in vitro binding of bile acids

合集下载

橙皮苷的药理活性研究进展

橙皮苷的药理活性研究进展

SI N O -TC M /Su mmarizing综述[通讯作者] 3吴立军,Tel:(024)23986481。

橙皮苷的药理活性研究进展张冬松,高慧媛,吴立军3(沈阳药科大学中药学院,辽宁 沈阳 110016)[摘要]综述了近年来橙皮苷在药理活性研究方面的进展情况。

橙皮苷为二氢黄酮衍生物,大量的研究发现其具有显著的抗氧化、抗炎、祛痰平喘、延缓衰老等作用,同时对心血管、对肾脏系统都具有显著的药理活性。

[关键词]橙皮苷;药理活性 橙皮苷(hes peridin )是橙皮素与芸香糖形成的糖苷,为二氢黄酮衍生物。

橙皮苷广泛存在于豆科、白桦、唇形花科、蝶形花科、芸香科、柑橘属植物体中。

橙皮苷是柑橘果肉和果皮的重要成分,其含量可达柑桔幼果鲜重的114%[1],因此也可作为获取橙皮苷的主要原料。

因橙皮苷在植物药中分布较为广泛,其药理活性的研究一直得到人们的广泛关注,且在中药新药的创制和研发中,橙皮苷常常被选为指标成分而用于定性和定量研究。

为此,本论文通过对前人工作进行总结,就橙皮苷药理活性研究的情况作一综述,旨在为后续的开发研究提供借鉴的同时也为更好的研究和利用黄酮类化合物提供一定指导。

1 抗脂质氧化及清除氧自由基作用娄桂予等[2]采用高脂饮食加免疫损伤的方法,建立家兔动脉粥样硬化模型实验,研究了橙皮苷体内外抗脂质氧化作用,结果显示橙皮苷在体内外均有抗氧化作用,其机制可能与下调单核细胞趋化蛋白-1mRNA 转录机制有关。

橙皮苷可完全抑制脂质过氧化物的形成,改造其结构所得的化合物,均对心肌感染及动脉粥样硬化患者的脂质过氧化物形成有抑制作用。

秦得安[3]等探讨了橙皮苷对羟自由基的清除作用及对脂质过氧化的阻抑作用,结果显示橙皮苷对羟自由基有明显的清除作用,并呈剂量依赖关系;此外,橙皮苷对羟自由基引起的红细胞膜脂质过氧化也有明显的抑制作用[4];Husain 对黄酮类化合物清除羟自由基的作用机理进行了研究,认为清除羟自由基的活性与分子结构中酚羟基数目有关[5]。

血管内皮祖细胞治疗缺血性心脏病的研究进展

血管内皮祖细胞治疗缺血性心脏病的研究进展

匡堂绽述;Q堕生!旦筮!!鲞箜!!翅丛型垫尘曼塑塑i坐丛!:墅P!Q塑:!生:!!:盟!:!![11][12][13][14][15]VanItaliieCM,AndersonJM.Themoleculagphysiologyoftightjunctionpores[J].Physiology(Bethesda),2004,19(6):331-338.AngelowS,AhlstromR,YuAS.BiologyofelaudinsJI.AmJPhysiolRenalPhysiol,2008,295(4):867-876.ArrietaMC.BistritzL.MeddingsJB.Alterationsinintestinalpor-meabilitylJ1.Gut,2006,55(10):1512.1520.VallItallieCM.AndersonJM.Claudinsandepithelialparacellulartrails.Ⅳ,rtlJI.AnnuRevPhysiol,2006,68(3):403-429.BalkovetzDF.Tightiunctionclaudinsandthekidneyinsieknes6andinhealth【J】.BiⅢ・himBiophysActa,2008.7(4):1016.WillC。

Fnm,lmM,Mtillel"D.Clandintightiu/Rmonproteins:novela8.peasinparaeelhlartransport[J].PetitDialInl,2008,28(6):577-584.NittaT。

HatsM,GotohS。

eta1.Size.selectivelooseningofthebkxM—brainbarrierinclaudin-5.deficientmiceJf.JCellBiol,2003.16l(3):653-660.HouJ,GomesAS,PaulDL。

茶花水溶性蛋白的分离纯化及其体外吸附胆酸盐能力的研究

茶花水溶性蛋白的分离纯化及其体外吸附胆酸盐能力的研究
63
现代食品科技
Modern Food S cience and Technology
2013, Vol.29, No.1
Yoshie-Stark 等[7]、Kahlon 等[8]发现一些植物蛋白提取 物也具有吸附胆酸盐的能力。Kayashita 等[9]通过动物 实验发现荞麦蛋白提取物能增加小鼠排泄物中中性甾 醇的含量,认为荞麦蛋白降低胆固醇的机理可能与膳 食纤维类似。 本 研 究 采用 硫酸 铵 盐析 法 、 DEAE-Sepharose FastFlow 离子交换介质对茶花水溶性蛋白进行提取、 分离及纯化,同时分别从磷酸盐缓冲液的 pH 值、时 间等因素观察 DEAE-Sepharose Fast Flow 离子交换对 茶 花 水 溶性 蛋白 分 离纯 化 的影 响 ,并 最 终确 定 DEAE-Sepharose Fast Flow 离子交换操作的最优条件, 实现目标蛋白的分离纯化,为茶花蛋白功能因子的分 离及相关生理活性的研究奠定基础。同时通过体外吸 附胆酸盐能力的研究,探讨茶花水溶性蛋白中具有降 血脂功能的组分,以期为茶花水溶性蛋白降血脂功能 的研究提供理论依据。 1 材料与方法 1.1 材料与仪器
In vitro Binding of Bile Salts by Water-soluble Protein Extract from Tea Flower
DENG Xue, HUANG Hui-hua (College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China)
Abstract: Water-soluble protein was extracted from tea flower by salting out with ammonium sulfate and purified by DEAE-Sepharose Fast Flow chromatography. Optimal conditions for the salting out and DEAE-Sepharose Fast Flow chromatographic separation of water-soluble proteins were determined. The results of experiments on bile salt adsorption in vitro demonstrated that the obtained water-soluble protein extract had hypolipidemic effect. Besides, the best elution results of water-soluble proteins on DEAE-Sepharose Fast Flow column were achieved at pH 5.0 and 10 mmol/L phosphate buffer as eluent at room temperature. Peak Ш exhibited the best bile salt adsorption ability am ong three separation peaks obtained than peak Ⅱ and І. The bile salt-binding capability of the three bile salts was 0.78 0.02, 0.64 0.00, 1.60 0.02 mmol/mL, respectively. Key words: tea flower water-soluble protein; ammonium sulfate salting-out; ion-exchange column chromatography; in vitro bile salt adsorption

