宁波市初中数学八年级下期末知识点复习(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )
A .(-√3,1)
B .(-1,√3)
C .(√3,1)
D .(-√3,-1)
2.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )
A .12k k =
B .12b b <
C .12b b >
D .当5x =时,
12y y >
3.(0分)[ID :10210]若代数式1
1
x x +-有意义,则x 的取值范围是( ) A .x >﹣1且x≠1
B .x≥﹣1
C .x≠1
D .x≥﹣1且x≠1
4.(0分)[ID :10202]如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )
A .30
B .36
C .54
D .72
5.(0分)[ID :10196]已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中
k 值可能是( )
A.1B.2C.3D.4
6.(0分)[ID:10146]为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
每天锻炼时间(分钟)20406090
学生数2341
则关于这些同学的每天锻炼时间,下列说法错误的是()
A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 7.(0分)[ID:10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若8
ab ,大正方形的面积为25,则小正方形的边长为()
A.9B.6C.4D.3
8.(0分)[ID:10141]12751
3
48)的结果是()
A.6B.3C.3D.12
9.(0分)[ID:10137]下列有关一次函数y=﹣3x+2的说法中,错误的是()
A.当x值增大时,y的值随着x增大而减小
B.函数图象与y轴的交点坐标为(0,2)
C.函数图象经过第一、二、四象限
D.图象经过点(1,5)
10.(0分)[ID:10179]若正比例函数的图象经过点(−1,2),则这个图象必经过点().A.(1,2)B.(−1,−2)C.(2,−1)D.(1,−2)11.(0分)[ID:10175]函数y=
√x+3
的自变量取值范围是( )
A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分
别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )
A .6
B .12
C .24
D .不能确定
13.(0分)[ID :10161]如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )
A .10m
B .15m
C .18m
D .20m
14.(0分)[ID :10154]在平面直角坐标系中,将函数3y x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)
B .(-2,0)
C .(6,0)
D .(-6,0)
15.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A .48
B .60
C .76
D .80
二、填空题
16.(0分)[ID :10324]若2, 则x 2+2x+1=__________.
17.(0分)[ID :10323]如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.
18.(0分)[ID :10292]如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
19.(0分)[ID :10290]一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .
20.(0分)[ID :10287]已知函数y =2x +m -1是正比例函数,则m =___________. 21.(0分)[ID :10285]元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.
22.(0分)[ID :10276]在矩形ABCD 中,AD=5,AB=4,点E ,F 在直线AD 上,且四边形BCFE 为菱形,若线段EF 的中点为点M ,则线段AM 的长为 .
23.(0分)[ID :10260]在ABC ∆中,
13AC BC ==, 10AB =,则ABC ∆面积为_______. 24.(0分)[ID :10258]2019x -x 的取值范围是_____.
25.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .
三、解答题
26.(0分)[ID :10416](1271183
12;(2) 3
21252÷27.(0分)[ID :10414]如图,在ABCD 中,E ,F 分别是边AD ,BC 上的点,且
AE CF =.求证:四边形BEDF 为平行四边形.
28.(0分)[ID:10392]如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD 的形状,并说明理由.
29.(0分)[ID:10377]甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
选手A平均数中位数众数方差
甲a88c
乙7.5b6和9 2.65
(1)补全甲选手10次成绩频数分布图.
(2)a=,b=,c=.
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
30.(0分)[ID:10360]求证:三角形的一条中位线与第三边上的中线互相平分.
和它的一条中位线DE,在给出的图形上,请用尺规作出BC边要求:(1)根据给出的ABC
上的中线AF,交DE于点O.不写作法,保留痕迹;
(2)据此写出已知,求证和证明过程.
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、选择题
1.A
2.B
3.D
4.D
5.B
6.B
7.D
8.D
9.D
10.D
11.B
12.B
13.C
14.B
15.C
二、填空题
16.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式
17.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴
18.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7
19.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B
20.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1
是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义
21.(324800)【解析】【分析】根据题意可以得到关于t的方程从而可以求得点P的坐标本题得以解决【详解】由题意可得150t=240(t﹣12)解得t=32则150t=150×32=4800∴点P的坐标
22.5或05【解析】【分析】两种情况:①由矩形的性质得出
CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF 得出MF即可求出AM;②同①得出
23.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形
∴AD=BD=5根据勾股定理C
24.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键
25.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差
三、解答题
26.
27. 28. 29. 30.
2016-2017年度第*次考试试卷 参考解析
【参考解析】
**科目模拟测试
一、选择题 1.A 解析:A 【解析】
试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为 (-,1)故选A .
考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.
2.B
解析:B 【解析】 【分析】
根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】
∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k ,
∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,
∴当x 5=时,12y y > 故选B . 【点睛】
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
3.D
解析:D 【解析】 【分析】
此题需要注意分式的分母不等于零,二次根式的被开方数是非负数. 【详解】 依题意,得 x+1≥0且x-1≠0, 解得 x≥-1且x≠1. 故选A . 【点睛】
本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.
4.D
解析:D 【解析】 【分析】
求▱ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积. 【详解】
作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,
∴DE=AM=9,ME=AD=10,
又由题意可得,BM=1
2
BC=
1
2
AD=5,
则BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,
过D作DF⊥BE于F,
则DF=
36
5 BD DE
BE

