一辆价值20万元的新车, (i )估计李先生购车时的商业车险保费;
(ii )若该车今年2月已出过一次险,现在又被刮花了,李先生到4S 店询价,预计修车费用为800元,保险专员建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)
20.设A=2
{x|2x
+ax+2=0},2A ∈,集合2{x |x 1}B ==
(1)求a 的值,并写出集合A 的所有子集;
(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。

21. 坐标系与参数方程
线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.
22.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
55
95%的把握认为“歌迷”与性别有关?
“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌
3.841 6.635
附:K2=.
23.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.
时,求cos B;
(1)当k=5
4
(2)若△ABC面积为3,B=60°,求k的值.
24.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=,其中n=a+b+c+d)
吉水县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,
由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],
整理得a2+b2=2a+2(b﹣1)i.
则,解得.
所以z=1+i.
故选B.
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
2.【答案】D
【解析】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,
又n⊥平面β,l⊥n,l⊄β,所以l∥β.
由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,
与m,n异面矛盾.
故α与β相交,且交线平行于l.
故选D.
【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.
3.【答案】B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9

由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
4.【答案】A
【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,
又c=2log52=log54<1,
∴c<b<a.
故选:A.
5.【答案】B
【解析】解:根据题意得:x+1≥0,解得x≥﹣1,
∴函数的定义域M={x|x≥﹣1};
∵集合N中的函数y=x2≥0,
∴集合N={y|y≥0},
则M∩N={y|y≥0}=N.
故选B
6.【答案】A
【解析】解:①若=,则,则x=y,即①对;
②若lgx有意义,则x>0,即②对;
③若x=y>0,则=,若x=y<0,则不成立,即③错;
④若x>y>0,则x2>y2,即④错.
故真命题的序号为①②
故选:A.
7.【答案】A
【解析】解:∵A={x|1<x<3},B={x|x>2},
∴A∩B={x|2<x<3},
故选:A.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
8.【答案】A
【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,
∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值
∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,
∴两直线的距离为=,
∴AB 的中点M 到原点的距离的最小值为+=3,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
9. 【答案】D 【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤
⎛⎫⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=
++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
()1
2201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()3115
33212
f x x x x =-+-的对称中心后再利用对称性和的.
第Ⅱ卷(非选择题共90分)
10.【答案】 D
【解析】解:①∵x ∈[0,
],∴f
n (x )=sin n x+cos n x ≤sinx+cosx=

,因此正确;
②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,
当n ≠2时,令sin 2
x=t ∈[0,1],则f n (x )=
+=g (t ),g ′(t )=﹣
=
,当t ∈
时,g ′(t )<0,函数g (t )单调递减;
当t ∈
时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.
③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1

=
=
+,当x∈[0
,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈
[
,],4x∈[π,2π],因此f4(x)在
[
,]
上单调递增,因此正确.
综上可得:①②③都正确.
故选:D.
【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.
11.【答案】C
【解析】
22
22
1
x y
a b
y x c

+=


⎪=+

,得22222222
()20
a b y b cy b c a b
+-+-=,
∴22224
()20
a b y b cy b
+--=,设
1122
(,),(,)
A x y
B x y,

24
1212
2222
2
,
b c b
y y y y
a b a b
-
+==
++

∵3
AF FB
=,∴
12
3
y y
=-,

24
2
22
2222
2
2,3
b c b
y y
a b a b
-==
++
,∴222
3
a b c
+=,
∴22
2
a c
=,∴
2
2
1
2
c
a
=
,∴
2
e=
12.【答案】C
【解析】解:∵
b=,c=3,B=30°,
∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣
3,整理可得:a2﹣
3a+6=0,
∴解得:
a=或
2.
故选:C.
二、填空题
13.【答案】②③④
【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.
由(1,4)
λμ+=-
a b得1
24
λμ
λμ
-+=-