生物药剂学与药物动力学专业词汇

生物药剂学与药物动力学专业词汇

生物药剂学与药物动力学专业词汇※<A>Absolute bioavailability, F 绝对生物利用度Absorption 吸收Absorption pharmacokinetics 吸收动力学Absorption routes 吸收途径Absorption rate 吸收速率Absorption rate constant 吸收速率常数Absorptive epithelium 吸收上皮Accumulation 累积Accumulation factor 累积因子Accuracy 准确度Acetylation 乙酰化Acid glycoprotein 酸性糖蛋白Active transport 主动转运Atomic absorption spectrometry 原子吸收光谱法Additive 加和型Additive errors 加和型误差Adipose 脂肪Administration protocol 给药方案Administration route 给药途径Adverse reaction 不良反应Age differences 年龄差异Akaike’s information criterion, AIC AIC判据Albumin 白蛋白All-or-none response 全或无效应Amino acid conjugation 氨基酸结合Analog 类似物Analysis of variance, ANOVA ANOVA方差分析Anatomic Volume 解剖学体积Antagonism 拮抗作用Antiproliferation assays 抑制增殖法Apical membrane 顶端表面Apoprotein 载脂蛋白脱辅基蛋白Apparatus 仪器Apparent volume of distribution 表观分布容积Area under the curve, AUC 曲线下面积Aromatisation 芳构化Artery 动脉室Artifical biological membrane 人工生物膜Aryl 芳基Ascorbic acid 抗坏血酸维生素C Assistant in study design 辅助实验设计Average steady-state plasma drug concentration 平均稳态血浆药物浓度Azo reductase 含氮还原酶※<B>Backward elimination 逆向剔除Bacteria flora 菌丛Basal membrane 基底膜Base structural model 基础结构模型Basolateral membrane 侧底膜Bayesian estimation 贝易斯氏评估法Bayesian optimization 贝易斯优化法Bile 胆汁Billiary clearance 胆汁清除率Biliary excretion 胆汁排泄Binding 结合Binding site 结合部位Bioactivation 生物活化Bioavailability, BA 生物利用度Bioequivalence, BE 生物等效性Biological factors 生理因素Biological half life 生物半衰期Biological specimen 生物样品Biomembrane limit 膜限速型Biopharmaceutics 生物药剂学Bioequivalency criteria 生物等效性判断标准Biotransformation 生物转化Biowaiver 生物豁免Blood brain barrier, BBB BBB血脑屏障Blood clearance 血液清除率Blood flow rate-limited models 血流速度限速模型Blood flux in tissue 组织血流量Body fluid 体液Buccal absorption of drug 口腔用药的吸收Buccal mucosa 口腔粘膜颊粘膜Buccal spray formulation 口腔喷雾制剂※<C>Capacity limited 容量限制Carrier mediated transport 载体转运Catenary model 链状模型Caucasion 白种人Central compartment 中央室Characteristic 特点Chelate 螯合物Chinese Traditional medicine products 中药制剂Cholesterol esterase 胆固醇酯酶Chromatogram 色谱图Circulation 循环Classification 分类Clearance 清除率Clinical testing in first phase I期临床试验Clinical testing in second phase Ⅱ期临床试验Clinical testing in third phase Ⅲ期临床试验Clinical trial 临床试验Clinical trial simulation 临床实验计划仿真Clockwise hysteresis loop 顺时针滞后回线Collection 采集Combined administration 合并用药Combined errors 结合型误差Common liposomes, CL 普通脂质体Compartment models 隔室模型Compartments 隔室Competitive interaction 竞争性相互作用Complements 补体Complex 络合物Confidential interval 置信区间Conjugation with glucuronic acid 葡萄糖醛酸结合Controlled-release preparations 控释制剂Control stream 控制文件Conventional tablet 普通片Convergence 收敛Convolution 卷积Corresponding relationship 对应关系Corticosteroids 皮质甾体类Counter-clockwise hysteresis loop 逆时针滞后回线Countermeasure 对策Course in infusion period 滴注期间Covariance 协方差Covariates 相关因素Creatinine 肌酐Creatinine clearance 肌酐清除率Cytochrome P450, CYP450 细胞色素P450 Cytoplasm 细胞质Cytosis 胞饮作用Cytosol 胞浆胞液质※<D>Data File 数据文件Data Inspection 检视数据Deamination 脱氨基Deconvolution 反卷积Degree of fluctuation, DF DF波动度Delayed release preparations 迟释制剂Desaturation 降低饱和度Desmosome 桥粒Desulfuration 脱硫Detoxication 解毒Diagnosis 诊断Diffusion 扩散作用Dietary factors 食物因素Displacement 置换作用Disposition 处置Dissolution 溶解作用Distribution 分布Dosage adjustment 剂量调整Dosage form 剂型Dosage form design 剂型设计Dosage regimen 给药方案Dose 剂量dose-proportionality study 剂量均衡研究Dropping pills 滴丸Drug absorption via eyes 眼部用药物的吸收Drug binding 药物结合Drug concentration in plasma 血浆中药物浓度Drug Delivery System, DDS 药物给药系统Drug interaction 药物相互作用Drug-plasma protein binding ratio 药物—血浆蛋白结合率Drug-Protein Binding 药物蛋白结合Drug transport to foetus 胎内转运※<E>Efficient concentration range 有效浓度范围Efflux 外排Electrolyte 电解质Electro-spray ionization, ESI 电喷雾离子化Elimination 消除Elimination rate constant 消除速度常数Elongation 延长Emulsion 乳剂Endocytosis 入胞作用Endoplasmic reticulum 内质网Enterohepatic cycle 肠肝循环Enzyme 酶Enzyme induction 酶诱导Enzyme inhibition 酶抑制Enzyme-linked immunosorbent assays ELISA 酶联免疫法Enzymes or carrier-mediated system 酶或载体—传递系统Epithelium cell 上皮细胞Epoxide hydrolase 环化物水解酶Erosion 溶蚀Excretion 排泄Exocytosis 出胞作用Exons 外显子Experimental design 实验设计Experimental procedures 实验过程Exponential errors 指数型误差Exposure-response studies 疗效研究Extended least squares, ELS 扩展最小二乘法Extended-release preparations 缓控释制剂Extent of absorption 吸收程度External predictability 外延预见性Extraction ratio 抽取比Extract recovery rate 提取回收率Extrapolation 外推法Extravascular administration 血管外给药※<F>F test F检验Facilitated diffusion 促进扩散Factors of dosage forms 剂型因素Fasting 禁食Fibronectin 纤粘连蛋白First order rate 一级速度First Moment 一阶矩First order absorption 一级吸收First-order conditional estimation, FOCE 一级条件评估法First-order estimation, FO 一级评估法Fiest-order kinetics 一级动力学First pass effect 首过作用首过效应Fixed-effect parameters 固定效应参数Flavoprotein reductaseNADPH-细胞色素还原酶附属黄素蛋白还原酶Flow-through cell dissolution method 流室法Fluorescent detection method 荧光检测法Fraction of steady-state plasma drug concentration 达稳分数Free drug 游离药物Free drug concentration 游离药物浓度※<G>Gap junction 有隙结合Gas chromatography, GC 气相色谱法Gasrtointestinal tract, GI tract 胃肠道Gender differences 性别差异Generalized additive modeling, GAM 通用迭加模型化法Glimepiride 谷胱甘肽Global minimum 整体最小值Glomerular filtration 肾小球过滤Glomerular filtration rate, GFR 肾小球过滤率Glucuonide conjugation 葡萄糖醛酸结合Glutathione conjugation 谷胱甘肽结合Glycine conjugation 甘氨酸结合Glycocalyx 多糖—蛋白质复合体Goodness of Fit 拟合优度Graded response 梯度效应Graphic method 图解法Gut wall clearance肠壁清除率※<H>Half life 半衰期Health volunteers 健康志愿者Hemodialysis 血液透析Hepatic artery perfusion administration 肝动脉灌注给药Hepatic clearance, Clh 肝清除率Hierarchical Models 相同系列药物动力学模型High performance liquid chromatography, HPLC 高效液相色谱Higuchi equation Higuchi 方程Homologous 类似Human liver cytochrome P450 人类肝细胞色素P450 Hydrolysis 水解Hydroxylation 羟基化Hysteresis 滞后Hysteresis of plasma drug concentration 血药浓度滞后于药理效应Hysteresis of response 药理效应滞后于血药浓度※<I>Immunoradio metrec assays, IRMA 免疫放射定量法Incompatibility 配伍禁忌Independent 无关,独立Individual parameters 个体参数Individual variability 个体差异Individualization of drug dosage regimen 给药方案的个体化Inducer 诱导剂Induction 诱导Infusion 输注Inhibition 抑制Inhibitor 抑制剂Initial dose 速释部分Initial values 初始值Injection sites 注射部位Insulin 胰岛素Inter-compartmental clearance 隔室间清除率Inter-individual model 个体间模型Inter-individual random effects 个体间随机效应Inter-individual variability 个体间变异性Intermittence intravenous infusion 间歇静脉输液Internal predictability 内延预见性Inter-occasion random effects 实验间随机效应Intestinal bacterium flora 肠道菌丛Intestinal metabolism 肠道代谢Intra-individual model 个体内模型Intra-individual variability 个体内变异性Intramuscular administration 肌内给药Intramuscular injection 肌内注射Intra-peritoneal administration 腹腔给药Intravenous administration 静脉给药Intravenous infusion 静脉输液Intravenous injection 静脉注射Intrinsic clearance固有清除率内在清除率Inulin 菊粉In vitro experiments 体外试验In vitro–In vivo correlation, IVIVC 体外体内相关关系In vitro mean dissolution time, MDT vitro 体外平均溶出时间In vivo Mean dissolution time, MDT vivo 体内平均溶出时间Ion exchange 离子交换Isoform 异构体Isozyme 同工酶※<K>Kerckring 环状皱褶Kidney 肾※<L>Lag time 滞后时间Laplace transform 拉普拉斯变换Lateral intercellular fluid 侧细胞间隙液Lateral membrane 侧细胞膜Least detection amount 最小检测量Linearity 线性Linear models 线性模型Linear regression method 线性回归法Linear relationship 线性关系Lipoprotein 脂蛋白Liposomes 脂质体Liver flow 肝血流Local minimum 局部最小值Loading dose 负荷剂量Logarithmic models 对数模型Long circulation time liposomes 长循环脂质体Loo-Riegelman method Loo-Riegelman法Lowest detection concentration 最低检测浓度Lowest limit of quantitation 定量下限Lowest steady-state plasma drug concentration 最低稳态血药浓度Lung clearance 肺清除率Lymphatic circulation 淋巴循环Lymphatic system 淋巴系统※<M>Maintenance dose 维持剂量Mass balance study 质量平衡研究Masticatory mucosa 咀嚼粘膜Maximum likelihood 最大似然性Mean absolute prediction error, MAPE 平均绝对预测误差Mean absorption time, MAT 平均吸收时间Mean disintegration time, MDIT 平均崩解时间Mean dissolution time, MDT 平均溶出时间Mean residence time, MRT 平均驻留时间Mean sojourn time 平均逗留时间Mean squares 均方Mean transit time 平均转运时间Membrane-limited