人教中考数学易错题专题复习-锐角三角函数练习题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数
2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.
(1)求证:△MED∽△BCA;
(2)求证:△AMD≌△CMD;
(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2
=17
5
S1时,求cos∠ABC的
值.
【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .
【解析】
【分析】
(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;
(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以
2
1
1
4
ACB
S MD
S AB
⎛⎫
==

⎝⎭
,所以
S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD
S ME S EB =,从而可知
52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7
2,最后根据锐角三角函数的定义即可求出答案. 【详解】
(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;
(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,
∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,
∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,
MD MD AMD CMD AM CM =⎧⎪
∠=∠⎨⎪=⎩
, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,
由(1)可知:△MED ∽△BCA , ∴
2
114
ACB S MD S
AB ⎛⎫== ⎪⎝⎭,
∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =
1
2
S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=2
5
S 1, ∵
1EBD
S ME
S
EB
=

∴1125
S ME
EB S =


5
2
ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,

1
2MD ME AB BC ==, ∴BC=10x ,
∴cos ∠ABC=105
147
BC x AB x ==. 【点睛】
本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.
3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4
cos 5
AOC ∠=
.设OP x =,CPF ∆的面积为y .
(1)求证:AP OQ =;
(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.
【答案】(1)证明见解析;(2)236030050
(10)13
x x y x x -+=<<;(3)8OP =
【解析】 【分析】
(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结
OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻
找已知对应边的夹角,即POA QDO ∠=∠即可;
(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4
cos 5
AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】
(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,
{OP DQ
POA QDO OA DO
=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;
(2)作PH OA ⊥,交OA 于H , ∵4cos 5
AOC ∠=, ∴4455OH OP x =
=,3
5PH x =, ∴1
32
AOP S AO PH x ∆=
⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴
22
10(
)()AOP
y CP x S OP x
∆-==, ∴2360300
x x y x
-+=,当F 与点D 重合时,
∵4
2cos 210165
CD OC OCD =⋅∠=⨯⨯=, ∴
101016x x =-,解得50
13
x =, ∴2360300x x y x
-+=
50
(10)13x <<; (3)①当90OPE ∠=时,90OPA ∠=,
∴4
cos 1085
OP OA AOC =⋅∠=⨯
=; ②当90POE ∠=时,
101025
4cos cos 25OC CQ QCO AOC =
===
∠∠,
∴252OP DQ CD CQ CD ==-=-2571622
=-=, ∵
50
1013
OP <<, ∴7
2
OP =
(舍去); ③当90PEO ∠=时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,
∴90AEO AOP ∠=∠=,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.
4.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD 是梯形,AB ∥CD ,点B (10,0),C (7,4).直线l 经过A ,D 两点,且sin ∠DAB=
2
2
.动点P 在线段AB 上从点A 出发以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发以每秒5个单位的速度沿B→C→D 的方向向点D 运动,过点P 作PM 垂直于x 轴,与折线A→D→C 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S .
(1)点A 的坐标为 ,直线l 的解析式为 ;
(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围; (3)试求(2)中当t 为何值时,S 的值最大,并求出S 的最大值;
(4)随着P ,Q 两点的运动,当点M 在线段DC 上运动时,设PM 的延长线与直线l 相交于点N ,试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值. 【答案】解:(1)(﹣4,0);y=x+4.
(2)在点P、Q运动的过程中:
①当0<t≤1时,如图1,
过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.
过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•3
5
=3t.
∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,
S=1
2
PM•PE=
1
2
×2t×(14﹣5t)=﹣5t2+14t.
②当1<t≤2时,如图2,
过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.
S=1
2
PM•PE=
1
2
×2t×(16﹣7t)=﹣7t2+16t.
③当点M与点Q相遇时,DM+CQ=CD=7,
即(2t﹣4)+(5t﹣5)=7,解得t=16
7

当2<t<16
7
时,如图3,
MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,
S=1
2
PM•MQ=
1
2
×4×(16﹣7t)=﹣14t+32.
综上所述,点Q与点M相遇前S与t的函数关系式为
()
()
2
2
5t14t0<t1
S{7t16t1<t2
16
14t322<t<
7
-+≤
=-+≤
⎛⎫
-+ ⎪
⎝⎭

(3)①当0<t≤1时,
2
2
749
S5t14t5t
55
⎛⎫
=-+=--+

⎝⎭

∵a=﹣5<0,抛物线开口向下,对称轴为直线t=7
5
,∴当0<t≤1时,S随t的增大而增大.
∴当t=1时,S有最大值,最大值为9.
②当1<t≤2时,
2
2
864
S7t16t7t
77
⎛⎫
=-+=--+