+=

,∴
2
1
λ
μ
=


=

,①错误;
a与b不共线,由平面向量基本定理可得,②正确;
记OA
=
a,由OMμ
=+a b得AMμ=b,∴点M在过A点与b平行的直线上,③正确;
由2
μλ
+=+
a b a b得,(1)(2)
λμ
-+-=0
a b,∵a与b不共线,∴1
2
λ
μ
=


=

,∴2(1,5)
μλ
+=+=
a b a b,∴④正确;
设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴2133
1133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩
,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一
条线段且线段的两个端点分别为(2,4)、(2,2)-
,其长度为
14.【答案】
[,1] .
【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M , ∴2a ﹣1≤1 且4a ≥2,解得 2≥a
≥,故实数a 的取值范围是
[,1], 故答案为
[,1].
15.
【答案】
=1
【解析】解:由题意得,圆心C (1,0),半径等于4,
连接MA ,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1, ∴
b=


椭圆的方程为=1.
故答案为:
=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.
16.【答案】

【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,
∴3aa=1(1﹣2a ),解得a=﹣1或
a=, 经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
17.【答案】7
,32
a b =-= 【解析】

点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 18.【答案】 [0,2] .
【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);
命题q :x 2
﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).
∵q 是p 的充分不必要条件,
∴q ⊊p ,


解得0≤a ≤2, 则实数a 的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
三、解答题
19.【答案】 【解析】(1)1200(811182525313745)2588
x =
+++++++==万元, 13200(21502400314037504000456055006500)400088
y =+++++++==元,
直线1055y bx =+经过样本中心(,)x y ,即(25,4000). ∴105540001055
117.825y b x
---=
==.
(2)(i )价值为20万元的新车的商业车险保费预报值为:117.82010553411⨯+=元. (ii )由于该车已出过一次险,若再出一次险, 则保费增加25%,即增加341125852.75⨯%=元.
因为852.75800>,若出险,明年的保费已超800,故接受建议.
20.【答案】(1)5a =-,A 的子集为:φ,12⎧⎫
⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)0或1或1-。

【解析】
试题分析:(1)由2A ∈有:2
22220a ⨯++=,解得:5a =-,此时集合{}
212520,22A x x x ⎧⎫=-+==⎨⎬⎩⎭

所以集合A 的子集共有4个,分别为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
;(2)由题{}1,1B =-若C B ⊆,当C φ=时,0b =,当C φ≠时,{}1B =或{}1B =-,当{}1C =时,1b =,当{}1C =-时,1b =-,所以实数b
的值为1或1-。

本题考查子集的定义,求一个集合的子集时,注意不要漏掉空集。

当集合A B ⊆时,要分类讨论,分A φ=和A φ≠两类进行讨论。

考查学生分类讨论思想方法的应用。

试题解析:(1)由2A ∈有:222220a ⨯++=,解得:5a =-,
{}212520,22A x x x ⎧⎫
=-+==⎨⎬⎩⎭
所以集合A 的子集为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭
(2){}1,1B =-,由C B ⊆:当C φ=时,0b =
当C φ≠时,1b =或1b =-, 所以实数b 的值为:0或1或1- 考点:1.子集的定义;2.集合间的关系。

21.【答案】
【解析】解:圆C :
的标准方程为(x+1)2+(y ﹣2)2
=4
由于圆心C (﹣1,2)到直线l :3x+4y ﹣12=0的距离
d=
=<2
故直线与圆相交 故他们的公共点有两个.
【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.
22.【答案】
100人中,“歌迷”有25人,从而完成2×2列联表如下:
将2×2列联表中的数据代入公式计算,得:
K 2=
=
≈3.030
因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…
(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i=1,2,3,b i 表示女性,i=1,2. Ω由10个等可能的基本事件组成.…
用A 表示“任选2人中,至少有1个是女性”这一事件,则A={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.
∴P (A )=
(12)
【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.
23.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
24.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ0 1 2
P
数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班乙班合计
优秀 3 10 13
不优秀17 10 27
合计20 20 40
┉┉┉┉┉
K2=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.。

相关文档
最新文档