models 膜限速模型Membrane-mobile transport 膜动转运Membrane transport 膜转运Metabolism 代谢Metabolism enzymes 代谢酶Metabolism locations 代谢部位Metabolites 代谢物Metabolites clearance, Clm 代谢物清除率Method of residuals 残数法剩余法Methylation 甲基化Michaelis-Menten equation 米氏方程Michaelis-Menten constant 米氏常数Microbial assays 微生物检定法Microsomal P-450 mixed-function oxygenases 肝微粒体P-450混合功能氧化酶Microspheres 微球Microvilli 微绒毛Minimum drug concentration in plasma 血浆中最小药物浓度Mixed effects modeling 混合效应模型化Mixed-function oxidase, MFO 混合功能氧化酶Models 模型Modeling efficiency 模型效能Model validation 模型验证Modified release preparations 调释制剂Molecular mechanisms 分子机制Mono-exponential equation 单指数项公式Mono-oxygenase 单氧加合酶Mucous membrane injury 粘膜损伤Multi-compartment models 多室模型延迟分布模型Multi-exponential equation 多指数项公式Multifactor analysis of variance, multifactor ANOVA 多因素方差分析Multiple dosage 多剂量给药Multiple-dosage function 多剂量函数Multiple-dosage regimen 多剂量给药方案Multiple intravenous injection 多次静脉注射Myoglobin 肌血球素※<N>Naive average data, NAD 简单平均数据法Naive pool data, NPD 简单合并数据法Nanoparticles 纳米粒Nasal cavity 鼻腔Nasal mucosa 鼻粘膜National Institute of Health 美国国立卫生研究所Nephron 肾原Nephrotoxicity 肾毒性No hysteresis 无滞后Non-compartmental analysis, NCA 非隔室模型法Non-compartmental assistant Technology 非隔室辅助技术Nonionized form 非离子型Nonlinear mixed effects models, NONMEM 非线性混合效应模型Nonlinear pharmacokinetics 非线性药物动力学Non-linear relationship 非线性关系Nonparametric test 非参数检验※<O>Objective function, OF 目标函数Observed values 观测值One-compartment model 一室模型(单室模型)Onset 发生Open randomized two-way crossover design 开放随机两路交叉实验设计Open crossover randomized design 开放交叉随机设计Oral administration 口服给药Ordinary least squares, OLS 常规最小二乘法Organ 器官Organ clearance 器官清除率Original data 原始数据Osmosis 渗透压作用Outlier 偏离数据Outlier consideration 异常值的考虑Over-parameterized 过度参数化Oxidation 氧化Oxidation reactions 氧化反应※<P>Paracellular pathway 细胞旁路通道Parameters 参数Passive diffusion 被动扩散Pathways 途径Patient 病人Peak concentration 峰浓度Peak concentration of drug in plasma 血浆中药物峰浓度Poly-peptide 多肽Percent of absorption 吸收百分数Percent of fluctuation, PF 波动百分数Perfused liver 灌注肝脏Period 周期Peripheral compartments 外周室Peristalsis 蠕动Permeability of cell membrane 细胞膜的通透性P-glycoprotein, p-gp P-糖蛋白Phagocytosis 吞噬Pharmaceutical dosage form 药物剂型pharmaceutical equivalents 药剂等效性Pharmacokinetic models 药物动力学模型Pharmacokinetic physiological models 药物动力学的生理模型Pharmacological effects 药理效应Pharmacologic efficacy 药理效应Pharmacokinetics, PK 药物动力学Pharmacokinetic/pharmacodynamic link model 药物动力学-药效动力学统一模型Pharmacodynamics, PD 药效动力学Pharmacodynamic model 药效动力学模型Phase II metabolism 第II相代谢Phase I metabolism 第I相代谢pH-partition hypothesis pH分配假说Physiological function 生理功能Physiological compartment models 生理房室模型Physiological pharmacokinetic models 生理药物动力学模型Physiological pharmacokinetics 生理药物动力学模型Pigment 色素Physicochemical factors 理化因素Physicochemical property of drug 药物理化性质Physiological factors 生理因素Physiology 生理Physiological pharmacokinetic models 生理药物动力学模型Pinocytosis 吞噬Plasma drug concentration 血浆药物浓度Plasma drug concentration-time curve 血浆药物浓度-时间曲线Plasma drug-protein binding 血浆药物蛋白结合Plasma metabolite concentration 血浆代谢物浓度Plasma protein binding 血浆蛋白结合Plateau level 坪浓度Polymorphism 多态性Population average pharmacokinetic parameters 群体平均动力学参数Population model 群体模型Population parameters 群体参数Population pharmacokinetics 群体药物动力学Post-absorptive phase 吸收后相Post-distributive phase 分布后相Posterior probability 后发概率practical pharmacokinetic program 实用药代动力学计算程序Precision 精密度Preclinical 临床前的Prediction errors 预测偏差Prediction precision 预测精度Predicted values 拟合值Preliminary structural model 初始结构模型Primary active transport 原发性主动转运Principle of superposition 叠加原理Prior distribution 前置分布Prodrug 前体药物Proliferation assays 细胞增殖法Proportional 比例型Proportional errors 比例型误差Prosthehetic group 辅基Protein 蛋白质Pseudo-distribution equilibrium 伪分布平衡Pseudo steady state 伪稳态Pulmonary location 肺部Pulsatile drug delivery system 脉冲式释药系统※<Q、R>QQuality controlled samples 质控样品Quality control 质量控制Quick tissue 快分布组织RRadioimmuno assays, RIA 放射免疫法Random error model 随机误差模型Rapid intravenous injection 快速静脉注射Rate constants 速度常数Rate method 速度法Re-absorption 重吸收Receptor location 受体部位Recovery 回收率Rectal absorption 直肠吸收Rectal blood circulation 直肠部位的血液循环Rectal mucosa 直肠黏膜Reductase 还原酶Reduction 还原Reductive metabolism 还原代谢Reference individual 参比个体Reference product 参比制剂Relative bioavailability, Fr 相对生物利用度Release 释放Release medium 释放介质Release standard 释放度标准Renal 肾的Renal clearance, Clr 肾清除率Renal excretion 肾排泄Renal failure 肾衰Renal impairment 肾功能衰竭Renal tubular 肾小管Renal tubular re-absorption 肾小管重吸收Renal tubular secretion 肾小管分泌Repeatability 重现性Repeated one-point method 重复一点法Requirements 要求Research field 研究内容Reside 驻留Respiration 呼吸Respiration organ 呼吸器官Response 效应Residuals 残留误差Residual random effects 残留随机效应Reversal 恢复Rich Data 富集数据Ritschel one-point method Ritschel 一点法Rotating bottle method 转瓶法Rough surfaced endoplasmic reticulum 粗面内质网Routes of administration 给药途径※<S、T>SSafety and efficacy therapy 安全有效用药Saliva 唾液Scale up 外推Scale-Up/Post-Approval Changes, SUPAC 放大/审批后变化Second moment 二阶矩Secondary active transport 继发性主动转运Secretion 分泌Sensitivity 灵敏度Serum creatinine 血清肌酐Sigma curve 西格玛曲线Sigma-minus method 亏量法(总和减量法)Sigmoid curve S型曲线Sigmoid model Hill’s方程Simulated design 模拟设计Single-dose administration 单剂量(单次)给药Single dose response 单剂量效应Sink condition 漏槽条件Skin 皮肤Slow Tissue 慢分布组织Smooth surfaced endoplasmic reticulum 滑面内质网Soluble cell sap fraction 可溶性细胞液部分Solvent drag effect 溶媒牵引效应Stability 稳定性Steady-state volume of distribution 稳态分布容积Sparse data 稀疏数据Special dosage forms 特殊剂型Special populations 特殊人群Specialized mucosa 特性粘膜Species 种属Species differences 种属差异Specificity 特异性专属性Square sum of residual error 残差平方和Stagnant layer 不流动水层Standard curve 标准曲线Standard two stage, STS 标准两步法Statistical analysis 统计分析Statistical moments 统计矩Statistical moment theory 统计矩原理Steady state 稳态Steady state plasma drug concentration 稳态血药浓度Stealth liposomes, SL 隐形脂质体Steroid 类固醇Steroid-sulfatases 类固醇-硫酸酯酶Structure 结构Structure and function of GI epithelial cells 胃肠道上皮细胞的构造与功能Subcutaneous injections 皮下注射Subgroup 亚群体Subjects 受试者Sublingual administration 舌下给药Sublingual mucosa 舌下粘膜Subpopulation 亚群Substrate 底物Sulfate conjugation 硫酸盐结合Sulfation 硫酸结合Sum of squares 平方和Summation 相加Superposition method 叠加法Susceptible subject 易受影响的患者Sustained-release preparations 缓释制剂Sweating 出汗Synergism 协同作用Systemic clearance 全身清除率TTargeting 靶向化Taylor expansion 泰勒展开Tenous capsule 眼球囊Test product 试验制剂Therapy drug monitoring, TDM 治疗药物监测Therapeutic index 治疗指数Thermospray 热喷雾Three-compartment models 三室模型Though concentration 谷浓度Though concentration during steady state 稳态谷浓度Thromboxane 血栓素Tight junction 紧密结合Tissue 组织Tissue components 组织成分Tissue interstitial fluid 组织间隙Tolerance 耐受性Topping effect 尖峰效应Total clearance 总清除率Toxication and emergency treatment 中毒急救Transcellular pathway 经细胞转运通道Transdermal absorption 经皮肤吸收Transdermal drug delivery 经皮给药Transdermal penetration 经皮渗透Transport 转运Transport mechanism of drug 药物的转运机理Trapezoidal rule 梯形法Treatment 处理Trial Simulator 实验计划仿真器Trophoblastic epithelium 营养上皮层Two-compartment models 二室模型Two one sided tests 双单侧t检验Two period 双周期Two preparations 双制剂Two-way crossover bioequivalence studies 双周期交叉生物等效性研究Typical value 典型值※<U~Z>UUnwanted 非预期的Uniformity 均一性Unit impulse response 单位刺激反应Unit line 单位线Urinary drug concentration 尿药浓度Urinary excretion 尿排泄Urinary excretion rate 尿排泄速率VVagina 阴道Vaginal Mucosa 阴道黏膜Validation 校验Variance of mean residence time, VRT 平均驻留时间的方差Vein 静脉室Villi 绒毛Viscre 内脏Volumes of distribution 分布容积volunteers or patients studies 人体试验WWagner method Wagner法Wagner-Nelson method Wagner-Nelson法Waiver requirements 放弃(生物等效性研究)要求Washout period 洗净期Weibull distribution function Weibull分布函数Weighted Least Squares WLS加权最小二乘法Weighted residuals 加权残留误差XXenobiotic 外源物, 异生素ZZero Moment 零阶矩Zero-order absorption 零级吸收Zero-order kinetics 零级动力学Zero order rate 零级速度Zero-order release 零级释放。