⎝⎭

∵a=﹣7<0,抛物线开口向下,对称轴为直线t=8
7

∴当t=8
7时,S有最大值,最大值为
64
7

③当2<t<16
7
时,S=﹣14t+32
∵k=﹣14<0,∴S随t的增大而减小.
又∵当t=2时,S=4;当t=16
7
时,S=0,∴0<S<4.
综上所述,当t=8
7
时,S有最大值,最大值为
64
7

(4)t=20
9
或t=
12
5
时,△QMN为等腰三角形.
【解析】
(1)利用梯形性质确定点D的坐标,由sin∠
DAB=
2
,利用特殊三角函数值,得到
△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:
∵C(7,4),AB∥CD,∴D(0,4).
∵sin∠
DAB=
2
,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).
设直线l的解析式为:y=kx+b,则有
4k b0
{
b4
-+=
=
,解得:
k1
{
b4
=
=
.∴y=x+4.
∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.
(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;
③当2<t<16
7
时,如图3.
(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:
①如图4,点M在线段CD上,
MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,
由MN=MQ,得16﹣7t=2t﹣4,解得t=20
9

②如图5,当点M运动到C点,同时当Q刚好运动至终点D,
此时△QMN为等腰三角形,t=12
5

∴当t=20
9或t=
12
5
时,△QMN为等腰三角形.
考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.
5.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.
(1)求A、B之间的路程;
(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73
≈≈).
【答案】
【小题1】73.2
【小题2】超过限制速度.
【解析】
解:(1)100(31)
AB=-73.2 (米).…6分
(2) 此车制速度v==18.3米/秒
6.已知抛物线y=﹣1
6
x2﹣
2
3
x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称
轴与x轴交于H点,分别以OC、OA为边作矩形AECO.
(1)求直线AC的解析式;
(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.
(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.
【答案】(1) y=1
3
x+2;(2) 点M坐标为(﹣2,
5
3
)时,四边形AOCP的面积最大,此时
|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(
3
5
-,
19
5
).
【解析】
【分析】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;
(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.
【详解】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,
2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,8
3
),C点坐标为(0,2),则过点C
的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k
1
3
=,则:直线AC的表达式
为:y
1
3
=x+2;
(2)如图,过点P作x轴的垂线交AC于点H.
四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP
的面积最大即可,设点P坐标为(m,
1
6
-m2
2
3
-m+2),则点G坐标为(m,
1
3
m+2),
S△ACP
1
2
=PG•OA
1
2
=•(
1
6
-m2
2
3
-m+2
1
3
-m﹣2)•6
1
2
=-m2﹣3m,当m=﹣3时,上式
取得最大值,则点P坐标为(﹣3,5
2
).连接OP交对称轴于点M,此时,|PM﹣OM|有
最大值,直线OP的表达式为:y
5
6
=-x,当x=﹣2时,y
5
3
=,即:点M坐标为(﹣2,
5 3),|PM﹣OM|的最大值为:2222
555
(32)()2()
233
-++--+=61.
(3)存在.
∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=
DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt △DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a 83=,则:MC 103
=,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt △DMC 中,12DH •MC 12=MD •DC ,即:DH 108
33

=⨯2,
则:DH 85=
,HC 65==,即:点D 的坐标为(61855
-,); 设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6
D ′坐标为(618
55,-
++),而点E 坐标为(﹣6,2),则2''
A D =
22618(6)()
55
-++=36,2'A E =222)+=
24m +,2
'ED =22248(
(
55+=2128
5m +.若△A ′ED ′为直角三角形,分三种情况讨论:
①当2''A D +2'A E =2'ED 时,36+2
4
m -=21285m +,解得:m ,
此时D ′(618
55,-
++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2
128
5m +=2
4m +,解得:
m =
D ′(61855,-)为(-6,2);
③当2'A E +
2'
ED =
2
''A D 时,2
4
m +21285m +=36,解得:m =5
-
或m
,此时D ′(61855,-+)为(-6,2)或(
35,19
5
). 综上所述:D 坐标为:(0,4)或(﹣6,2)或(35,19
5
). 【点睛】
本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.
7.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ;
(2)如图2,连接CABG ,若∠FGB =
1
2
∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =3
5
,AK =10,求CN 的长.
【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(320
1013
【解析】 试题分析:
(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;
(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=1
2
∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,
由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3
5
AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=
4
3
CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=
3AH
HK
=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP
=,可设PN=12b ,AP=9b ,由tan ∠ACG=
PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5
13
,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:
(1)如图1,连接OG .
∵EF 切⊙O 于G , ∴OG ⊥EF ,
∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,
∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,
∵∠FGB=
1
2
∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .
(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3
5
AH AC =,设AH=3a ,AC=5a , 则2
2
4AC CH a -=,tan ∠CAH=
4
3
CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,
∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=
AH
HK
=3,2210AH HK a +=,
∵AK=10,
∴1010
a=,
∴a=1.AC=5,
∵∠BHD=∠AGB=90°,
∴∠BHD+∠AGB=180°,
在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,
∵∠AKH+∠HKG=180°,
∴∠AKH=∠ABG,
∵∠ACN=∠ABG,
∴∠AKH=∠ACN,
∴tan∠AKH=tan∠ACN=3,
∵NP⊥AC于P,
∴∠APN=∠CPN=90°,
在Rt△APN中,tan∠CAH=
4
3
PN
AP
=,设PN=12b,则AP=9b,
在Rt△CPN中,tan∠ACN=PN
CP
=3,
∴CP=4b,
∴AC=AP+CP=13b,∵AC=5,
∴13b=5,
∴b=5
13

