《线性代数》课程教学大纲
线性代数课程大纲
线性代数课程大纲一、课程介绍线性代数是一门重要的基础数学课程,它研究的是向量空间、线性变换等概念及其代数表达与计算方法。
本课程旨在帮助学生掌握线性代数的基本理论和方法,培养学生的抽象思维和解决实际问题的能力。
二、教学目标1. 了解线性代数的基本概念和性质,包括向量、矩阵、线性方程组等;2. 掌握线性代数的基本运算法则和矩阵的性质;3. 熟练运用线性代数方法解决实际问题;4. 培养学生的抽象思维和逻辑推理能力;5. 培养学生的团队合作和沟通能力。
三、课程内容1. 向量空间1.1 向量的定义及其运算法则1.2 向量空间的概念与性质1.3 线性相关与线性无关1.4 基与维数2. 矩阵与矩阵运算2.1 矩阵的定义及其运算法则2.2 线性方程组与矩阵的关系2.3 矩阵的行列式和逆矩阵3. 线性变换与特征值特征向量3.1 线性变换的定义与性质3.2 特征值和特征向量的概念与计算3.3 相似矩阵和对角化4. 线性空间的正交性与最小二乘法4.1 正交基与正交投影4.2 最小二乘法的概念与应用4.3 欧氏空间与内积的性质5. 特殊矩阵与特殊线性方程组5.1 对称矩阵与二次型5.2 线性方程组的矩阵形式与解法5.3 基本概念与重要性质四、教学方法1. 理论讲授:从基本概念出发,逐步引入相关性质和运算法则的讲解;2. 示例演练:通过实例分析和计算练习,巩固学生的理论掌握能力;3. 互动讨论:鼓励学生积极参与课堂讨论,促进思维和交流;4. 编程实践:借助计算机编程软件,进行线性代数相关问题的编程实验。
五、考核方式1. 平时表现:包括课堂参与、作业完成情况等,占总评成绩的20%;2. 期中考试:对课程前半部分的理论知识进行考核,占总评成绩的30%;3. 期末考试:对整个课程内容进行综合考核,占总评成绩的50%;六、参考教材1. 《线性代数及其应用》,David C. Lay著;2. 《线性代数导论》,Sebastian Gross, Jay Hill, Isaac Lavendel著;3. 《线性代数与其应用》,朱杰民,胡文苑,徐伟治著。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
线性代数》课程教学大纲
线性代数》课程教学大纲本章主要介绍行列式的概念、性质、计算方法及其应用。
包括行列式的定义、性质、初等变换及其对行列式的影响、行列式按行(列)展开式、克拉默法则和行列式在几何中的应用等内容。
第二章矩阵与向量(8学时)教学内容:本章主要介绍矩阵、向量及其基本运算,包括矩阵的定义、矩阵的运算、矩阵的转置、矩阵的乘法、矩阵的逆、向量的定义、向量的运算、向量的线性相关与线性无关、向量组的秩等内容。
第三章线性方程组(8学时)教学内容:本章主要介绍线性方程组及其解法,包括线性方程组的基本概念、线性方程组的解法、齐次线性方程组、非齐次线性方程组、矩阵方程等内容。
第四章矩阵的特征值和特征向量(6学时)教学内容:本章主要介绍矩阵的特征值和特征向量及其应用,包括特征值和特征向量的定义、性质、计算方法、相似矩阵、对角化、二次型及其标准型等内容。
二)学时分配第一章行列式(6学时)第二章矩阵与向量(8学时)第三章线性方程组(8学时)第四章矩阵的特征值和特征向量(6学时)三、考核方式考核方式包括平时成绩和期末考试成绩两部分。
平时成绩包括课堂表现、作业和小测验等,占总成绩的30%;期末考试为闭卷笔试,占总成绩的70%。
考试内容覆盖全部课程内容,注重考查学生的基本概念、基本理论和基本方法的掌握,以及应用能力的培养。
本章主要介绍矩阵的特征值与特征向量、相似矩阵、二次型与对称矩阵等内容。
其中,重点包括矩阵的特征值与特征向量的概念、性质与求法,实对称矩阵对角化的方法,以及用正交变换法和配方法化二次型为标准形。
难点则在于n阶矩阵与对角矩阵相似的条件和利用正交矩阵化实对称矩阵为对角矩阵。
本课程的教学时数为56学时,其中,课内学时32分配如下表所示。
重点内容的理论课时较多,需要学生认真听讲和思考,同时也需要大量的题课时进行练和巩固。
在行列式方面,学生需要掌握行列式的定义和性质,熟练运用行列式的计算方法,并能够用克拉默法则求解线性方程组。
在矩阵方面,学生需要理解矩阵的概念,掌握矩阵的基本运算和性质,熟练求解逆矩阵和利用分块矩阵讨论线性代数问题。
《线性代数》课程教学大纲
《线性代数》课程教学大纲一、课程信息二、课程目标通过本课程的学习,学生应具备以下几方面的目标:1、使学生掌握与行列式、线性方程组和矩阵有关的基本概念、基本理论和基本方法,提高学生抽象思维和逻辑推理能力。
2、使学生获得一定的线性代数的基础知识,为进一步学习后继课程打下基础。
3、通过线性代数中基本概念的建立,基本理论的证明,基本方法的运用,提高学生分析问题和解决问题的能力。