药物转运体蛋白的靶点作用

药物转运体蛋白的靶点作用

Distribution
Circulating blood
Metabolism
Excretion
OCT1
MRP3
OATP1A2 OATP2B1
P-gp BCRP MRP4 MRP5
OATP1B1 OATP2B1 OAT2,OCT1 NTCP
MRP3 MRP4 MRP6
OCT2,OAT1 OAT2,OAT3
④ 肿瘤耐药蛋白模型
a) P-gp (P-糖蛋白) b) MRP2 (多剂耐药蛋白) c) BCRP (乳腺癌耐药蛋白)
① 钠-葡萄糖协同转运体(SGLT2)模型
1. SGLT1 和 SGLT2 的比较
Data from: Lee, Y. J. & Han, H. J. Regulatory mechanisms of Na+/ glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl. 106, S27–S35 (2007).
ABC transporter
Breast cancer resistant protein (BCRP) Multidrug resistance-associated protein 4 (MRP4) Multidrug resistance-associated protein 5 (MRP5) P-gp/MDR1
Urine
Excretion
3)癌组织
Cell membrane
SLC transporter
L-type amino acid transporter 1 (LAT1)
ABC transporter

植物乳杆菌Sc52益生特性评价及其在降血糖产品中的应用

植物乳杆菌Sc52益生特性评价及其在降血糖产品中的应用

植物乳杆菌Sc52益生特性评价及其在降血糖产品中的应用温贺1,2,3,肖凤艳2,段翠翠1,高磊1,赵玉娟1,牛春华1,赵权2,李盛钰1,*(1.吉林省农业科学院农产品加工研究所,吉林长春130033;2.吉林农业科技学院中药学院,吉林吉林132109;3.吉林农业大学中药材学院,吉林长春130118)摘 要:目的:考察植物乳杆菌Sc52的体外益生特性以及其在辅助降糖产品中的应用和产品开发,并分析产品的降糖作用。

方法:通过酸和胆盐耐受、表面疏水性、自凝聚能力和抗生素最低抑菌浓度的方法评价植物乳杆菌Sc52的体外益生特性。

植物乳杆菌Sc52与其他不同益生特性益生菌联合发酵药食同源复方提取物研制辅助降糖固体饮料,利用高脂饲料结合链脲佐菌素的方法建立小鼠糖尿病模型,实验动物分空白组、模型组和产品组,连续灌胃辅助降糖产品4 周后,测定小鼠空腹血糖含量、血糖曲线下面积,血清中血脂、胰岛素和炎症因子水平等相关生化指标。

结果:植物乳杆菌Sc52具有较强的耐酸和耐胆盐能力,pH 3.0和1 g/100 mL胆盐条件下分别培养3 h和4 h后,存活率在55%和32%以上;自凝聚能力较强,静置48 h后自凝聚率达到(89±0.3)%;对青霉素和利福平表现出高度敏感性;与模型组相比,辅助降糖产品能显著降低小鼠空腹血糖、血脂、肿瘤坏死因子-α水平,明显提升胰岛素水平。

结论:植物乳杆菌Sc52具有良好的体外益生特性,其联合其他益生菌共同发酵药食同源复方提取物研制的固体饮料产品具有明显的降血糖作用。

关键词:植物乳杆菌;耐受;黏附;益生特性;降血糖Evaluation of Probiotic Properties of Lactobacillus plantarum Sc52 and Its Application in a Hypoglycemic Product WEN He1,2,3, XIAO Fengyan2, DUAN Cuicui1, GAO Lei1, ZHAO Yujuan1, NIU Chunhua1, ZHAO Quan2, LI Shengyu1,*(1. Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China;2. College of Traditional Chinese Medicine Materials, Jilin Agricultural Science and Technology University, Jilin 132109, China;3. College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun 130118, China)Abstract: Objective: This study aimed to investigate the in vitro probiotic properties of Lactobacillus plantarum Sc52 and its application in a hypoglycemic product and to analyze the hypoglycemic effect of the product. Methods: The in vitro probiotic properties of L. plantarum Sc52 were evaluated by its acid and bile salt tolerance, surface hydrophobicity and aggregation ability and minimum inhibitory concentration (MIC) of antibiotics against it. A mixed culture of L. plantarum Sc52 and other probiotics was used to ferment a composite aqueous extract of different both edible and medicinal plant materials to develop a solid beverage. In order to evaluate the hypoglycemic activity of the product, a diabetic mouse model was established by feeding high fat diet combined with streptozotocin injection. All the mice were divided into three groups: control, model and treatment groups. The mice in the treatment group were continuously administered with the solid beverage by gavage for four weeks. The levels of fasting blood glucose, the area under the blood glucose curve, the levels of serum lipids, insulin and inflammatory factor were measured. Results: L. plantarum Sc52 exhibited excellent resistance to acid and bile salt. When it was cultivated for 3 and 4 h in a medium at pH 3.0 with 1 g/100 mL bile salt concentration respectively, the survival rates were higher than 55% and 32%. L. plantarum Sc52 possessed strong aggregation ability, which reached (89 ± 0.3)% after standing for 48 h, and showed high sensitivity to penicillin and rifampicin. Compared with the model group, the auxiliary hypoglycemic product could significantly decrease the levels of fasting blood glucose, blood lipid and tumor necrosis factor-α and significantly elevate insulin levels. Conclusions: L. plantarum Sc52 exhibited good in vitro probiotic properties, and the solid beverage developed in this study had obvious hypoglycemic effects.收稿日期:2017-02-21基金项目:国家现代农业(奶牛)产业技术体系建设专项(CARS-36);长春市产学研协同创新示范点建设专项(16CX20);吉林省农业科技创新工程重大项目(CXGC2017ZD011)第一作者简介:温贺(1990—),女,硕士研究生,主要从事功能性益生菌的筛选与评价研究。

