相似三角形的动点问题题型(整理).doc
(完整版)相似三角形的动点问题题型(整理)
![(完整版)相似三角形的动点问题题型(整理)](https://img.taocdn.com/s3/m/efc1b144360cba1aa911da47.png)
相似三角形的动点问题一、动点型例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1)求证:△ACD∽△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.二、动点加动线例1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .(1)求证:△PFA ∽△ABE ;(2)当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.3、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的面积S 与时间t 之间的关系式;并求出△OPQ 的最大面积; (2)在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB ,点A 、C 的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找一点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点Dyx O AB的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似,如存在,请求出m的值;如不存在,请说明理由.5、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在Y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=55,且43DAEA(1)判断OCD与△ADE是否相似?请说明理由;x(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线L,使直线L、直线CE与x轴所围成的三角形和△CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存Array在,请说明理由.6、△ABC中,AB=AC=5,BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1)当x= 秒时,射线DE经过点C;2)当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x 的值;若不存在,请说明理由.7、如图,梯形ABCD中,AD∥BC,AB=CD=20cm,AD=40cm,∠D=120°,点P、Q同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D,点P也随之停止运动.设运动时间为t(s)(1)当t为何值时,△CPQ与△ABP相似;(2)设△APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD 的交点为E ,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒). (1)当t=0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.9、如图1,直角梯形ABCD 中,∠A=∠B=90°,AD=AB=6cm ,BC=8cm ,点E 从点A 出发沿AD 方向以1cm/s 的速度向中点D 运动;点F 从点C 出发沿CA 方向以2cm/s 的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1)当t为何值时,△AEF和△ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△AFE的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为。
相似三角形动点问题精选
![相似三角形动点问题精选](https://img.taocdn.com/s3/m/753b1c66f5335a8102d22011.png)
动点问题答案:1.如图①,点A ',B '的坐标分别为(2,0)和(0,4-),将A B O ''△绕点O 按逆时针方向旋转90°后得ABO △,点A '的对应点是点A ,点B '的对应点是点B .(1)写出A ,B 两点的坐标,并求出直线AB 的解析式; (2)将ABO △沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为(0x ,),CDE △与ABO △重叠部分的面积为S . i )试求出S 与x 之间的函数关系式(包括自变量x 的取值范围);ii )当x 为何值时,S 的面积最大?最大值是多少?iii )是否存在这样的点C ,使得ADE △为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.1.答案解:(1)(02)(40)A B ,,, ························ (2分) 设直线AB 的解析式y kx b =+,则有240b k b =⎧⎨+=⎩ 解得122k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为122y x =-+ ··················· (3分)(2)i )①点E 在原点和x 轴正半轴上时,重叠部分是CDE △.则1111(4)22222CDE S CE CD BC CD x x ⎛⎫===--+ ⎪⎝⎭△·· 21244x x =-+ 当E 与O 重合时,12242CE BO x ==∴<≤ ············· (4分) ②当E 在x 轴的负半轴上时,设DE 与y 轴交于点F ,则重叠部分为梯形CDFO.