4、掌握数学中的分析方法结合统计学、计量经济以及计算机信息技术等知识,具有对现实金融、贸易、管理、财务等问题进行数理分析的能力。
课程目标对毕业要求的支撑关系表三、教学内容与预期学习成效四、教学目标达成度评价(根据教学目标分项说明达成度考评方式)(1)教学目标1、2的达成度通过课后作业、单元测试和期末闭卷考试综合考评。
(2)教学目标3的达成度通过课后作业、课后拓展和期末闭卷考试综合考评。
(3)教学目标4的达成度通过课堂讨论与课后拓展进行考评。
五、成绩评定(具体说明课程成绩由几种考评方式组成与所占比例,以及每一种方式的具体考评要求)课程成绩包括4个部分,分别为出勤及课堂表现、课后作业和期末考试。
具体要求及成绩评定方法如下:(1)出勤及课堂表现(10%)设此考核项目,目的是控制无故缺课和课堂懒散无纪律情况,具体方案为:总分为100分,无故旷课一次扣5分;无故旷课超过3次数者,此项总分记0分;无故旷课超过学校规定次数者,按学校有关规定处理;上课睡觉、玩手机、吃零食者被老师发现一次扣5分。
(2)课后作业(10%)每章布置一次课后作业,作业包括课后思考题和计算题,评分以答题思路的规范性、整洁性、整体性、逻辑性、正确性为依据,每次满分为100分,最后取平均分。
作业缺少一次扣5分,总计缺少超过三分之一,作业成绩记0分。
(3)期末考试(80%)期末进行综合闭卷考试,总分为100分,期末考试卷面成绩未达总分50%者,该门课程成绩作不及格处理。
六、课程教材及主要参考书1. 建议教材[1] 陈伏兵.应用线性代数.北京:科学出版社,2011.2. 主要参考书[1] 同济大学数学教研室.线性代数. 北京:高等教育出版社,2004.[2] 张禾瑞.高等代数.北京:高等教育出版社. 2004.制订人:审核人:2020年12月8。
《线性代数》课程教学大纲
《线性代数》课程教学大纲第一篇:《线性代数》课程教学大纲《线性代数》课程教学大纲课程编码:414002(A)课程英文名称:Linear Algebra 先修课程:微积分适用专业:理科本科专业总学分:3.5 总学时:56讲课学时 56 实验学时 0实习学时 0一、课程性质、地位和任务课程名称:线性代数线性代数是我校计算机科学与技术专业的一门重要基础课。
它不但是其它后继专业课程的基础,而且是科技人员从事科学研究和工程设计必备的数学基础。
通过本课程的教学,使学生获得矩阵、行列式、向量、线性方程组、二次型等方面的基本知识,掌握处理离散问题常用的方法,增强学生“用”数学的意识,培养学生“用”数学的能力。
二、课程基本要求1.了解行列式的定义和性质,掌握利用行列式的性质及展开法则,掌握三、四阶行列式的计算法,会计算简单的n阶行列式;理解和掌握克拉默(Cramer)法则。
2.理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,掌握求逆矩阵的方法;掌握对称矩阵的性质;了解分块矩阵及其运算。
3.理解n维向量、向量组线性相关与线性无关的概念;了解有关向量组线性相关、线性无关的重要结论;理解向量组的最大线性无关组与向量组的秩的概念;了解n维向量空间、子空间、基底、维数、坐标等概念;掌握齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件;会求齐次线性方程组的基础解系、通解;掌握非齐次线性方程组的解的结构,会求非齐次线性方程组的通解;了解向量的内积、正交和向量的长度等概念;会利用施密特(Schmidt)方法把线性无关的向量组正交规范化。
4.掌握Gauss消元法;掌握用Gauss消元法求线性方程组通解的方法;掌握用初等变换求齐次线性方程组和非齐次线性方程组解的方法。
5.掌握矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量;理解相似矩阵的概念、性质及矩阵可相似对角化的充要条件。
线性代数 教学大纲
线性代数教学大纲线性代数教学大纲引言:线性代数是数学的一个重要分支,它研究向量空间和线性变换的性质。
线性代数在各个领域都有广泛应用,包括计算机科学、物理学、经济学等。
本文将探讨线性代数的教学大纲,旨在帮助学生全面理解和掌握线性代数的基本概念和方法。
一、线性代数的基本概念1. 向量和向量空间- 向量的定义和性质- 向量空间的定义和基本性质- 子空间和线性相关性2. 矩阵和矩阵运算- 矩阵的定义和性质- 矩阵的加法和乘法- 矩阵的转置和逆3. 线性变换和线性方程组- 线性变换的定义和性质- 线性方程组的解的存在性和唯一性- 线性方程组的矩阵表示和高斯消元法二、线性代数的基本方法1. 线性方程组的解法- 高斯消元法和矩阵的初等变换- 矩阵的秩和线性方程组的解的关系- 线性方程组的特解和齐次方程组的通解2. 向量空间的基与维数- 向量空间的基和坐标表示- 向量空间的维数和维数公式- 基变换和坐标变换3. 特征值和特征向量- 特征值和特征向量的定义- 特征多项式和特征方程- 对角化和相似矩阵三、线性代数的应用1. 线性代数在几何学中的应用- 向量的几何意义和运算- 线性变换对几何图形的影响- 线性方程组与几何图形的交点2. 线性代数在计算机科学中的应用- 矩阵的表示和运算- 线性变换在图形处理中的应用- 线性方程组的求解算法3. 线性代数在物理学中的应用- 向量的力学和电磁学应用- 矩阵在量子力学中的应用- 线性方程组在物理问题中的建模结论:通过学习线性代数的基本概念和方法,学生可以培养抽象思维和逻辑推理能力,为解决实际问题提供了强有力的工具。