医学专业英语词典词汇

医学专业英语词典词汇

Aneurysm 血管瘤Angina pectoris心绞痛Angiogram心血管造影结果Angiography血管造影术Angioplasty血管成形术Aorta主动脉Aortic stenosis主动脉狭窄Apical impulse心尖搏动Arrhythmia 心律不齐Arterial anastomosis动脉吻合Arteriography动脉造影术Arteriole小动脉Arteriosclerosis动脉硬化Artery动脉Asystole窦性停搏Atheroma动脉粥样化Atherosclerosis动脉粥样硬化Atrioventricular block房室传导阻滞Atrium心房Atrioventricular nodeBeat搏动Beta-blockerBradycardia心动过缓Bundle of His希氏束Calcium channel blocker钙通道阻滞剂Capillary毛细血管Carbon dioxide二氧化碳Cardiac arrest 心搏停止Cardiac catheterization心导管插入术Cardiac cycle 心搏周期Cardiac scan心脏扫描Cardiomegaly心脏肥大Cardiometer 心力计Cardiomyopathy心肌病Circulation循环Circulus 环状径路Claudication 陂行Congestion充血Congestive heart failure 充血性心力衰竭Coronary artery disease冠心病Coronary bypass搭桥Cyanosis 发绀Defibrillation除颤Depolarization除极Sphygmomanometer血压计Stethoscope听诊器Stress test 负荷试验Systole心脏收缩Tachycardia 心动过速Tetralogy of Fallot 法洛四联症Thrill震颤Thrombolysis血栓溶解Thrombolytic therapy 溶栓治疗Thrombosis 栓塞Valve瓣膜Valvotomy 瓣膜切开术Valvulitis 瓣膜炎症Valvuloplasy 瓣膜修复术Varicose vein 静脉曲张Varix 血管曲张Vasoconstriction血管收缩Vasodilation血管扩张Vasodepression 血管减压Vasoparesis 血管麻痹Vegetation 赘生物Vein静脉Vena cava 腔静脉Ventricle 心室Venule小静脉Abdominal respirationAbsolute refractory period绝对不应期Acetylcholine 乙酰胆碱Action potential 动作电位Activation活化Active transport主动运输Adequate stimulus 适宜刺激物Adrenergic 肾上腺素能的Adrenergic receptor 肾上腺素能受体Afterload 后负荷Afterpotential后电位Agglutinin 凝集素Agglutinogen凝集原Anabolism 合成代谢Anatomic dead space解剖死腔Anticoagulation 抗凝疗法Antidiuresis抗利尿Antithrombin 抗凝血酶Arteriovenous shunt动静脉短路Artificial respiration 人工呼吸Auditory threshold 听阈Automaticity 自动性Autonomic nervous system 自主神经系统Autoregulation 自身调节Axoplasm 轴浆Baroreceptor reflex压力感受器反射Basal body temperature 基础体温Basal metabolic rate 基础代谢率Basal metabolism 基础代谢Bioelectricity 生物电Blood group 血型Blood transfusion 输血Blood brain barrier血脑屏障Bohr effect 波尔效应Bradykinin 缓激肽Capacitation 获能Cardiac contractility 心肌收缩性Catabolism 分解代谢Central venous pressure 中心静脉压Cerebral circulation 脑循环Chemical synapse 化学突触Chemoreceptor 化学感受器Cholecystokinin 缩胆囊素Choline胆碱Cholinergic fiber 胆碱能纤维Chronotropic action 变时作用Coagulation cascade 凝血级联Coagulation factor凝血因子Cochlear microphonic potential 耳蜗传音电位Compatibility 相容性Compensatory pause 代偿间歇Compliance顺应性Conditioned reflex 条件反射Conductivity 传导性Cotransport 共转运Crossmatch交叉配血Dark adaptationDepolarization 去极化Depressor reflex压制反射Diffusion capacity 弥散量Diopter 焦距Dopamine多巴胺Dromotropic action变传导作用Ejection phase 射血期Electrocardiogram心电图Electrochemical gradient 电化学梯度End diastolic volume 终末舒张血量End plate potential 终板电位End systolic volume 终末收缩血量Endocytosis 内吞作用Energy metabolism 能量代谢Enteric nervous system 肠神经系统Enterohepatic circulation 肠肝循环Erythrocyte sedimentation 红细胞沉降率Evoked potential 激发点位Excitability 应激性Excitable cell 可兴奋细胞Excitation 刺激,兴奋Excitation contraction 兴奋-收缩偶联Excitatory amino acid兴奋性氨基酸Excitatory postsynaptic potential 兴奋性突出后电位Exocytosis 胞吐作用Expiration呼气Expiratory reserve 补呼气量External respiration外呼吸Facilitated diffusion 易化扩散Fibrinolysis 纤溶Filling pressure 充盈压Filtration fraction 滤过部分Forced expiratory volume用力呼气量Forced vital capacity时间肺活量Functional residual 功能性残气量Generator potential 发生器电位Glomerular filtration rate 肾小球滤过率Glucagon 高血糖素Hematocrit 血细胞比容Hemolysis 溶血Hemostasis 止血法Heparin 肝素Homeostasis 稳态Hyperpolarization超极化In vitro 在试管内In vivo 在活体内Incompatibility 不相容性Inhibition抑制作用Inhibitory postsynaptic potential 抑制性突触后电位Inotropic action 变力运动Insensible perspiration不显汗Inspiratory capacity深吸气量Inspiratory reserve volume 补吸气量Internal respiration 内呼吸Interneuron中间神经Intrapleural pressure 胸膜内压Intrinsic pathway 内源性凝血过程Ionic channel 离子通道Iron plasma clearance血浆铁清除率Isometric contraction等长收缩消化系统:Abdominocentesis 腹腔穿刺术Absorption 吸收Achalasia 失缓慢性Achlorhydria 胃酸分泌不足Adipose 脂肪性的Alimentary canal 消化道Amino acid 氨基酸Amylase 淀粉酶Anal fistula 肛瘘Anorexia 食欲缺乏Anus 肛门Appendix 阑尾Ascites 腹水Barium swallow 钡餐Bile 胆汁Bilirubin 胆红素Borborygmus肠鸣Bowel 肠Bruxism 磨牙症Bulimia 贪食Calculosis结石病Calculus 结石Canine 尖牙Canker 溃疡Cecum 盲肠Celiac disease 乳糜泄Cholecyst 胆囊Cholecystalgia 胆绞痛Cholecystectomy胆囊炎Cholecystitis 胆囊炎Cholecystolithotripsy 碎石术Cholelithiasis 胆石症Cholelith 胆石Choledocholithotomy 胆总管切开取石术Cirrhosis 肝硬化Colectomy 结肠切除术Colic 急腹痛Colitis 大肠炎Colon 结肠Common bile duct 胆总管Constipation 便秘Crepitus 肠排气Defecation 排便Dental caries 龋齿Diarrhea 腹泻Digestive tract 消化道Deglutition 吞咽Diverticulum 憩室Duodenum 十二指肠Dysentery 痢疾Dyspepsia 消化不良Dysphagia 咽下困难Edentulous 无齿的Emaciation 消瘦Emesis 呕吐Emulsification 乳化Enema 灌肠剂Enteritis 肠炎Enzyme 酶Enterocolostomy 结肠吻合术Eructation 嗳气Esophagus 食管一、内科常用字汇1、心血管系统The Cardiovascular System Acute Myocardial Infarction (AMI) 急性心机梗塞 Electrocardiogram (DCG) 心电图 Hypertensive Cardiovascular Disease 高血压性心脏血管疾病 Congential Heart Disease 先天性心脏病 Hemangioma 血管瘤 