苏教版九年级数学上册 期末试卷复习练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版九年级数学上册 期末试卷复习练习(Word 版 含答案)
一、选择题
1.sin 30°的值为( ) A .3
B .
32
C .
12
D .
22
2.若点()10,A y ,()21,B y 在抛物线()2
13y x =-++上,则下列结论正确的是( ) A .213y y <<
B .123y y <<
C .213y y <<
D .213y y <<
3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③ C .①③ D .①②③ 4.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1
B .k≥-1
C .k <-1
D .k≤-1
5.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心
6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是
( )
A .22(3)2y x =-+
B .22(3)2y x =++
C .22(3)?2y x =-
D .22(3)?2y x =+ 7.下列图形,是轴对称图形,但不是中心对称图形的是( )
A .
B .
C .
D .
8.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于
G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )
A .一定相似
B .一定全等
C .不一定相似
D .无法判断
9.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为
( )
A .40°
B .45°
C .60°
D .70° 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1
B .2
C .3
D .4
11.cos60︒的值等于( ) A .
12
B .
22
C .
3 D .
3 12.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )
A .3:2
B .3:1
C .1:1
D .1:2
二、填空题
13.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.
14.数据2,3,5,5,4的众数是____.
15.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.
16.已知,二次函数2
(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.
17.如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.2m,测得
==,则建筑物CD的高是__________m.
1.6,1
2.4
AB m BC m
18.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm,则较小的三角形的周长为__________cm.
19.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.
20.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,
∆的面积为__________.
与AD交于点F,则CDF
21.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表
x…-10123…
y…-3-3-139…
关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=
________.
22.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.
23.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.
24.如图,一次函数y=x与反比例函数y=k
x
(k>0)的图像在第一象限交于点A,点
C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.
三、解答题
25.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 43,BC=4.
(1)求证:DE为圆O的切线;
(2)求阴影部分面积.
26.在矩形ABCD中,AB=3,AD=5,E是射线
..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.
(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;
(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;
(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.
27.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:
(1)求该二次函数的表达式;
(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;
28.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
29.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)
30.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).
(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.
31.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同. (1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?
(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率. 32.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.
12月17日
12月18日 12月19日 12月20日 12月21日
最高气温(℃) 10 6
7 8 9
最低气温(℃)
1 0 ﹣1 0 3
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】
直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12
故选C 【点睛】
此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.
2.A
解析:A 【解析】 【分析】
将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】
当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】
本题考查二次函数图象性质,对图象的理解是解答此题的关键.
3.C
解析:C 【解析】 【分析】
①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;
③利用抛物线与直线y=-2有两个交点进行判断. 【详解】
解:∵a <0<b ,∴二次函数的对称轴为x=2b
a
->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;
根据二次函数的系数,可得图像大致如下, 由于对称轴x=2b
a
-
的值未知, ∴当x=1时,y=a+b+c 的值无法判断,
故②不正确;
由图像可知,y==ax2+bx+c≤0,
∴二次函数与直线y=-2有两个不同的交点,
∴方程ax2+bx+c=-2有两个不相等的实数根.
故③正确.
故选C.
【点睛】
本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.
4.C
解析:C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当
时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
5.C
解析:C
【解析】
【分析】
圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的
【详解】
本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴
故选C
【点睛】
此题主要考察对称轴图形和中心对称图形,难度不大
6.A
解析:A 【解析】
将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:
22(3)2y x =-+.
故选A.
7.A
解析:A 【解析】 【分析】
根据轴对称图形与中心对称图形的概念求解. 【详解】
解:A.是轴对称图形,不是中心对称图形,符合题意; B.不是轴对称图形,是中心对称图形,不符合题意; C. 是轴对称图形,是中心对称图形,不符合题意; D. 是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】
本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.
8.A
解析:A 【解析】 【分析】
根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似. 【详解】
解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒, ∵A ACD ACD DCH 90∠∠∠∠+=+=︒, ∴A DCH ∠∠=,
∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒, ∴ADG CDH ∠∠=, 继而可得出AGD CHD ∠∠=, ∴ADG ~CDH . 故选:A . 【点睛】
本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.
9.A
解析:A
【解析】
【分析】
先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.
【详解】
解:∵AC是圆O的切线,AB是圆O的直径,
∴AB⊥AC,
∴∠CAB=90°,
又∵∠C=70°,
∴∠CBA=20°,
∴∠AOD=40°.
故选:A.
【点睛】
本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.
10.B
解析:B
【解析】
【分析】
将x=2代入方程即可求得k的值,从而得到正确选项.
【详解】
解:∵一元二次方程x2-3x+k=0的一个根为x=2,
∴22-3×2+k=0,
解得,k=2,
故选:B.
【点睛】
本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.A
解析:A
【解析】
【分析】
根据特殊角的三角函数值解题即可.
【详解】
解:cos60°=1 2 .
故选A.
【点睛】
本题考查了特殊角的三角函数值.
12.D
解析:D
【解析】
【分析】
根据题意得出△DEF ∽△BCF ,进而得出
=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.
【详解】
解:∵▱ABCD ,故AD ∥BC ,
∴△DEF ∽△BCF , ∴=DE EF BC FC
, ∵点E 是边AD 的中点, ∴AE=DE=
12AD , ∴12
EF FC =. 故选D .
二、填空题
13.【解析】
【分析】
设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.
【详解】
解:∵AC、BD 相交所成的锐角为
∴根据四边形的面积公式得出,
设AC=x ,则BD=8-
解析:【解析】
【分析】
设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 60︒=
()1 S 822
x x =-⨯,再利用二次函数最值求出答案. 【详解】
解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =
⨯⨯︒ 设AC=x ,则BD=8-x
所以,())21S 842x x x =-=-+
∴当x=4时,四边形ABCD 的面积取最大值
故答案为:
【点睛】
本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.
14.5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案
解析:5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案为:5.
【点睛】
本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
15.【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出
△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】
解:如图,连接D
解析:4 5
【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.
【详解】
解:如图,连接DE,DF,
∵△ABC是等边三角形,
∴AB=BC=AC, ∠A=∠B=∠ACB=60°,
由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF
∵∠BDE=∠BDF+∠FDE=∠A+∠AED,
∴∠BDF+60°=∠AED+60°,
∴∠BDF=∠AED,
∵∠A=∠B,
∴△AED∽△BDF,
∴AD AE DE BF BD DF
,
设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,
∵AD AE DE BF BD DF
,
∴AD AE DE DE BF BD DF DF