线性代数的应用广泛,不仅在数学领域有重要地位,也在其他学科中发挥着重要作用。
因此,线性代数的教学大纲应该包括基本概念、基本方法和应用等内容,以便学生全面理解和掌握线性代数的知识和技能。
通过系统学习线性代数,学生可以为未来的学习和研究打下坚实的基础。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。
(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。
一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。
主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。
通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。
线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。
思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。
线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。
同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。
《线性代数》(Linear Algebra)课程教学大纲
《线性代数》(Linear Algebra)课程教学大纲40学时 2.5学分一、课程的性质、目的及任务本课程是讨论数学中线性关系经典理论的课程,它具有较强的抽象性及逻辑性,是高等院校理工科、经济管理各专业的一门重要基础课。
由于线性问题广泛存在于科学技术的各个领域,且某些非线性问题在一定条件下可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。
尤其在计算机日益普及的今天,本课程的地位与作用更显得重要。
通过教学,使学生掌握本课程的基本理论与方法,初步培养抽象思维与逻辑推理能力,了解数值计算方法,为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。
对于非数学专业的大学生而言,学习《线性代数》其意义不仅仅是学习一种专业的工具,事实上,在提高大学生的学习能力、培养科学素质和创新能力等方面,《线性代数》都发挥着重要作用。
二、适应专业理工科各专业、经济管理各专业三、先修课程初等数学四、课程的基本要求(一)线性方程组1、理解矩阵的初等变换,熟练掌握利用矩阵的初等行变换将矩阵化为阶梯形矩阵、行最简阶梯形矩阵的方法;2、熟练掌握求解线性方程组的初等变换法。
(二)矩阵1. 掌握单位矩阵、对角矩阵、对称矩阵及其性质;2. 掌握矩阵的线性运算、乘法、转置运算及运算律;3. 理解逆矩阵的概念、掌握逆矩阵的性质及求逆矩阵的初等变换法;理解矩阵可逆的充分必要条件;4. 了解分块矩阵及其运算。
(三)行列式及其应用1、掌握行列式的递推定义;2、了解行列式的性质;3、掌握二,三阶及n阶行列式的基本计算方法:降阶法和化三角形法;4、掌握利用行列式判断矩阵的可逆性,掌握克莱姆(Gramer)法则及应用。
(四)向量空间1. 理解n元向量概念;2. 理解向量组的线性相关、线性无关的定义;3. 掌握向量组的极大无关组与向量组的秩的概念;4. 理解矩阵的秩的概念、并掌握矩阵求秩的方法;5. 了解n维向量空间R n、子空间、基底、维数、坐标等概念;6. 掌握齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充要条件;7. 理解齐次线性方程组的基础解系及通解概念;8. 理解非齐次线性方程组解的结构及通解概念;(五)特征值与特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》课程教案大纲
课程代码:课程性质:专业基础理论课必修
适用专业:工科类各专业总学分数:
总学时数:修订年月:
编写年月:执笔:韩晓卓、李锋
课程简介(中文):
线性代数是理、工、经管各专业重要的基础课之一。