Vasodilatation 血管扩张 Arteriosclerosis 动脉硬化 Hypertension 高血压 Hypertrophy 肥大 Hypotension 低血压 Varicose veins 静脉曲张血液及淋巴系统 The Hemic and Lymphatic System Adenitis 腺炎 Acute Lymphogenous Leukemia 急性淋巴球性白血病 Leukocyte 白血球 Leukocytopenia白血球减少 Systemic Lupus Erythematosus 全身性红斑性狼疮 Splenomegaly 脾肿大 Anemia贫血 Aseptic 无菌的 Septicemia败血症 Hemostasis 止血 Transfusion输血2、呼吸系统 The Respiratory System Pulmonary embolism 肺栓塞 Mucosa 黏膜 Exhale呼吸 Apnea窒息 Tachypnea呼吸急促 Pneumonia肺炎 Bronchitis支气管炎 Lung Empyema 肺积脓3、消化系统 The Digestive System Short of breath 呼吸短促 Dysphasia说话困难 Aphasia 失语症 Aphonia失声 Dysphagia 吞咽困难 Gingivitis 齿龈炎 Pharyngitis 咽炎 Laryngitis 喉炎Esophagoscopy 食道镜检查 Esophagus stricture 食道狭窄 Abdominocentesis腹部穿刺术 Gastric cancer 胃癌 Gastritis 胃炎 Gastroenteritis胃肠炎 Gastrorrhagia胃出血 Pyloric obstruction 幽门阻塞 Duodenal Ulcer 十二指肠溃疡 Peritonitis 腹膜炎 Enterorrhagia 肠出血 Enterorrhexis 肠破裂 Appendicitis 阑尾炎 Colon cancer结肠癌 Proctoscopy 直肠镜检查 Rectal cancer 直肠癌 Anal Fistual 肛门廔管 External hemorrhoid 外痔 Internal hemorrhoid 内痔 Excretion 排泄 Hepatitis肝炎 Hepatomegaly 肝肿大 Gall Stone 胆结石 Cholelithiasis 胆石症 Liver Cirrhosis 肝硬化 Ascites腹水4、内分泌系统 The Endocrine System Glycemia糖血症 Goiter 甲状腺肿 Diabetes Mellitus 糖尿病 Diabetes Insipidus尿崩症 Bromidrosis汗臭症 Pituitary Tumor 脑下垂体肿瘤神经系统 The Nervous System Cerebral Arteriosclerosis 脑动脉硬化 Cerebral Hemorrhage 脑出血 Cerebral Edema 脑水肿 Cerebra Palsy脑性麻痹 Cerebral Thrombosis 脑栓塞 Cranial Neruritis 脑神经炎 Intracranial Hemorrhage 颅内出血Encephalitis 脑炎 Electromyography 肌电图 Neuritis神经炎 Epilepsy 癜痫 Trigeminal Neuralgia 三叉神经痛 Rachitis 痀偻症 Rachioscoliiosis脊柱侧弯 Spondylitis 脊椎炎 Quadriplegia 四肢麻痹 Paraplegia 下半身瘫痪 Immediately loss of consciousness 立即丧失意识 Eye opening睁眼反应 Verbal response 语言反应 Motor response 运动反应 Corneal reflex 角膜反射 Plantar reflex 膝反射 Sciatica坐骨神经痛 Chorea 舞蹈症 Muscle atrophy 肌萎缩 Migraine 偏头痛 Parkinson's Disease 巴金森式症 Brain Swelling 脑肿胀 brain Concussion 脑震荡 brain Anoxia脑缺氧症 brain Death 脑死5、肌肉骨骼系统 The Musculoskeletal System Anterior Cruciate Ligament 前十字韧带 Rheumatoid Arthritis 类风湿性关节炎 Arthrosclerosis关节硬化 Degenerated Joint Disease变性关节炎 Clavicle Fracture 锁骨骨折 Pelvic Fracture 骨盆骨折 Plastic Paris Cast 整形硬石膏 Matastatic Lesion转移性损害 Osteoporosis骨质疏松症 Amputation 截肢 Bone graft 骨移植 Hallux Valgus大拇指外翻 Prosthesis Replacement 人工弥补置换术 Range of Motion 运动范围 Varus 内翻 Chondromalacia软骨软化症6、泌尿及男性生殖系统 The Urinary and Male Reproductive System Cystitis 膀胱炎Circumcision包皮环割术 Cystoscopy 膀胱镜检查 Hydronephrosis肾水肿 Renal Stone 肾结石Acute Renal Failure 急性肾衰竭 Cryptorchidism 隐睾症 Spermatogenesis精子生成Benign Prostatic Hypertrophy 良性摄护腺肥大 Ureteral stenosis 输尿管狭窄 Dysuria 排尿困难 Hematuria血尿 Uremia尿毒症 Urinary Tract Infection 尿路感染 Vasoligation 输精管结扎 Impotence 阳萎7、特殊感觉器官 The Organs of Special Senses Audiometer 听力计 Otitis耳炎 Otorrhea耳漏 Tympanitis中耳炎 Tympanotomy 鼓膜穿破术 Nasitis鼻炎 Nasopharyngeal Carcinoma鼻咽癌 Rhinorrhea 鼻溢Intraocular Foreign Body 眼内异物 Intraocular pressure 眼内压 Oculus Uterque 双眼 Oculus Sinister 左眼 Oculus Dexter 右眼 Extraocular Muscle 眼外肌 Ophthalmologist 眼科医师 Diplopia 复视 Myopia 近视 Blepharoptosis 眼睑下垂 Corneitis 角膜炎 Pupil Size Anisocoria 瞳孔大小不等 Retinopexy 视网膜固定术 Retinal Detachment 视网膜剥落 Visual field 视野 Vocal nodular 声带结节 Dermatologist 皮肤科医师 Dermatitis皮肤炎 Cataract白内障Glaucoma青光眼8、综合性字汇 Contraceptive避孕的 Contraindication 禁忌症 Biology 生物学 Hyperemesis 剧吐 Polydipsia剧渴 Homosexual 同性的 Heterosexual 异性的 Inject 注射 Lipoma 脂肪瘤 Lipoid 脂肪样的 Lipomatosis 脂肪过多症 Malformaiton 畸形 Malaise 不适 Necrosis坏死 Nocturia 夜尿症 Ployuria 多尿 Narcotics 麻醉药 Hyperplasia 增殖 Dysplasia 发育不良 Dyspepsia 消化不良 Prognosis 预後 Antipyretic 解热剂 Hydrophobia 恐水症 Photophobia 畏光 Antibiotic 抗生素 Syndrome 症候群 Hydrotherapy 水疗法 Perforation 穿孔 Percussion叩诊 Visceralgia脏器痛二、妇产科常用字汇 Genital 生殖的 Gynecology 妇科 Menstruation 月经 Menopause 更年期 Menorrhagia经血过多 Amenorrhea 无月经 Dysmenorrhea经痛 Menarche初经 Cervicalcancer 子宫颈癌 Cervical Erosion子宫颈糜烂 Cervicitis子宫颈炎 Perineum会阴 Endometriosis子宫内膜异位 Ovary 卵巢 Ovarian Cyst 卵巢囊肿 Ovulation排卵 Vaginitis阴道炎 Colposcopy 阴道镜检法 Galactocele乳腺囊肿 Mammography 乳房X光摄影术 Infertility 不孕症 InVitro Fertilization 体外受精 Amnion 羊膜Amniocentesis 羊膜穿刺术 Amniotic Fluid Embolism 羊水栓塞 Hydramnion 羊水过多 Anterpartal 产前的 Antepartum 分娩前 Chorionic Villi Sampling 绒毛膜绒毛取样 Cephalo Pelvic Disproportion 胎头骨盆不对称 Artificial Insemination 人工受精 Engagement 进入产位 Estrogen动情基素 Colostrum 初乳 Termination of Pregnancy 终止怀孕 Corpus Luteum 黄体 Vacuum Extraction Delivery 真空吸出分娩 Venereal Disease 性病 Tubal Ligation 输卵管结扎 Laparoscope 腹腔镜 Embryo 胚胎 Ectopic Gestation 子宫外孕 Primipara 初产妇 Attitude of Fetus 胎儿体位 Dead Detus in Uterus 胎死腹中 Multipara 经产妇 Parity 经产 Placenta Previa前置胎盘 Postpartum 产後 Postpartum hemorrhage产後出血 Toxemia of Pregnancy 妊娠毒血症 Adolescence青春期 Basal Body Temperature 基础体温 Cesarean Section 剖腹产 Expected Date of Confinement 预产期。

