边坝县高中2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边坝县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差
2. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()
R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4 3. 设命题p :函数y=sin (
2x+
)的图象向左平移
个单位长度得到的曲线关于y 轴对称;命题q :函数
y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假
B .¬q 为真
C .p ∨q 为真
D .p ∧q 为假
4. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]
D .(﹣3,+∞)
5. 已知抛物线2
8y x =与双曲线22
21x y a
-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲
线的渐近线方程为
A 、530x y ±=
B 、350x y ±=
C 、450x y ±=
D 、540x y ±= 6. 在区域内任意取一点P (x ,y ),则x 2+y 2
<1的概率是( )
A .0
B
. C
. D

7. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,则目标函数32z x y =-的最小值为( )
A .-5
B .-4 C.-2 D .3 8. 如图F 1、F 2是椭圆
C 1

+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共
点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A.B.C.D.
9.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f (﹣3)的值为()
A.﹣2 B.﹣4 C.0 D.4
10.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()
A.9.6 B.7.68 C.6.144 D.4.9152
11.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()
A.必要而不充分条件B.充分而不必要条件
C.充分必要条件D.既不充分也不必要条件
12.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有()①三棱锥M﹣DCC1的体积为定值②DC1⊥D1M
③∠AMD1的最大值为90°④AM+MD1的最小值为2.
A .①②
B .①②③
C .③④
D .②③④
二、填空题
13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
14.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
15.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
16.设某双曲线与椭圆
136
272
2=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .
17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .
18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)
三、解答题
19.已知等差数列的公差

,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为
,求
的最大值.
20.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:
(2)求年推销金额y 关于工作年限x 的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x (个) 2 3 4 5 加工的时间y (小时)
2.5
3
4
4.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
参考公式:回归直线=bx+a,其中b==,a=﹣b.
23.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB﹣ccosB.
(Ⅰ)求cosB的值;
(Ⅱ)若,且,求a和c的值.
24.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,
数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n
项和为T n,
(1)求数列{a n}和{b n}的通项公式;
(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.
边坝县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.
B样本数据84,86,86,88,88,88,90,90,90,90
众数分别为88,90,不相等,A错.
平均数86,88不相等,B错.
中位数分别为86,88,不相等,C错
A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确
故选D.
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
2.【答案】A
【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
3.【答案】C
【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,
当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,
故命题p为假命题;
函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.
故命题q为假命题;
则¬q为真命题;
p∨q为假命题;
p∧q为假命题,
故只有C判断错误,
故选:C
【解析】解:令f(x)=﹣2x3+ax2+1=0,
易知当x=0时上式不成立;
故a==2x﹣,
令g(x)=2x﹣,则g′(x)=2+=2,
故g(x)在(﹣∞,﹣1)上是增函数,
在(﹣1,0)上是减函数,在(0,+∞)上是增函数;
故作g(x)=2x﹣的图象如下,

g(﹣1)=﹣2﹣1=﹣3,
故结合图象可知,a>﹣3时,
方程a=2x﹣有且只有一个解,
即函数f(x)=﹣2x3+ax2+1存在唯一的零点,
故选:D.
【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p
2
,得5=x0+2.
∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,
∴32
a2-24=1,则a 2=9
25
,a=3
5

因此渐近线方程为5x±3y=0.
6.【答案】C
【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),
分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;
x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,
由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;
故选C.
【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.
7.【答案】B
【解析】
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31
y 22
x z =
+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.
考点:线性规划约束条件中关于最值的计算. 8. 【答案】 D
【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,
∴2a=4,b=1,c=

∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,

+
=
,即x 2+y 2=(2c )2
=
=12,②
由①②得:,解得x=2﹣
,y=2+,设双曲线C
2的实轴长为2m ,焦距为2n ,
则2m=|AF
2|﹣|AF 1|=y ﹣x=2,2n=2c=2,
∴双曲线C 2的离心率e===