(第26题图)OFE OAB △∽△ 1122OF OA OF OE OE OB ∴==∴=, 又42OE x =-1(42)22OF x x ∴=-=-213222224CDFO x S x x x x ⎡⎤⎛⎫∴=-+-+=-+ ⎪⎢⎥⎝⎭⎣⎦四边形· ············ (5分)当点C 与点O 重合时,点C 的坐标为(0,0)02x ∴<< ······························ (6分)综合①②得22124(24)432(02)4x x x S x x x ⎧-+<⎪⎪=⎨⎪-+<<⎪⎩≤ ··············· (7分)ii )①当24x <≤时,221124(2)44S x x x =-+=- ∴对称轴是4x = 抛物线开口向上,∴在24x <≤中,S 随x 的增大而减小∴当2x =时,S 的最大值=21(24)14⨯-= ··············· (8分)②当02x <<时,22334424433S x x x ⎛⎫=-+=--+ ⎪⎝⎭∴对称轴是43x =,抛物线开口向下 ∴当43x =时,S 有最大值为43····················· (9分)综合①②当43x =时,S 有最大值为43················· (10分)iii )存在,点C 的坐标为302⎛⎫ ⎪⎝⎭,和502⎛⎫ ⎪⎝⎭, ················· (14分) 附:详解:①当ADE △以点A 为直角顶点时,作AE AB ⊥交x 轴负半轴于点E ,AOE BOA △∽△,12EO AO AO BO ∴==;21AO EO =∴=,∴点E 坐标为(1-,0)∴点C 的坐标为302⎛⎫⎪⎝⎭,②当ADE △以点E 为直角顶点时,同样有AOE BOA △∽△,12OE OA AO BO ==1(10)EO E ∴=∴,,∴点C 的坐标502⎛⎫ ⎪⎝⎭,,综合①②知满足条件的坐标有302⎛⎫ ⎪⎝⎭,和502⎛⎫⎪⎝⎭,.3.直线)0(≠+=k b kx y 与坐标轴分别交于A 、B 两点,OA 、OB 的长分别是方程048142=+-x x 的两根(OB OA >),动点P 从O 点出发,沿路线O →B →A 以每秒1个单位长度的速度运动,到达A 点时运动停止.(1)直接写出A 、B 两点的坐标;(2)设点P 的运动时间为t (秒),OPA ∆的面积为S ,求S 与t 之间的函数关系式(不必写出自变量的取值范围);M ,使以O 、M 的坐标;若不存在,请说(1) )6,0(),0,8(B A ……………………….各1分 (2)∵8=OA ,6=OB ,∴10=AB当点P 在OB 上运动时,t OP =1,t t OP OA S 4821211=⨯⨯=⨯=;..............1分 当点P 在BA 上运动时,作OA D P ⊥2于点D , 有ABAP BO D P 22= ∵t t AP -=-+=161062,∴53482tD P -=………………………1分 ∴51925125348821212+-=-⨯⨯=⨯⨯=t t D P OA S ……………………1分(3)当124=t 时,3=t ,)3,0(1P ,………………………………1分此时,过AOP ∆各顶点作对边的平行线,与坐标轴无第二个交点,所以点M 不存在;……………………………………………………………………………1分当125192512=+-t 时,11=t ,)3,4(2P ,........................1分 此时,)3,0(1M 、)6,0(2-M (1)4.如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.5.(2009年浙江丽水)已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒. (1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、 高BE 的长是 ▲ ; (2)探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S的最大值。
相似三角形汇总5相似中的动点问题
![相似三角形汇总5相似中的动点问题](https://img.taocdn.com/s3/m/b4c8196df111f18583d05ace.png)
相似三角形提高一、相似三角形动点问题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,∠ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分∠CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为N .(1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ ∥BC ?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。
相似三角形与动点问题练习题(带答案
![相似三角形与动点问题练习题(带答案](https://img.taocdn.com/s3/m/c9ad60b82b160b4e777fcfed.png)
∵将
沿直线 翻折后,顶点 恰好落在 边上的点 处,
∴
,且
,
∴
,
∵
,
∴
,
∴
,
∴
,
∵在
中,
,
∴
∴
∴ 四边形 故选: .
,
,
, ,
.
2
【标注】【知识点】相似A字型
3. 如图,矩形 ,
中, 是 的中点,将 ,则 的长为( ).
沿 折叠后得到
.延长 交 于 点.若
A.
B.
C.
D.
【答案】 B 【解析】 方法一:连接 ,
.④
沿 折叠,点 恰落在边 上的点 处,有下列结论:①
.其中正确的是( ).
A. 个
B. 个
C. 个
6
D. 个
【答案】 C
【解析】 ①∵ 将 ∴ ∴ ②在 ∴ 设 在 ∴ ∴ ∴ ③∵ ∴ ∴ 而 ∴ ∴ ∴ ∴ 而 ∴ ∴ ④∵ ∴
沿 折叠,点 恰落在边 上的点 处.点 在
沿 折叠,点 恰落在线段 上的点 处,
4. 如图,将正方形
折叠,使顶点 与 边上的一点 重合( 不与端点 , 重合),折痕交
于点 ,交 于点 ,边 折叠后与边 交于点 .设正方形
的周长为 ,
的周长为
,则 的值为( ).
A.
B.
C.
D. 随 点位置的变化而变化
【答案】 B
【解析】 方法一:设
,
,
则
,
,
∵
,
∴
.
