廉庄子乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
廉庄子乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列计算正确的是()
A. B. C. D.
【答案】D
【考点】算术平方根,立方根及开立方,同底数幂的乘法,同类项
【解析】【解答】解:A.∵2a与3b不是同类项,不能合并,故错误,A不符合题意;
B.∵=6,故错误,B不符合题意;
C.∵≠3,故错误,C不符合题意;
D.∵72×73=75,故正确,D符合题意;
故答案为:D.
【分析】A.同类项:所含字母相同,相同字母指数相同,由此判断是否为同类项;故可判断错误;
B.算术平方根只有正,平方根才有正负;故错误;
C.9开立方根不会等于3,故错误;
D.同底数幂相乘,底数不变,指数相加,由此计算即可.
2、(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
3、(2分)5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()
A.>
B.>
C.=
D.以上都不对
【答案】B
【考点】不等式及其性质
【解析】【解答】解:根据把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又
前两名的平均身高为c米,后三名的平均身高为d米,则c>a>d>b,则c-a>0>b-d,得c+d>a+b,得:>
.
故答案为:B.
【分析】根据已知可得这5名学生身高为3a+2b=2c+3d, 由a>d可得2a+2b<2c+2d,利用不等式的性质两边同时除以4即可得出答案。
4、(2分)下列四个图形中,不能推出∠2与∠1相等的是
A. B. C. D.
【答案】B
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:A、∠1与∠2是对顶角,因此∠1=∠2,故A不符合题意;
B、∵a∥b,∴∠1+∠2=180°,故B符合题意;
C、∵a∥b,∴∠1与∠2的对顶角相等,∴∠1=∠2,故C不符合题意;
D、、∵a∥b,∴∠1=∠2,故D不符合题意;
故答案为:B
【分析】根据平行线的性质及对顶角相等,对各选项逐一判断即可。
5、(2分)在数﹣,0,,0.101001000…,中,无理数有()
A. 1个
B. 2个
C. 3个
D. 4个【答案】B
【考点】无理数的认识
【解析】【解答】π/2,0.101001000…为无理数,﹣2/3,0,22/7为有理数,故无理数有两个. 故答案为:B.
【分析】根据无理数是无限不循环的小数,就可得出无理数的个数。
6、(2分)不等式组的所有整数解的和是()
A. 2
B. 3
C. 5
D. 6 【答案】D
【考点】一元一次不等式组的特殊解
【解析】【解答】解:
∵解不等式①得;x>﹣,
解不等式②得;x≤3,
∴不等式组的解集为﹣<x≤3,
∴不等式组的整数解为0,1,2,3,
0+1+2+3=6,
故答案为:D
【分析】先解不等式组求得不等式组的解集,再取在解集范围内的整数解即可.
7、(2分)下列说法中:
①-1的平方根是±1;②(-1)2的平方根是±1;③实数按性质分类分为正实数,0和负实数;④-2是-8的立方根;其中正确的个数是()
A. 0
B. 1
C. 2
D. 3
【答案】D
【考点】平方根,立方根及开立方,实数及其分类
【解析】【解答】解:①-1没有平方根,因此①错误;
②(-1)2=1,(-1)2的平方根是±1,因此②正确;
③实数按性质分类分为正实数,0和负实数,因此③正确;
④-2是-8的立方根,因此④正确
正确的有②④③
故答案为:D
【分析】根据平方根,立方根的性质,及实数的分类,对各选项逐一判断即可。
8、(2分)如图,有下列判定,其中正确的有()
①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】平行线的判定与性质
【解析】【解答】解:①若∠1=∠3,则AB=AD,故本小题不符合题意;
②若AD∥BC,则∠2=∠3,故本小题不符合题意
③,由AD∥BC,得出∠2=∠3,又∠1=∠3,故∠1=∠2,正确;故本小题符合题意
④若∠C+∠3+∠4=180∘,则AD∥BC 正确;故本小题符合题意
综上所述,正确的有③④共2个。
故选B.
【分析】根据平行线的判定定理及性质定理以及等量代换,等边对等角的性质即可一一作出判断。
9、(2分)当x=3时,下列不等式成立的是()
A.x+3>5
B.x+3>6
C.x+3>7
D.x+3<5
【答案】A
【考点】不等式的解及解集
【解析】【解答】解:A、当x=3时,x+3=3+3=6>5,所以x+3>5成立;
B、当x=3时,x+3=3+3=6,所以x+3>6不成立;
C、当x=3时,x+3=3+3=6<7,所以;x+3>7不成立;
D、当x=3时,x+3=3+3=6>5,所以x+3<5不成立.
故答案为:A
【分析】把x=3分别代入各选项中逐个进行判断即可。
10、(2分)不等式3x+2<2x+3的解集在数轴上表示正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】解:3x-2x<3-2
解之:x<1
故答案为:D
【分析】先求出不等式的解集,再根据不等式的解集作出判断即可。
注意:小于向左边画,用空心圆圈。
11、(2分)利用数轴确定不等式组的解集,正确的是()
A.
B.
C.
D.
【答案】A
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集
的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.
故答案为:A.
【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
12、(2分)|-125|的立方根为()
A. -5
B. 5
C. 25
D. ±5
【答案】B
【考点】立方根及开立方
【解析】【解答】|-125|=125.∵53=125,∴125的立方根为5,即|-125|的立方根为5.故答案为:B.
【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
根据立方根的意义可得|-125|的立方根为5。
二、填空题
13、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。
14、(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将
先化简为4,再根据算数平方根的意义算出4的算数平方根即可。
15、(1分)二元一次方程组的解是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:原方程可化为:,
化简为:,
解得:.
故答案为:
【分析】先将原方程组进行转化为并化简,就可得出,再利用加减消元法,就可求出方程组的解。
16、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
17、(1分)解方程组,小明正确解得,小丽只看错了c解得,则当x=﹣1时,代数式ax2﹣bx+c的值为________.
【答案】6.5
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:把代入方程组得:,
解②得:c=5,
把代入ax+by=6得:﹣2a+b=6③,
由①和③组成方程组,
解得:a=﹣1.5,b=3,
当x=﹣1时,ax2﹣bx+c=﹣1.5×(﹣1)2﹣3×(﹣1)+5=6.5,
故答案为:6.5.
【分析】先将小明求的方程组的解代入方程组,求出c的值,再将小丽求得的解代入方程组中的第一个方程,然后建立方程组,求出方程组的解,然后将a、b的值代入代数式求值。
18、(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即可。
三、解答题
19、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。
【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。
所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。
20、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然
后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
21、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
22、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
23、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
24、(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,
女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
25、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
26、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.。