故选D .
【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.
9. 【答案】B
【解析】解:因为f (x )+f (y )=f (x+y ),
令x=y=0,
则f(0)+f(0)=f(0+0)=f(0),
所以,f(0)=0;
再令y=﹣x,
则f(x)+f(﹣x)=f(0)=0,
所以,f(﹣x)=﹣f(x),
所以,函数f(x)为奇函数.
又f(3)=4,
所以,f(﹣3)=﹣f(3)=﹣4,
所以,f(0)+f(﹣3)=﹣4.
故选:B.
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.
10.【答案】C
【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,
结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.
故选:C.
11.【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;
当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B.
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
12.【答案】A
【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积
为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.
②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.
③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;
④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,
在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.
因此只有①②正确.
故选:A.
二、填空题
13.【答案】.
【解析】解:由题意可得,2a,2b,2c成等差数列
∴2b=a+c
∴4b2=a2+2ac+c2①
∵b2=a2﹣c2②
①②联立可得,5c2+2ac﹣3a2=0

∴5e2+2e﹣3=0
∵0<e<1

故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
14.【答案】4 3
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式.
15.【答案】 4 .
【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1
所以f (1)+f ′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
16.【答案】15
42
2=-x y 【解析】
试题分析:由题意可知椭圆
136
272
2=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()
()()
4340153401522
2
2
2
=++--
-+-=
a ,故2=a ,5492=-=
b ,故所求双
曲线的标准方程为15422=-x y
.故答案为:15
42
2=-x y . 考点:双曲线的简单性质;椭圆的简单性质. 17.【答案】

【解析】解:在△
ABC
中,∵6a=4b=3c

b=
,c=2a ,
由余弦定理可得cosB==
=

故答案为:

【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.18.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
三、解答题
19.【答案】
【解析】【知识点】等差数列
【试题解析】(Ⅰ)由题意,得
解得或(舍).
所以.
(Ⅱ)由(Ⅰ),得.
所以. 所以只需求出的最大值.
由(Ⅰ),得.
因为,
所以当
,或
时,
取到最大值

所以的最大值为. 20.【答案】
【解析】解:(1)依题意,画出散点图如图所示, (2)从散点图可以看出,这些点大致在一条直线附近,
设所求的线性回归方程为

则,
∴年推销金额y 关于工作年限x 的线性回归方程为=0.5x+0.4.
(3)由(2)可知,当x=11时, =0.5x+0.4=0.5×11+0.4=5.9(万元). ∴可以估计第6名推销员的年推销金额为5.9万元.
21.【答案】
【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,
∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分
∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3 .………………5分
22.【答案】
【解析】解:(1)作出散点图如下:
…(3分)
(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)
=54,x i y i=52.5
∴b==0.7,a=3.5﹣0.7×3.5=1.05,
∴所求线性回归方程为:y=0.7x+1.05…(10分)
(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).
∴加工10个零件大约需要8.05个小时…(12分)
【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.
23.【答案】
【解析】解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,
则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,
故sinBcosC=3sinAcosB﹣sinCcosB,
可得sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
可得sinA=3sinAcosB.又sinA≠0,
因此.
(II)解:由,可得accosB=2,

由b2=a2+c2﹣2accosB,
可得a2+c2=12,
所以(a﹣c)2=0,即a=c,
所以.
【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.
24.【答案】
【解析】解:(1)因为f(1)=a=,所以f(x)=,
所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=
因为数列{a n}是等比数列,所以,所以c=1.
又公比q=,所以;
由题意可得:=,
又因为b n>0,所以;
所以数列{}是以1为首项,以1为公差的等差数列,并且有;
当n≥2时,b n=S n﹣S n﹣1=2n﹣1;
所以b n=2n﹣1.
(2)因为数列前n项和为T n,
所以
=
=;
因为当m∈[﹣1,1]时,不等式恒成立,
所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,
设g(m)=﹣2tm+t2,m∈[﹣1,1],
所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,
所以,
解得t<﹣2或t>2,
所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).
(3)T1,T m,T n成等比数列,得T m2=T1T n
∴,

结合1<m<n知,m=2,n=12
【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.。

相关文档
最新文档