∵
,
∴
,
又∵
,
,
∴
,
即
,
∴
相似三角形动点问题题型
![相似三角形动点问题题型](https://img.taocdn.com/s3/m/3d73ad026294dd88d1d26b8c.png)
x A O Q P B y动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点 1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)ABC OEF AB CO D图(1)ABOE FC 图(2) 2、如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论xy M CD P QOAB 3、如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
相似三角形汇总5相似中的动点问题
![相似三角形汇总5相似中的动点问题](https://img.taocdn.com/s3/m/1e36aa76f01dc281e43af013.png)
相似三角形提高一、相似三角形动点问题∥AC.动点D从点A出1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中, ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB 交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
相似三角形动点问题题型归纳
![相似三角形动点问题题型归纳](https://img.taocdn.com/s3/m/164c940efc4ffe473368ab3d.png)
相似中动点问题题型一位似图形例1如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.例2如图,图中的小方格都是边长为1的正方形,△ABC与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0;(2)求出△ABC与△A′B′C′的位似比;(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.题型二 动点存在问题1如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。
2、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?y xO P QA B3、如图所示,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。
如果P 、Q 同时出发,用t (秒)表示移动时间(0≤t ≤6),那么:⑴ 当t 为何值时,⊿QAP 为等腰直角三角形?⑵ 求四边形QAPC 的面积;并提出一个与计算结果有关的结论; ⑶ 当t 为何值时,以点Q 、A 、P 为顶点的三角形与⊿ABC 相似?4、如图,在梯形ABCD 中,A D ∥BC, AD=3, DC=5,AB= , ∠B=45°, 动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动,动点N 同时从C 点出发沿线段CD 一每秒1个单位长度的速度向终点D 运动,设运动的时间t 秒。
相似三角形总结5-相似中的动点问题
![相似三角形总结5-相似中的动点问题](https://img.taocdn.com/s3/m/e5dbb40d8762caaedd33d4da.png)
相似三角形总结5-相似中的动点问题————————————————————————————————作者:————————————————————————————————日期:2相似三角形提高一、相似三角形动点问题∥AC.动点D从点A出1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中, ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB 交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
相似三角形难题集锦(含问题详解)
![相似三角形难题集锦(含问题详解)](https://img.taocdn.com/s3/m/3f271fda3169a4517623a36c.png)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。
〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
相似三角形的动点问题题型(整理)word版本
![相似三角形的动点问题题型(整理)word版本](https://img.taocdn.com/s3/m/90733faebcd126fff6050b8d.png)
相似三角形的动点问题一、动点型例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s),(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).1)求证:△ACD∽△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M 是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.二、动点加动线例1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.迁移应用1、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值.2、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .(1)求证:△PFA ∽△ABE ;(2)当点P 在射线AD 上运动时,设PA=x ,是否存在实数x ,使以P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.3、如图,已知A (8,0),B (0,6),两个动点P 、Q 同时在△OAB 的边上按逆时针方向(→O →A →B →O →)运动,开始时点P 在点B 位置,点Q 在点O 位置,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ 的面积S 与时间t 之间的关系式;并求出△OPQ 的最大面积; (2)在前10秒内,秋P 、Q 两点之间的最小距离,并求此时点P 、Q 的坐标;(3)在前15秒内,探究PQ 平行于△OAB 一边的情况,并求平行时点P 、Q 的坐标.4、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB ,点A 、C 的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找一点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点Dyx O AB的坐标;(3)在(2)的条件下,如P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似,如存在,请求出m的值;如不存在,请说明理由.5、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在Y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=55,且43DAEA(1)判断OCD与△ADE是否相似?请说明理由;x(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线L,使直线L、直线CE与x轴所围成的三角形和△CDE相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存Array在,请说明理由.6、△ABC中,AB=AC=5,BC=6,点P从点B开始沿BC边以每秒1的速度向点C运动,点Q从点C开始沿CA边以每秒2的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、p停止运动,设它们运动的时间为x.1)当x= 秒时,射线DE经过点C;2)当点Q运动时,设四边形ABPQ的面积为y,求y与x的函数关系式;3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x 的值;若不存在,请说明理由.7、如图,梯形ABCD中,AD∥BC,AB=CD=20cm,AD=40cm,∠D=120°,点P、Q同时从C点出发,分别以2cm/s和1cm/s的速度沿着线段CB和线段CD运动,当Q到达点D,点P也随之停止运动.设运动时间为t(s)(1)当t为何值时,△CPQ与△ABP相似;(2)设△APQ与梯形ABCD重合的面积为S,求S与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD 的交点为E ,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒). (1)当t=0.5时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.9、如图1,直角梯形ABCD 中,∠A=∠B=90°,AD=AB=6cm ,BC=8cm ,点E 从点A 出发沿AD 方向以1cm/s 的速度向中点D 运动;点F 从点C 出发沿CA 方向以2cm/s 的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.(1)当t为何值时,△AEF和△ACD相似?(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;(3)当t为何值时,△AFE的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为。
(word完整版)相似三角形动点问题题型
![(word完整版)相似三角形动点问题题型](https://img.taocdn.com/s3/m/310af0970b1c59eef9c7b41e.png)
动点问题 题型方法归纳动态几何特点—---问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;t s.问当t (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位(3)若OC OB的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.Array注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。
(完整word版)初中数学相似三角形与动点专题复习
![(完整word版)初中数学相似三角形与动点专题复习](https://img.taocdn.com/s3/m/dbaff72f7f1922791788e8ae.png)
圆中的三角形相似 复习专题黄金分割的几何作图:已知:线段 AB.求作:点C 使C 是线段AB 的黄金分割点•作法: (1) 过点 B 作 BD 丄 AB ,使 BD=0.5AB ; (2) 连结 AD ,在DA 上截取 DE=DB ;(3) 在AB 上截取AC=AE ,则点C 就是所求作的线段 AB 的黄金分割点。
(4) 矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形3、相似三角形1)定义:如果两个三角形中, 几种特殊三角形的相似关系: 三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等) ; 4、 性质:两个相似三角形中,对应角相等、对应边成比例。
5、 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如厶ABC 与厶DEF 相似,记作△ ABC DEF 。
相似比为 k 。