3
23
x x DE x x DF

4
5 DE
DF
,

4
5 CE
CF
.
故答案为:4 5 .
【点睛】
本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.
16.【解析】
【分析】
直接利用函数图象与x轴的交点再结合函数图象得出答案.
【详解】
解:如图所示,图象与x轴交于(-1,0),(3,0),
故当y<0时,x的取值范围是:-1<x<3.
故答案为:
解析:13
x
【解析】
【分析】
直接利用函数图象与x轴的交点再结合函数图象得出答案.
【详解】
解:如图所示,图象与x轴交于(-1,0),(3,0),
故当y<0时,x的取值范围是:-1<x<3.
故答案为:-1<x<3.
【点睛】
此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.
17.5
【解析】
【分析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.
【详解】
解:由题可知,BE⊥AC,DC⊥AC
∵BE//DC,
∴△AEB∽△ADC,
∴,
即:,
∴CD=10.
解析:5
【解析】
【分析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】
解:由题可知,BE⊥AC,DC⊥AC
∵BE//DC,
∴△AEB∽△ADC,
∴BE AB CD AC
=,
即:1.2 1.6
1.61
2.4 CD
=
+

∴CD=10.5(m).
故答案为10.5.
【点睛】
本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 18.48
【解析】
【分析】
根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】
∵两个相似三角形的面积比为
∴两个相似三角形的相似比为
∴两个相似三角形的周长也比为
∵较大的三
解析:48
【解析】
【分析】
根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.
【详解】
∵两个相似三角形的面积比为9:16
∴两个相似三角形的相似比为3:4
∴两个相似三角形的周长也比为3:4
∵较大的三角形的周长为64cm
∴较小的三角形的周长为64
348
4
cm ⨯=
故答案为:48.
【点睛】
本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.19.74
【解析】
【分析】
利用加权平均数公式计算.
【详解】
甲的成绩=,
故答案为:74.
【点睛】
此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74
【解析】
【分析】
利用加权平均数公式计算.
【详解】
甲的成绩=705602903
74
523