非淀粉多糖在动物营养上的研究进展

非淀粉多糖在动物营养上的研究进展

抗营养作用摘要:非淀粉多糖(NSP)是饲料纤维的主要成分,这些纤维将饲料营养物质包围在细胞壁里面,部分纤维可溶解于水并产生粘性物质。

这些粘性物质抑制动物的正常消化功能,妨碍动物吸收营养。

如将这些NSP去除,营养物质就能从细胞壁里释放出来,从而提高代谢能和蛋白质的利用率。

玉米、小麦中均含有大量的NSP,许多植物蛋白源,如大豆粕,同样含有NSP。

在饲料中添加酶制剂,可将这些NSP 去除,如大豆粕中被细胞结构包围的淀粉和蛋白就可释放,从而提高了大豆粕的代谢能和蛋白质的利用率。

关键字:非淀粉多糖抗营养作用饲料消化营养1. 非淀粉多糖(NSP)的概念和分类非淀粉多糖(non- starch polysaccarides, NSP)是由若干单糖通过糖苷键连接成的多聚体,包括除α-葡聚糖以外的大部分多糖分子。

NSP最初是根据提取和分离多糖所采用的方法进行分类的。

细胞壁经一系列碱提取后剩余的不溶物叫纤维素,溶在碱液中的物质称为半纤维素。

考虑到非淀粉多糖的化学结构及生物功能,人们发现依据其溶解度分类有失精准。

通常非淀粉多糖一般分为3大类,即纤维素、非纤维多糖(半纤维素性聚合体)和果胶聚糖。

其中非纤维多糖又包括木聚糖、β-葡聚糖、甘露聚糖、半乳聚糖等。

按照水溶性的不同,非淀粉多糖又可分为可溶性非淀粉多糖(SNSP)和不可溶性非淀粉多糖(INSP),这是因为在谷物细胞壁中,一些非淀粉多糖以氢键松散地与纤维素、木质素、蛋白质结合,故溶于水,称为可溶性非淀粉多糖。

2. NSP 的物理特性NSP 对畜禽生产性能的影响大多是由可溶性多糖引起的。

多糖在溶液中将会呈现许多特性,而这些特性可能会影响消化过程。

2.1 粘度[1],其粘度依赖于许多因素,包括多糖分子的大小、是分枝结构还是直链结构、荷电基团的存在以及多糖的浓度。

一般来说,NSP 的分子量愈大、分子愈复杂,对消化道中液体的粘稠度的增加愈明显,对畜禽的抗营养作用也更加突出。

体外培育牛黄的药学研究

体外培育牛黄的药学研究

【收稿日期】 2004204227【基金项目】 国家863计划与星火计划资助项目【获奖项目】“体外培育牛黄”项目,1993年获国家发明专利,1997年获国家一类中药新药证书,2002年获国家科技发明奖二等奖。

(2004年1月SFDA 批准体外培育牛黄正式可与天然牛黄等量投料使用)【3通讯作者】 蔡红娇,同济医科大学附属同济医院教授,2003年荣获中国药学发展奖中药类,T el :027*********・论 文・体外培育牛黄的药学研究蔡红娇3,裘法祖,刘仁则华中科技大学同济医学院附属同济医院,武汉430030【摘 要】 目的:解决牛黄原料匮乏问题,为民族医药工业发展提供充足的优质牛黄原料药。

方法:根据胆红素钙结石体内形成的原理和生物化学过程,应用现代生物工程技术,在体外牛胆囊胆汁内培育牛胆红素钙结石(体外培育牛黄);采用电镜扫描、红外光谱法、紫外分光光度法等检测体外培育牛黄的性状、结构、成分和主要成分含量。

结果:体外培育牛黄呈类球形,棕黄色;有同心层纹状结构,扫描电镜下见呈网状结构,网架富集胆红素钙颗粒;含胆红素、胆酸、胆固醇、磷脂、去氧胆酸、牛磺酸、糖蛋白、18种氨基酸及21种微量元素;在避光、密封、防潮条件下存放三年稳定。

结论:体外培育牛黄的性状、结构、成分、含量与天然牛黄相似。

【关键词】 体外培育牛黄;成石胆汁;促发因素【中图分类号】 R282 【文献标识码】 A 【文章编号】 167223651(2004)0620335204 牛黄是牛胆结石,是传统的珍贵中药材,具有清心、豁痰、开窍、凉肝、息风、解毒功能,用于治疗高热神昏、惊厥抽搐、中风痰迷、癫痫发狂、咽喉肿瘤、口舌生疮、痈肿疔疮等疾病[1]。

牛黄是我国600多种中成药的主要原料,然而牛体内自然成石率仅为1%~2%。

因此,药源匮乏、价格昂贵。

为了解决这一矛盾,本文作者在历经十多年研究人类胆结石形成机理的基础上,模拟胆红素钙结石在体内形成的原理和生物化学过程,应用现代生物工程技术,在体外牛胆囊汁内培育牛胆红素钙结石研究。

粘附分子ICAM1、Pselectin、SVCAM1、PECAM1在妊娠肝内胆汁淤积症中的作用

粘附分子ICAM1、Pselectin、SVCAM1、PECAM1在妊娠肝内胆汁淤积症中的作用

粘附分子(ICAM-1、P-selectin、SVCAM-1、PECAM-1)在妊娠肝内胆汁淤积症中的作用导师t指导小组成员。

研究生一彭芝兰教授刘淑芸教授王靖华教授赵t剐教授时青云前言妊娠肝内胆汁淤积症(intrahepatieeholestasisofpregnancyICP)是妊娠特有的并发症,以全身皮肤瘙痒、肝功能异常,或伴有不同程度的黄疸为特征。

该症可引起产后出血率增加,但其更大的危害是围产儿结局不良,早产率35%/¨,羊水胎粪污染率27-40%12】,产时胎儿窘迫率18%【3】,围产儿死亡率高达110‰[41。

目前对该症的发病原因及胎儿缺氧机理尚无定论,因此缺乏有效的防治措施。

近年来随着生殖免疫学的兴起和发展,围绕母体对半异体同种移植物为何不排斥反而里可接受状态(即正常妊娠)这一核心问题进行了一定的研究。

同时对不孕、流产、不明原因的死胎和妊高征等病理妊娠进行了大量研究发现:人类生殖活动是受激素一免疫一生长因子粘附分子网络系统的严密调控的,如网络某些环节发生异常,就可能导致病理妊娠15~。

ICP与妊高征一样,即便是很严重者,一旦胎儿娩出,其病情迅速好转。

但是关于ICP免疫方面的研究极少。

Germonor-RTl7],首先对ICP患者免疫因素进行研究发现Ts细胞减少。

国内对ICP患者血清中抗心磷脂抗体的研究发现lsllCP患者血清中抗心磷脂抗体水平显著升高。

最近我们对ICP患者细胞免疫及体液免疫研究发现,ICP患者CDs+水平明显下降,CD++/CD8+比值增高,IgG水平下降[91。

这些研究结果提示,胎儿一胎盘作为半异体同种移植物,刺激母体产生免疫应答,发生母胎间免疫平衡失调。

粘附分子是多细胞生物的重要功能分子,不仅是急性排斥反应的始动因素而且在免疫应答、对移植物排斥反应及血管内皮活化中起重要作用【9,1o,11,12]。

在对胚胎着床以及妊娠及妊娠并发症的研究发现,粘附分子表达的紊乱可导致胚胎的早期死亡、妊高征及早产的发生[13,14,15】。

鬼笔环肽

鬼笔环肽

鬼笔环肽学术资料一二F- actin微丝蛋白简介肌动蛋白单体(又被称为G-Actin,全称为球状肌动蛋白,Globular Actin,下文简称G肌动蛋白)为球形,其表面上有一ATP结合位点。

肌动蛋白单体一个接一个连成一串肌动蛋白链,两串这样的肌动蛋白链互相缠绕扭曲成一股微丝。

这种肌动蛋白多聚体又被称为纤维形肌动蛋白(F-Actin,Fibrous Actin。

微丝(microfilaments)是由肌动蛋白分子螺旋状聚合成的纤丝,又称肌动蛋白丝(actin filament),与微管和中间纤维共同组成细胞骨架,是一种所有真核细胞中均存在的分子量大约42kDa的蛋白质,也是一种高度保守的蛋白质,因物种差异(例如藻类与人类)的不同不会超过20%。