∴CN=22
PN CP
+=410b⋅=20
10 13

8.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).
【答案】拦截点D处到公路的距离是(500+500)米.
【解析】
试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离
DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出
CF=CD=500米,则DA=BE+CF=(500+500)米.
试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.
在Rt△BCE中,∵∠E=90°,∠CBE=60°,
∴∠BCE=30°,
∴BE=BC=×1000=500米;
在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,
∴CF=CD=500米,
∴DA=BE+CF=(500+500)米,
故拦截点D处到公路的距离是(500+500)米.
考点:解直角三角形的应用-方向角问题.
9.问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.
【答案】(1)证明见解析,直径OP=2;
(2)证明见解析,MN的长为定值,该定值为2;
(3)①MN=;②证明见解析;
(4)MN取得最大值2.
【解析】
试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;
(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;
(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:
MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;
(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.
试题解析:(1)如图一,
∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;
(2)如图一,
∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;
(3)①如图二,
∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.
∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;
②设四边形PMON的外接圆为⊙O′,连接NO′并延长,
交⊙O′于点Q,连接QM,如图三,
则有∠QMN=90°,∠MQN=∠MPN=60°,
在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,
∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.
(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.
当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.
考点:圆的综合题.
10.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
【答案】解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。

∴菱形ABCD的周长为200。

(2)过点M作MP⊥AD,垂足为点P.
①当0<t≤40时,如答图1,
∵,
∴MP=AM•sin∠OAD=t。

S=DN•MP=×t×t=t2。

②当40<t≤50时,如答图2,MD=70﹣t,
∵,
∴MP=(70﹣t)。

∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。

∴S关于t的解析式为。

当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480;当40<t≤50时,S随t的增大而减小,最大值不超过480。

综上所述,S的最大值为480。

(3)存在2个点P,使得∠DPO=∠DON。

如答图3所示,过点N作NF⊥OD于点F,
则NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。

∴OF=12。

∴。

作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,
则FG=GH。

∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG。

∴。

∴。

设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG,∴。

∴PK=。

根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′。

∴存在两个点P到OD的距离都是
【解析】
试题分析:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问
中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.
(1)根据勾股定理及菱形的性质,求出菱形的周长;
(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;
(3)如答图4所示,作ON的垂直平分线,交EF于点I,连接OI,IN.过点N作
NG⊥OD,NH⊥EF,垂足分别为G,H.易得△DNG∽△DAO,由EF垂直平分OD,得到OE=ED=15,EG=NH=3,再设OI=R,EI=x,根据勾股定理,在Rt△OEI和Rt△NIH中,得到关于R和x的方程组,解得R和x的值,把二者相加就是点P到OD的距离,即PE=PI+IE=R+x,又根据对称性可得,在BD下方还存在一个点P′也满足条件,故存在两个点P,到OD的距离也相同,从而问题解决.
试题解析:(1)如图①)在菱形ABCD中,OA=AC=40, OD=BD=30,
∵AC⊥BD,
∴AD==50,
∴菱形ABCD的周长为200;
(2)(如图②)过点M作MH⊥AD于点H.
① (如图②甲)①当0<t≤40时,
∵sin∠OAD===,
∴MH=t,
∴S=DN·MH=t2.
②(如图②乙)当40<t≤50时,
∴MD=80-t,
∵sin∠ADO=-,
∴MH=(70-t),
∴S=DN·MH,
=-t2+28t
=-(t-35)2+490.
∴S=,
当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而增大,当t=40时,最大值为480.综上所述,S的最大值为480;
(3)存在2个点P,使得∠DPO=∠DON.
(如图④)作ON的垂直平分线,交EF于点I,连接OI,IN.
过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.
当t=30时,DN=OD=30,易知△DNG∽△DAO,
∴NG=24,DG=18.
∵EF垂直平分OD,
∴OE=ED=15,EG=NH=3,
设OI=R,EI=x,则
在Rt△OEI中,有R2=152+x2……①,
在Rt△NIH中,有R2=32+(24-x)2……②,
由①,②可得:,
∴PE=PI+IE=.
根据对称性可得,在BD下方还存在一个点P′也满足条件,∴存在两个点P,到OD的距离都是.
考点:相似性综合题.。

相关文档
最新文档