故答案为:74.
【点睛】
此题考查加权平均数,正确理解各数所占的权重是解题的关键. 20.【解析】
【分析】
运用切线长定理和勾股定理求出DF,进而完成解答.【详解】
解:∵与相切于点,与交于点
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt△C
解析:3 2
【解析】
【分析】
运用切线长定理和勾股定理求出DF,进而完成解答.【详解】
解:∵CF与O相切于点E,与AD交于点F
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt △CDF 中,由勾股定理得:
DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22
解得:x=12,则DF=32
∴CDF ∆的面积为
13222⨯⨯=32 故答案为
32
. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.
21.-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k .
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3
解析:-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得
313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩
,∴y=x²+x-3,
∵△=b 2-4ac=12-4×1×(-3)=13,

x=122
b a -±-±=
=−1±2, ∵1x <0,
∴1x =−1
-2
<0, ∵-4≤
-3,

3
2
22 -≤-≤-,
∴-≤ 2.5
-,
∵整数k满足k<x1<k+1,
∴k=-3,
故答案为:-3.
【点睛】
本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.
22.240m
【解析】
【分析】
根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.
【详解】
设这条公路的实际长度为xcm,则:
1:2000=12:x,
解得x=24000,
24000c
解析:240m
【解析】
【分析】
根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.
【详解】
设这条公路的实际长度为xcm,则:
1:2000=12:x,
解得x=24000,
24000cm=240m.
故答案为240m.
【点睛】
本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.
23.2+
【解析】
【分析】
设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可
【详解】
∵线段AB=x,点C、D是AB黄金分割点解析:
【解析】
【分析】
设线段AB=x,根据黄金分割点的定义可知AD=35
2
AB,BC=
35
2
AB,再根据CD
=AB﹣AD﹣BC可列关于x的方程,解方程即可
【详解】
∵线段AB=x,点C、D是AB黄金分割点,
∴较小线段AD=BC x,
则CD=AB﹣AD﹣BC=x﹣x=1,
解得:x=
故答案为:
【点睛】
本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的
35
倍.
24.或
【解析】
【分析】
过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=
解析:
9
y
x
=或
16
y
x
=
【解析】
【分析】
过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,
AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.
【详解】
过A作AD垂直于x轴,设A点坐标为(m,n),
∵A在直线y=x上,
∴m=n,
∵AC长的最大值为7,
∴AC过圆心B交⊙B于C,
∴AB=7-2=5,
在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,
解得:m=3或m=4,
∵A点在反比例函数y=k
x
(k>0)的图像上,
∴当m=3时,k=9;当m=4时,k=16,
∴该反比例函数的表达式为:
9
y
x
=或
16
y
x
=,
故答案为
9
y
x
=或
16
y
x
=
【点睛】
本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.
三、解答题
25.(1)证明见解析;(2)S阴影=43-2π
【解析】
【分析】
(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.
【详解】
(1)连接DC、DO.
因为AC 为圆O 直径,
所以∠ADC=90°,则∠BDC=90°,
因为E 为Rt △BDC 斜边BC 中点,
所以DE=CE=BE=12
BC , 所以∠DCE=∠EDC,
因为OD=OC ,
所以∠DCO=∠CDO.
因为BC 为圆O 切线,
所以BC ⊥AC ,即∠BCO=90°,
所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,
所以ED ⊥OD ,
所以DE 为圆O 的切线.
(2)S 阴影=2S △ECO -S
扇形COD =-2π 【点睛】
本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.
26.(1)证明见解析;(2)
513;(3)53、5、15 【解析】
【分析】
(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.
【详解】
(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°
由折叠可得:∠D =∠EFA =90°
∵∠EFA =∠C =90°
∴∠CEF +∠CFE =∠CFE +∠AFB =90°
∴∠CEF =∠AFB
在△ABF 和△FCE 中
∵∠AFB =∠CEF ,∠B =∠C =90°
△ABF ∽△FCE
(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90°
在矩形ABCD 中,∠D =90°
由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5
∵∠EGF =∠EFA =90°
∴∠GEF +∠GFE =∠AFH +∠GFE =90°
∴∠GEF =∠AFH
在△FGE和△AHF中
∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF
∴EF
AF

GF
AH
∴1
5

GF
AH
∴AH=5GF
在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2
∴(5 GF)2+(5-GF)2=52
∴GF=
5 13
∴△EFC的面积为1
2
×
5
13
×2=
5
13
;
(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:
设DE=EF=x,则CE=3-x,
∵2222
3534
AD CD
+=+=∴34∵∠CFE=∠D=90°, ∠DCA=∠DCA,
∴△CEF∽△CAD, ∴CE EF
CA AD
=,
5
34
x
=,解得5(345)
-
②当∠ECF=90°时,如图所示:

AD=1AF =5,AB=3, ∴1BF =221AF AB -=4, 设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠
∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53
; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,
∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;
③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,
综上所述,DE 的长为:
53、5、155(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.
27.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4
【解析】
【分析】
(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;
(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.
【详解】
(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为
y=a(x-1)2-4
把(0,-3)代入y=a(x-1)2-4得,a=1
∴y=(x-1)2-4或y=x2-2x-3
(2)解:∵y= y=(x-1)2-4,
∴原函数图象的顶点坐标为(1,-4),
∵描出的抛物线与抛物线y=x2-2x-3关于x轴对称,
∴新抛物线顶点坐标为(1,4),
∴这条抛物线的解析式为y=-(x-1)2+4,
故答案为:y=-(x-1)2+4.
【点睛】
本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.
28.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q
坐标为:(﹣2,2)或(﹣
1
或(﹣1
)或(2,﹣2).
【解析】
【分析】
(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;
(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知
PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.
【详解】
(1)设此抛物线的函数解析式为:y=ax2+bx+c,
将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得
420
2
a b c
c
a b c
-+=


=-

⎪++=


解得:
1
1
2 a
b
c
=


=

⎪=-


∴此函数解析式为:y=x2+x﹣2.
(2)如图,过点M作y轴的平行线交AB于点D,
∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,
设直线AB的解析式为y=kx﹣2,
把A(﹣2,0)代入得,-2k-2=0,
解得:k=﹣1,
∴直线AB的解析式为y=﹣x﹣2,
∵MD∥y轴,
∴点D的坐标为(m,﹣m﹣2),
∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,
∴S△MAB=S△MDA+S△MDB
=1
2 MD•OA
=1
2
×2(m2﹣2m)
=﹣m2﹣2m
=﹣(m+1)2+1,
∵﹣2<m<0,
∴当m=﹣1时,S△MAB有最大值1,
综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),
①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,
∴Q的横坐标等于P的横坐标,
∵直线的解析式为y=﹣x,
则Q(x,﹣x),
由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,
即|﹣x2﹣2x+2|=2,
当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,
∴Q(﹣2,2),
当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,
∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),
②如图,当BO为对角线时,OQ∥BP,
∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,
∴A与P重合,OP=2,四边形PBQO为平行四边形,
∴BQ=OP=2,点Q的横坐标为2,
把x=2代入y=﹣x得y=-2,
∴Q(2,﹣2),
综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).
【点睛】
本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,
熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.
29.301)米
【解析】
【分析】
设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.
【详解】
由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,
设AD =xm ,
在Rt △ACD 中,∵tan ∠ACD =
AD CD , ∴CD =AD =x ,
∴BD =BC +CD =x +60,
在Rt △ABD 中,∵tan ∠ABD =AD BD

∴(60)3
x x =+,
∴1)x =米,
答:山高AD 为301)米.
【点睛】
本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
30.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .
【解析】
【分析】
(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;
(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;
【详解】
解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,
∵222BP BQ PQ +=
∴()()(2
22
52x x -+=
解得:13x =,21x =-(舍去) ∴3秒后,PQ 的长度等于210;
(2)设t 秒后,5PB t =-,2QB t =,
又∵172PQB S BP QB ∆=⨯⨯=,()15272
t t ⨯-⨯=, ∴2570t t -+=,
25417252830∆=-⨯⨯=-=-<,
∴方程没有实数根,
∴PQB ∆的面积不能等于27cm .
【点睛】
本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.
31.(1)
13;(2)13
,见解析 【解析】
【分析】
(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;
(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.
【详解】
解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种, ∴1P =3
(摸到红球); (2)画树状图,根据题意,画树状图结果如下:
一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,
∴21P ==63
(两次白球); 用列表法,根据题意,列表结果如下:
一共有6种等可能出现的结果,两次都抽取到白球的次数为2次, ∴21P ==63
(两次白球)
. 【点睛】 本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.
32.见解析
【解析】
【分析】
根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.
【详解】
∵x 高=()110+6+7+8+9=85⨯(℃),
x 低 =()1
1+01+0+3=0.65
⨯-(℃), 2S 高=()()()()()222221
108687888985⎡⎤⨯-+-+-+-+-⎣
⎦=2(℃2)
2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低
∴这5天的日最高气温波动大.
【点睛】
本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()
22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.。

相关文档
最新文档