它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。
主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。
课程简介(英文):
, . , , . . , , , , , , . 一、课程目的
《线性代数》是高等院校工科专业学生必修的一门基础理论课。
它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。
通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。
二、课程教案内容及学时分配
(一)教案内容
第一章行列式(学时)
教案内容:
二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。
本章的重点与难点:
重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。
难点:阶行列式的定义的理解;阶行列式计算。
第二章矩阵(学时)
教案内容:
矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点:
重点:矩阵的运算规律;逆矩阵的性质以及求法;
难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。
第三章矩阵的初等变换与线性方程组(学时)
教案内容:
矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。
用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。
线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件);
本章的重点与难点:
重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。
难点:利用初等变换求线性方程组的通解。
第四章向量组的线性相关性(学时)
教案内容:
n维向量空间(n维向量的定义;向量的加法与数乘运算);向量间的线性关系(线性组合;线性相关与线性无关;关于线性组合与线性相关的定理;向量组的秩;矩阵的行秩与列秩);线性方程组解的结构(齐次线性方程组解的结构;非齐次线性方程组解的结构);
本章的重点与难点:
重点:向量间的线性关系的重要结论;用初等变换求向量组的极大无关组与秩;齐次与非齐次线性方程组解的结构;
难点:利用向量间线性关系的重要结论证明有关问题;非齐次线性方程组解的结构;
第五章相似矩阵及二次型(学时)
教案内容:
矩阵的特征值与特征向量(矩阵的特征值和特征向量的定义;特征方程;特征值,特征向量的求法及有关性质);相似矩阵(相似矩阵及其性质;阶矩阵与对角矩阵相似的条件;实对称矩阵的特征值和特征向量(向量内积的定义,向量的长度;正交向量组(施密特正交化过程);正交矩阵的定义及其性质,实对称矩阵的特征值和特征向量。
利用正交矩阵化实对称矩阵为对角矩阵);二次型与对称矩阵(二次型及其矩阵;二次型的标准形;合同矩阵);二次型与对称矩阵的标准形(用配方法化二次型为标准形;用初等变换法化二次型为标准形(选讲);用正交变换法化二次型为标准形;二次型与对称矩阵的规范形);二次型与对称矩阵的有定性(正定二次型,正定矩阵及其性质)本章的重点与难点:
重点:矩阵的特征值与特征向量的概念、性质与求法;实对称矩阵对角化的方法;用正交变换法以及配方法化二次型为标准形;
难点:n阶矩阵与对角矩阵相似的条件;利用正交矩阵化实对称矩阵为对角矩阵。
(二)学时分配
本课程的教案时数为学时,课内外学时比例为:,课内学时分配如下表:
三、课程教案的基本要求
.行列式
本章的教案目标与教案要求:
知道排列的逆序及逆序数的概念。
从二阶、三阶行列式的展开式的特征出发,了解阶行列式的定义;熟悉行列式的性质并能熟练地运用它们进行行列式的计算;知道行列式按行(列)展开定理;并能用它们计算行列式;掌握克拉默()法则,会用克拉默法则求解相应的线性方程组。
.矩阵
本章的教案目标与教案要求:
理解矩阵的概念。
了解单位矩阵、对角矩阵、对称矩阵、反对称矩阵等特殊的矩阵;熟练掌握矩阵的加法、数乘、乘法、转置以及方阵的幂等概念及相应的运算规律;理解逆矩阵的概念及其存在的充要条件,熟练掌握逆矩阵的性质以及用伴随矩阵求逆矩阵的方法。
能利用逆矩阵解简单的矩阵方程;了解分块矩阵及其运算。
知道分块矩阵在线性代数中的作用。
能用分块矩阵讨论简单的线性代数问题。
. 矩阵的初等变换与线性方程组
本章的教案目标与教案要求:
理解矩阵的初等变换的概念,掌握矩阵的初等变换的性质;熟悉初等矩阵的概念与性质,掌握用初等变换求逆矩阵的方法;理解矩阵的秩的概念,会用初等变换求矩。