6、 判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理 :平行于三角形一边的直线和其它两边相交,所构成的三角形与原三 角形相似。
三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等, 为:两角对应相等,两三角形相似 。
(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例, 三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似 。
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例, 述为:三边对应成比例,两三角形相似。
1、黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段 AC 和 即AC 2=AB X BC ,那么称线段 AB 被点C 黄金分割,点 C 叫做线段 叫做黄金比。
相似三角形复习专题动点问题
![相似三角形复习专题动点问题](https://img.taocdn.com/s3/m/4538091df68a6529647d27284b73f242336c3188.png)
相似三⾓形复习专题动点问题相似三⾓形复习专题动点问题1、如图,已知△ABC是边长为6cm的等边三⾓形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停⽌运动,设运动时间为t(s),1、当t=2时,判断△BPQ的形状,并说明理由;2、设△BPQ的⾯积为S(cm2),求S与t的函数关系式;3、作QR//BA交AC于点R,连结PR,当t为何值时,△APR△△PRQ?2、如图,在直⾓梯形ABCD中,AB△DC,△D=90o,AC△BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A 向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(01)求证:△ACD△△BAC;2)求:DC的长;3)试探究:△BEF可以为等腰三⾓形吗?若能,求t的值;若不能,请说明理由.3.如图,已知等边三⾓形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上⼀动点,△DMN为等边三⾓形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成⽴?若成⽴,请利⽤图2证明;若不成⽴,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成⽴?若成⽴,请直接写出结论,不必证明或说明理由.4.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针⽅向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停⽌移动.设移动开始后第t秒时,△EFG的⾯积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出⾃变量t的取值范围(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三⾓形与以点F、C、G为顶点的三⾓形相似?请说明理由.5.如图,在Rt△ABC中,△C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后⽴刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停⽌运动,点P也随之停⽌.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的⾯积S与t的函数关系式;(不必写出t 的取值范围(3)在点E从B向C运动的过程中,四边形QBED能否成为直⾓梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.6.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某⼀时刻,动点M从A点出发沿AB ⽅向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA⽅向以2cm/s的速度向A点匀速运动,问:是否存在时刻t,使以A、M、N为顶点的三⾓形与△ACD相似?若存在,求t的值.7.如图,正⽅形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF△AE 于F.(1)求证:△PFA△△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三⾓形也与△ABE相似?若存在,请求出x 的值;若不存在,说明理由.8.如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针⽅向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的⾯积S与时间t之间的关系式;(2)在前15秒内,探究PQ平⾏于△OAB⼀边的情况,并求平⾏时点P、Q的坐标.9.已知:如图,在平⾯直⾓坐标系中,△ABC是直⾓三⾓形,△ACB,点A、C的坐标分别为A(-3,0),C(1,0),43AC BC , (1)求过点A 、B 的直线的函数表达式;(2)在X 轴上找⼀点D,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P 、Q 分别是AB 和AD 上的动点,连接PQ ,设AP=DQ=m ,问是否存在这样的m 使得△APQ 与△ADB 相似,如存在,请求出m 的值;如不存在,请说明理由.A COBxy10.如图,四边形OABC 是⼀张放在平⾯直⾓坐标系中的矩形纸⽚,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠CE=55,且43DAEA(1)判断OCD 与△ADE 是否相似?