3.4.1实际问题与一元一次方程
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷;同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面,求每个房间需要粉刷的墙面面积?
6、一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?(分析:本题的配套关系是:桌面:桌腿=1:4,即一个桌面需要4个桌腿).
五、课堂检测和课后作业:
1、有群鸽子和一些鸽笼,每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子,原有多少只鸽子和多少个鸽笼?
2、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?
宝箴塞初中“三步六助”助学案
学科:数学年级:七年级课题:3.4.1实际问题与一元一次方程----配套问题
课型
新授
课时
1
主备
蒲雄生
学习笔记
审核
助学教师
使用学生
第一步:问题引领——教师“备助”设疑,激情引入
学习目标:通过分析零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。
2.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?
四、归纳总结:
1、这节课你学到了些什么?
2、这节课你还有什么疑问?
第三步:反馈拓展——教师“补助”点评、总结,提升知识与情感。学生“再助”查漏补缺,复习巩固.
教学重点:找出能够表示问题全部含义的相等关系。
教学难点:探索实际问题与一元一次方程的关系。
教学过程:
一、习旧知
1、列一元一次方程解应用题的步骤:(用五个字来表示)
①②③④⑤
2、注意:
(1)、设未知数及作答时若有单位的一定要带单位。
(2)、方程中数量单位要统一。
二、创设情景、导入新课
在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是:抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题
解:
通过以上几例,我们可以看出,配套问题的背景虽然不同,但解决问题的方法是一样的,需要抓住配套问题的关键语句进行配套.
第二步:互动探究——“自助、求助、互助”,整合资源,探索技能一、
三、请你试一试
1.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?
课后小结:
(一)配套与人员分配问题
例1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
分析:本题的配套关系是:一个螺钉配两个螺母,即螺钉数:螺母数=
解:设分配x名工人生产螺钉,则名工人生产螺母,则一天生产的螺钉数为个,生产的螺母数为个,列出方程为
(分析:本题的配套关系是:每天挖的土方等于每天运走的土方.)
3、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
4、某车间有工有34人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,怎样分配工人?
思考:如果配套比例是螺钉数量:螺母数量=2:3,又该怎么列方程呢?(只列方程,不解)
(二)配套与物质分配问题
例2:用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
(分析:本题的配套关系是盒身数:盒底数=__.)
6、一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?(分析:本题的配套关系是:桌面:桌腿=1:4,即一个桌面需要4个桌腿).
五、课堂检测和课后作业:
1、有群鸽子和一些鸽笼,每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子,原有多少只鸽子和多少个鸽笼?
2、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?
宝箴塞初中“三步六助”助学案
学科:数学年级:七年级课题:3.4.1实际问题与一元一次方程----配套问题
课型
新授
课时
1
主备
蒲雄生
学习笔记
审核
助学教师
使用学生
第一步:问题引领——教师“备助”设疑,激情引入
学习目标:通过分析零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。
2.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?
四、归纳总结:
1、这节课你学到了些什么?
2、这节课你还有什么疑问?
第三步:反馈拓展——教师“补助”点评、总结,提升知识与情感。学生“再助”查漏补缺,复习巩固.
教学重点:找出能够表示问题全部含义的相等关系。
教学难点:探索实际问题与一元一次方程的关系。
教学过程:
一、习旧知
1、列一元一次方程解应用题的步骤:(用五个字来表示)
①②③④⑤
2、注意:
(1)、设未知数及作答时若有单位的一定要带单位。
(2)、方程中数量单位要统一。
二、创设情景、导入新课
在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是:抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题
解:
通过以上几例,我们可以看出,配套问题的背景虽然不同,但解决问题的方法是一样的,需要抓住配套问题的关键语句进行配套.
第二步:互动探究——“自助、求助、互助”,整合资源,探索技能一、
三、请你试一试
1.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?
课后小结:
(一)配套与人员分配问题
例1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
分析:本题的配套关系是:一个螺钉配两个螺母,即螺钉数:螺母数=
解:设分配x名工人生产螺钉,则名工人生产螺母,则一天生产的螺钉数为个,生产的螺母数为个,列出方程为
(分析:本题的配套关系是:每天挖的土方等于每天运走的土方.)
3、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
4、某车间有工有34人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,怎样分配工人?
思考:如果配套比例是螺钉数量:螺母数量=2:3,又该怎么列方程呢?(只列方程,不解)
(二)配套与物质分配问题
例2:用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
(分析:本题的配套关系是盒身数:盒底数=__.)