=,
∴S▱ABCD=BC•FD=10×36
5
=72.
故选D.
【点睛】
此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.
5.B
解析:B
【解析】
由图象可得
25
35
k
k
<


>

,解得
55
32
k
<<,故符合的只有2;故选B.
6.B
解析:B
【解析】
【分析】
根据众数、中位数和平均数的定义分别对每一项进行分析即可.
【详解】
解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;
B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;
C、调查的户数是2+3+4+1=10,故C选项说法正确;
D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;
故选:B.
【点睛】
此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
解析:D
【解析】
【分析】
由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
【详解】
解:由题意可知:中间小正方形的边长为:-a b
每一个直角三角形的面积为:1184
22
ab =⨯= 214()252
ab a b ∴⨯+-= 2()25169a b ∴-=-=
3a b ∴-=
故选:D
【点睛】
本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.
8.D
解析:D
【解析】
【分析】
【详解】
12===. 故选:D. 9.D
解析:D
【解析】
【分析】
A 、由k =﹣3<0,可得出:当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意;
B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意;
C 、由k =﹣3<0,b =2>0,利用一次函数图象与系数的关系可得出:一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意;
D 、利用一次函数图象上点的坐标特征,可得出:一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.此题得解.
解:A、∵k=﹣3<0,
∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;
B、当x=0时,y=﹣3x+2=2,
∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;
C、∵k=﹣3<0,b=2>0,
∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;
D、当x=1时,y=﹣3x+2=﹣1,
∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.
故选:D.
【点睛】
此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.
10.D
解析:D
【解析】
设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(-1,2),
所以2=-k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(1,-2).
故选D.
11.B
解析:B
【解析】
【分析】
【详解】
由题意得:x+3>0,
解得:x>-3.
故选B.
12.B
解析:B
【解析】
【分析】
由矩形ABCD可得:S△AOD=1
4
S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求
得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果. 【详解】
连接OP ,如图所示:
∵四边形ABCD 是矩形,
∴AC =BD ,OA =OC =
12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14
S 矩形ABCD , ∴OA =OD =
12
AC , ∵AB =15,BC =20, ∴AC =22AB BC +=221520+=25,S △AOD =14S 矩形ABCD =14
×15×20=75, ∴OA =OD =252
, ∴S △AOD =S △APO +S △DPO =
12OA •PE +12OD •PF =12OA •(PE +PF )=12
×252(PE +PF )=75,
∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.
故选B .
【点睛】
本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.
13.C
解析:C
【解析】
∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m ,
∴=13m ,
∴这棵树原来的高度=BC+AC=5+13=18m.
故选C.
14.B
解析:B
【解析】
【分析】
先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.
【详解】
根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,
∴360x +=,即2x =-,
∴点坐标为(-2,0),
故选B.
【点睛】
本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.
15.C
解析:C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴10==
∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-
1682⨯⨯ =100-24
=76.
故选C.
考点:勾股定理.
二、填空题
16.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x 的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式
解析:2
【解析】
【分析】
先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可.
【详解】
∵,
∴x2+2x+1=(x+1)22=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
17.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A 2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴
解析:(4,0)(2n﹣1,2n)
【解析】
【分析】
先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.
【详解】
解:∵点A1坐标为(1,0),
∴OA1=1,
过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),
∵点A2与点O关于直线A1B1对称,
∴OA1=A1A2=1,
∴OA2=1+1=2,
∴点A2的坐标为(2,0),B2的坐标为(2,4),
∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).
故答案为(4,0),(2n﹣1,2n).
考点:一次函数图象上点的坐标特征.
18.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7
解析:【解析】
在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,
=
4
∴AC+BC=3+4=7米.
故答案是:7.
19.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B
解析:【解析】
【分析】
过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.
【详解】
如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.
∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.
∵S△ACB=1
2
AC×BC=
1
2
AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12
(cm).
故答案为12.
【点睛】
本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.
20.1【解析】分析:依据正比例函数的定义可得m-
1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-
1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义
解析:1
【解析】
分析:依据正比例函数的定义可得m-1=0,求解即可,
详解:∵y=2x+m-1是正比例函数,
∴m-1=0.
解得:m=1.
故答案为:1.
点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义. 21.(324800)【解析】【分析】根据题意可以得到关于t的方程从而可以求得点P的坐标本题得以解决【详解】由题意可得150t=240(t﹣12)解得t=32则15 0t=150×32=4800∴点P的坐标
解析:(32,4800)
【解析】
【分析】
根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.
【详解】
由题意可得,150t=240(t﹣12),
解得,t=32,
则150t=150×32=4800,
∴点P的坐标为(32,4800),
故答案为:(32,4800).
【点睛】
本题考查了一次函数的应用,根据题意列出方程150t=240(t﹣12)是解决问题的关键.22.5或05【解析】【分析】两种情况:①由矩形的性质得出
CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF得出MF即可求出AM;②同①得出
解析:5或0.5.
【解析】
【分析】
两种情况:①由矩形的性质得出CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=5,由勾股定理求出DF,得出MF,即可求出AM;②同①得出AE=3,求出ME,即可得出AM的长.
【详解】
解:分两种情况:①如图1所示:
∵四边形ABCD是矩形,
∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,
∵四边形BCFE为菱形,
∴CF=EF=BE=BC=5,
∴DF=2222
=54
CF CD
--=3,
∴AF=AD+DF=8,
∵M是EF的中点,
∴MF=1
2
EF=2.5,
∴AM=AF﹣DF=8﹣2.5=5.5;
②如图2所示:同①得:AE=3,
∵M是EF的中点,
∴ME=2.5,
∴AM=AE﹣ME=0.5;
综上所述:线段AM的长为:5.5,或0.5;故答案为5.5或0.5.
本题考查矩形的性质;菱形的性质.
23.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高
CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60
【解析】
【分析】
根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.
【详解】
如图作出AB 边上的高CD
∵AC=BC=13, AB=10,
∴△ABC 是等腰三角形,
∴AD=BD=5,
根据勾股定理 CD 2=AC 2-AD 2, 22135-,
12ABC S
CD AB =⋅=112102
⨯⨯=60, 故答案为:60.
【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.
24.x >2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-
20190所以x 的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键
解析:x >2019
【解析】
【分析】
根据二次根式的定义进行解答.
【详解】
2019x -x-2019≥ 0,所以x 的取值范围是x ≥ 2019.
本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.
25.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-
6=4再计算方差(一般地设n 个数据x1x2…xn 的平均数为=()则方差=)==2考点:平均数方差
解析:2
【解析】
试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =
1n (12n x x x ++⋯+),则方差2S =1
n [22212n x x x x x x -+-+⋯+-()()()]),2S =1
5
[222222434445464-+-+-+-+-()()()()()]=2. 考点:平均数,方差
三、解答题
26.
(1 (2 【解析】
【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;
(2)根据二次根式乘除法的法则进行计算即可.
【详解】(1)原式=13⨯ ;
(2)原式=11245⨯⨯⨯=110 【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
27.
证明见解析.
【解析】
【分析】
由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论.
【详解】
证明:四边形ABCD 是平行四边形,
∴AD BC ∥,AD BC =.
∵AE CF =,
∴AD AE BC CF -=-.
∴ED BF =,
∵//ED BF ,ED BF =,
∴四边形BEDF 是平行四边形.
【点睛】
本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.
28.
△ABD 为直角三角形,理由见解析.
【解析】
【分析】
先在△ABC 中,根据勾股定理求出2AB 的值,再在△ABD 中根据勾股定理的逆定理,判断出AD ⊥AB,即可得到△ABD 为直角三角形.
【详解】
解:△ABD 为直角三角形
理由如下:
∵∠C =90°,AC =3,BC =4,. ∴222222435AB CB AC =+=+=
∵52+122=132222AB AD BD ∴+=,90BAD ∴∠=︒
29.
(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【解析】
【分析】
(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案; (2)根据平均数公式、中位数的求法和方差公式计算得到答案;
(3)从平均数和方差进行分析即可得到答案.
【详解】
解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,
补全图形如下:
(2)a =67284921010+⨯+⨯+⨯+=8(环),
c =110×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2, b =872
+=7.5, 故答案为:8、1.2、7.5;
(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.
【点睛】
本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.
30.
(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.
【解析】
【分析】
(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;
(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.
【详解】
解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。

(2)已知:D E F 、、分别为ABC ∆三边AB AC BC 、、的中点,AF 与DE 交于点O 。

求证:AC 与DE 互相平分。

证明:连结DF EF 、,
D F 、分别为AB BC 、的中点,
有1,2
DF AC DF AC =∕∕, 又E 为AC 中点,
所以,,DF AE DF AE =∕∕,
四边形ADFE 为平行四边形,
所以,AC 与DE 互相平分.
【点睛】
本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角
等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形中位线定理.。

相关文档
最新文档