请说明理由;(2)求直线CE 与x 轴交点P 的坐标;(3)是否存在过点D 的直线L ,使直线L 、直线CE 与x 轴所围成的三⾓形和△CDE 相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.11.△ABC 中,AB=AC=5,BC=6,点P 从点B 开始沿BC 边以每秒1的速度向点C 运动,点Q 从点C 开始沿CA 边以每秒2的速度向点A 运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交BC 于点E .点P ,Q 分别从B ,C 两点同时出发,当点Q 运动到点A 时,点Q 、p 停⽌运动,设它们运动的时间为x . 1)当x=2秒时,射线DE 经过点C ;2)当点Q 运动时,设四边形ABPQ 的⾯积为y ,求y 与x 的函数关系式;3)当点Q 运动时,是否存在以P 、Q 、C 为顶点的三⾓形与△PDE 相似?若存在,求出x 的值;若不存在,请说明理由.OxyC B ED12、如图,在平⾯直⾓坐标系中.四边形OABC是平⾏四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的⽅向向点C运动,过点P作PM垂直于x轴,与折线O⼀C-B相交于点M.当P、Q两点中有⼀点到达终点时,另⼀点也随之停⽌运动,设点P、Q运动的时间为t秒(t>0).△MPQ 的⾯积为S.(1)点C的坐标为,直线l的解析式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的动点问题题型( 整理)相似三角形的动点问题一、动点型例 1、如图,已知等边三角形 ABC 中,点 D,E,F 分别为边 AB ,AC ,BC 的中点,M 为直线 BC 上一动点,△DMN 为等边三角形(点 M 的位置改变时,△ DMN 也随之整体移动).(1)如图 1,当点 M 在点 B 左侧时,请你判断EN 与 MF 有怎样的数量关系?点 F 是否在直线NE 上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中 EN 与 MF 的数量关系是否仍然成立?若成立,请利用图 2 证明;若不成立,请说明理由;(3)若点 M 在点 C 右侧时,请你在图 3 中画出相应的图形,并判断( 1)的结论中 EN 与 MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.例 2、如图,在矩形 ABCD 中, AB=12cm ,BC=8cm .点 E、F、G 分别从点 A、B、C 三点同时出发,沿矩形的边按逆时针方向移动.点 E、 G 的速度均为 2cm/s,点 F 的速度为 4cm/s,当点 F 追上点 G(即点 F 与点 G 重合)时,三个点随之停止移动.设移动开始后第 t 秒时,△EFG 的面积为 S(cm2)(1)当 t=1 秒时, S 的值是多少?(2)写出 S 和 t 之间的函数解析式,并指出自变量 t 的取值范围(3)若点 F 在矩形的边 BC 上移动,当 t 为何值时,以点 E、B、F 为顶点的三角形与以点 F、C、G 为顶点的三角形相似?请说明理由.迁移应用1、如图,已知△ ABC 是边长为 6cm 的等边三角形,动点 P、Q 同时从 A、B 两点出发,分别沿AB、BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点 C 时, P、 Q两点都停止运动,设运动时间为 t(s),(1)当 t=2 时,判断△ BPQ 的形状,并说明理由;(2)设△ BPQ 的面积为 S(cm2),求 S 与 t 的函数关系式;(3)作 QR//BA 交 AC 于点 R,连结 PR,当 t 为何值时,△ APR∽△ PRQ?2、如图,在直角梯形A BCD 中, AB ∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F 点以2cm/秒的速度在线段 AB 上由 A 向 B 匀速运动,E 点同时以 1cm/秒的速度在线段 BC 上由 B 向 C 匀速运动,设运动时间为 t 秒(0<t<5) .1)求证:△ ACD ∽△ BAC ;2)求: DC 的长;3)试探究:△BEF 可以为等腰三角形吗?若能,求 t 的值;若不能,请说明理由.3、如图,在直角梯形ABCD 中,AD ∥BC,∠B=90°,AD=6 ,BC=8 , AB=3 3,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿 BM 返回;点 Q 从点M 出发以每秒 1 个单位长的速度在射线 MC 上匀速运动.在点 P, Q的运动过程中,以 PQ 为边作等边三角形 EPQ,使它与梯形ABCD 在射线 BC 的同侧.点 P,Q 同时出发,当点 P 返回到点 M 时停止运动,点Q 也随之停止.设点P,Q 运动的时间是t 秒(t >0).(1)设 PQ 的长为 y,在点 P 从点 M 向点 B 运动的过程中,写出 y 与 t 之间的函数关系式(不必写 t 的取值范围);(2)当 BP=1 时,求△ EPQ 与梯形 ABCD 重叠部分的面积;(3)随着时间 t 的变化,线段 AD 会有一部分被△ EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出 t 的取值范围;若不能,请说明理由.二、动点加动线例 1、如图,在 Rt △ABC 中,∠C=90°,AC=3 ,AB=5 .点 P 从点 C 出发沿 CA 以每秒 1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿 AC 返回;点 Q 从点 A 出发沿 AB 以每秒1 个单位长的速度向点B 匀速运动.伴随着P、Q 的运动, DE 保持垂直平分 PQ,且交PQ 于点 D,交折线Q同时出发,当点P也随之停止.设点QB-BC-CP 于点 E.点 P、Q 到达点 B 时停止运动,点P、Q 运动的时间是 t 秒(t>0).(1)当 t=2 时,AP=,点Q到AC的距离是;(2)在点P 从 C 向 A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围(3)在点 E 从 B 向 C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求 t 的值.若不能,请说明理由;(4)当 DE 经过点 C 时,请直接写出t 的值.迁移应用1、如图,已知矩形 ABCD 的边长 AB=3cm ,BC=6cm .某一时刻,动点 M 从 A 点出发沿 AB 方向以 1cm/s 的速度向 B 点匀速运动;同时,动点N 从 D 点出发沿 DA 方向以 2cm/s 的速度向 A 点匀速运动,问:是否存在时刻 t,使以 A 、M 、 N 为顶点的三角形与△ ACD 相似?若存在,求 t的值.2、如图,正方形 ABCD 的边长为 4,E 是 BC 边的中点,点 P 在射线 AD 上,过 P 作 PF⊥AE于 F.(1)求证:△ PFA∽△ ABE ;(2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶点的三角形也与△ ABE相似?若存在,请求出 x 的值;若不存在,说明理由.3、如图,已知 A(8,0),B(0,6),两个动点P、Q 同时在△ OAB 的边上按逆时针方向(→ O →A→B→O→)运动,开始时点 P 在点 B 位置,点 Q 在点 O 位置,点 P 的运动速度为每秒 2 个单位,点 Q 的运动速度为每秒 1 个单位.(1)在前 3 秒内,求△ OPQ 的面积 S 与时间 t 之间的关系式;并求出△ OPQ 的最大面积;(2)在前 10 秒内,秋 P、Q 两点之间的最小距离,并求此时点 P、Q 的坐标;(3)在前 15 秒内,探究 PQ 平行于△ OAB 一边的情况,并求平行时点P、Q 的坐标.yBO A x4、已知:如图,在平面直角坐标系中,△ ABC 是直角三角形,∠ ACB ,点 A、C 的坐标分别为A(-3,0) ,C(1,0),BC AC34,(1)求过点 A 、B 的直线的函数表达式;(2)在 X 轴上找一点 D,连接 DB ,使得△ ADB与△ ABC 相似(不包括全等),并求点 D 的坐标;(3)在( 2)的条件下,如 P、Q 分别是 AB 和AD 上的动点,连接 PQ,设y B AP=DQ=m ,问是否存在这样的 m使得△ APQ 与△ ADB 相似,如存A O C x在,请求出 m 的值;如不存在,请说明理由.145、如图,四边形 OABC 是一张放在平面直角坐标系中的矩形纸片,点 A 在 x 轴上,点 C 在 Y 轴上,将边 BC 折叠,使点 B 落在边 OA 的点 D 处.已知折叠 CE= 5 5,且EA 3DA 4(1)判断 OCD 与△ ADE 是否相似?请说明理由;(2)求直线 CE 与 x 轴交点 P 的坐标;(3)是否存在过点 D 的直线 L ,使直线 L 、直线 CE 与 x 轴所围C yB成的三角形和△ CDE 相似?如 E 果存在,请直接写出其解析式并O D A x 画出相应的直线;如果不存在,请说明理由.6、△ ABC 中, AB=AC=5 ,BC=6 ,点 P 从点 B 开始沿 BC 边以每秒 1 的速度向点 C 运动,点 Q 从点 C 开始沿 CA 边以每秒 2 的速度向点 A 运动,DE 保持垂直平分 PQ,且交 PQ 于点 D,交BC 于点 E.点 P,Q 分别从 B,C 两点同时出发,当点 Q 运动到点 A 时,点 Q、p 停止运动,设它们运动的时间为 x.1)当 x=秒时,射线DE经过点C;2)当点 Q 运动时,设四边形 ABPQ 的面积为 y,求 y 与 x 的函数关系式;3)当点 Q 运动时,是否存在以P、Q、C 为顶点的三角形与△ PDE 相似?若存在,求出 x 的值;若不存在,请说明理由.7、如图,梯形 ABCD 中,AD∥BC,AB=CD=20cm ,AD=40cm ,∠ D=120°,点 P、Q 同时从 C 点出发,分别以 2cm/s 和 1cm/s 的速度沿着线段 CB 和线段 CD 运动,当 Q 到达点 D,点 P 也随之停止运动.设运动时间为 t(s)(1)当 t 为何值时,△ CPQ 与△ ABP 相似;(2)设△APQ 与梯形 ABCD 重合的面积为 S,求 S 与t的函数关系式,写出自变量的取值范围.8、如图,直角梯形ABCD 中,AB ∥DC ,∠DAB=90 °, AD=2DC=4 ,AB=6 .动点 M 以每秒 1 个单位长的速度,从点 A 沿线段 AB 向点 B运动;同时点 P 以相同的速度,从点 C 沿折线 C-D-A 向点 A 运动.当点 M 到达点 B 时,两点同时停止运动.过点 M 作直线 l ∥AD ,与线段 CD 的交点为 E,与折线 A-C-B 的交点为 Q.点 M 运动的时间为 t(秒).(1)当 t=0.5 时,求线段 QM 的长;(2)当 0<t<2 时,如果以 C、P、Q 为顶点的三角形为直角三角形,求t 的值;(3)当 t>2 时,连接 PQ 交线段 AC 于点 R.请探究CQ是否为定值,若是,试求这个定值;若不RQ是,请说明理由.9、如图 1,直角梯形 ABCD 中,∠ A=∠B=90°,AD=AB=6cm ,BC=8cm ,点 E 从点 A 出发沿AD 方向以 1cm/s 的速度向中点 D 运动;点 F 从点 C 出发沿 CA 方向以 2cm/s 的速度向终点 A 运动,当点 E、点 F 中有一点运动到终点,另一点也随之停止.设运动时间为 ts.(1)当 t 为何值时,△ AEF 和△ ACD 相似?(2)如图 2,连接 BF,随着点 E、F 的运动,四边形 ABFE 可能是直角梯形?若可能,请求出t 的值及四边形 ABFE 的面积;若不能,请说明理由;(3)当 t 为何值时,△ AFE 的面积最大?最大值是多少?10、如图,在平面直角坐标系中.四边形OABC 是平行四边形.直线 l 经过 O、C 两点.点 A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A 出发以每秒2 个单位的速度沿 A→B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O 一 C-B 相交于点 M .当 P、Q 两点中有一点到达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒( t>0).△ MPQ 的面积为 S.(1)点 C 的坐标为,直线l 的解析式为。