微丝对细胞贴附、铺展、运动、内吞、细胞分裂等许多细胞功能具有重要作用,做这些细胞功能实验时可以用到鬼笔环肽。

微丝的主要功能有:微丝聚集成束,沿平行于胞质环流的方向排列,控制细胞的胞质环流。

三标记荧光的鬼笔环肽的卖点1)与actin亚单位一比一结合,并且不与G-actin结合,具有比Actin抗体更好的染色效果,实验结果图鲜艳,美观;2)且本品的结合没有物种差异性,适用性广泛;3)鬼笔环肽标记的非特异性信号可忽略,因而图像的反差较好;4)染色与用于细胞分析的其他荧光染色完全兼容,包括荧光蛋白、Qdot® 纳米晶体和其他Alexa Fluor偶联物(包含Alexa Fluor偶联二抗);5)经本品结合后的F-actin仍能维持actin自身具有的许多生物学特性。

五参考文献1. Lin G, Qiu X, Fandel TM, Albersen M, Wang Z, Lue TF, Lin CS. (2011) Improved penilehistology by phalloidin stain: circular and longitudinal cavernous smooth muscles,dual-endothelium arteries, and erectile dysfunction-associated changes. Urology, 78, 970 e1.2. Diensthuber RP, Muller M, Heissler SM, Taft MH, Chizhov I, Manstein DJ. (2011)Phalloidin perturbs the interaction of human non-muscle myosin isoforms 2A and 2C1 with F-actin. FEBS Lett, 585, 767.3. An M, Wijesinghe D, Andreev OA, Reshetnyak YK, Engelman DM. (2010)pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. Proc Natl Acad Sci U S A, 107, 20246.4. Chazotte B. (2010) Labeling cytoskeletal F-actin with rhodamine phalloidin or fluoresceinphalloidin for imaging. Cold Spring Harb Protoc, 2010, pdb prot4947.5. Genikhovich G, Technau U. (2009) Anti-acetylated tubulin antibody staining and phalloidinstaining in the starlet sea anemone Nematostella vectensis. Cold Spring Harb Protoc, 2009, pdb prot5283.6. Herraez E, Macias RI, Vazquez-Tato J, Vicens M, Monte MJ, Marin JJ. (2009) In vitroinhibition of OATP-mediated uptake of phalloidin using bile acid derivatives. ToxicolAppl Pharmacol, 239, 13.7. Wollesen T, Loesel R, Wanninger A. (2009) Pygmy squids and giant brains: mapping thecomplex cephalopod CNS by phalloidin staining of vibratome sections andwhole-mount preparations. J Neurosci Methods, 179, 63.8. Herraez E, Macias RI, Vazquez-Tato J, Hierro C, Monte MJ, Marin JJ. (2009) Protectiveeffect of bile acid derivatives in phalloidin-induced rat liver toxicity. Toxicol ApplPharmacol, 239, 21.9. Luo H, Hallen-Adams HE, Walton JD. (2009) Processing of the phalloidin proprotein byprolyl oligopeptidase from the mushroom Conocybe albipes. J Biol Chem, 284, 18070.10. Vig A, Dudas R, Kupi T, Orban J, Hild G, Lorinczy D, Nyitrai M. (2009) Effect of Phalloidinon Filaments Polymerized from Heart Muscle Adp-Actin Monomers. J Therm AnalCalorim, 95, 721.。

柿单宁的体外降胆固醇作用

柿单宁的体外降胆固醇作用

may explain the strong cholesterol-lowering effect of persimmon ta n nin in vivo.
respectively.Persimmon tan nin also could inhibit cholesterol rnicellization effectively,a n d t he percentage inhibition was

found to be 67% when the concentration was 0.20 rag/mE.In addition.t he cholesterol binding ability of persim on tannin
an—competit ive ma nner wit h a n IC50 va lue of(0.4 2士O.017)mg/mL and a K value of O.488 mg/mL.At the concentration of 10 mg/mL,t he binding rates of persimmon ta n nin to cholic acid(CA)a n d deoxycholic acid(DCA)were 58% a nd 94%,
Abstract:This study investigated the inhibitory effect of persimmon tannin on pa n creatic lipase and pa n creatic cholesterol
esterase activities.The binding capacity of persimmon tannin to cholesterol and bile acids was also determined by

一种中药美白霜的制备

一种中药美白霜的制备

黑龙江科学HEILONGJIANG SCIENCE第12卷第4期2021年2月Vol. 12Feb. 2021一种中药美白霜的制备李楠,毛晴,周雪雪,翟雅洁(陕西科技大学食品与生物工程学院,西安710021)摘要:采用回流等方法分别对甘草、当归、白芨、芦荟进行提取,获得中药提取物。

利用体外酪氨酸酶抑制法和抗氧化能力测试方 法筛选出中药提取物最佳复配比。

筛选美白霜的基质,将中药提取物以合适的用量和添加方式加入到霜剂中制成中药美白霜,对 其性能进行研究,对使用后的效果进行评价。

结果表明,研制的中药美白霜性能稳定,细腻均匀,具有良好的美白、抗氧化功效。

关键词:酪氨酸酶;抑制率;抗氧化;中药美白霜中图分类号:R285 文献标志码:A 文章编号:1674 -8646(2021)04 -0026 -02Preparation of a Traditional Chinese Medicine Whitening CreamLi Nan, Mao Qing, Zhou Xuexue , Zhai Yajie(School of Food and Biological Engineering , Shaanxi University of Science & Technology , Xi' an 710021, China)Abstract : Glycyrrhizae , Angelicae , Bletilla and Aloe are extracted by reflux method to obtain the extracts of traditional Chinese medicines. The optimal compound ratio of the extracts of traditional Chinese medicines is selected by in vitro tyrosinase inhibition method and antioxidant capacity test method ; the matrix of the whitening cream is selected , and the extracts of traditional Chinese medicines are added to the cream in appropriate dosage and addition to prepare the traditional Chinese medicine whitening cream ・ Their properties are studied to evaluate the effect after use ・ The results show that the prepared traditional Chinese medicine whitening cream has stable performance , nice and uniformity , andgood whitening and antioxidant effects.Key words : Tyrosinase ; Inhibition rate ; Antioxidant ; Chinese medicine whitening cream利用多种天然美白活性物质进行复配以产生协同增效作用,多角度、多靶点调节和抑制黑色素的生成是 中药美白化妆品的优势。

布拉氏酵母菌益生性和功能性的体外

布拉氏酵母菌益生性和功能性的体外

㊀收稿日期:2021-09-13基金项目:辽宁省教育厅自然科学基金(LQN201701)ꎻ辽宁大学博士启动基金作者简介:回晶(1977-)ꎬ女ꎬ辽宁沈阳人ꎬ博士ꎬ副教授ꎬ研究方向:肠道微生物群落多样性与疾病的相关性.㊀∗通讯作者:回晶ꎬE ̄mail:jinghui_77@163.com.㊀㊀辽宁大学学报㊀㊀㊀自然科学版第49卷㊀第4期㊀2022年JOURNALOFLIAONINGUNIVERSITYNaturalSciencesEditionVol.49㊀No.4㊀2022布拉氏酵母菌益生性和功能性的体外评价回㊀晶∗ꎬ白琦琦ꎬ杨㊀莹ꎬ张业崎(辽宁大学生命科学院ꎬ辽宁沈阳110036)摘㊀要:布拉氏酵母菌是酿酒酵母亚种之一ꎬ是益生菌中唯一的酵母菌.本文从益生性和功能性两方面系统评价了布拉氏酵母菌.首先运用平板稀释涂布测活菌数的方法ꎬ探究其在模拟胃液中的耐受能力及对胆盐的耐受能力ꎬ结果表明布拉氏酵母菌对pH=3胃液和0.3%胆盐都具有较好的耐受能力.通过体外降胆固醇㊁抗氧化能力实验研究了布拉氏酵母菌的功能特性ꎬ结果表明布拉氏酵母菌可以降解培养基中的胆固醇ꎬ去除率可达到25.05%ꎬ同时其具有较好的抗氧化能力ꎬ并随着菌体浓度增大抗氧化能力增强.布拉氏酵母菌的菌体浓度为108CFU/mL时ꎬDPPH 清除率为31.74%ꎬ OH清除率为41.26%ꎬO-2 清除率为13.17%ꎬ还原能力相当于25.79μmol/L抗坏血酸.关键词:布拉氏酵母菌ꎻ益生性ꎻ功能性中图分类号:Q93㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1000-5846(2022)04-0370-07InVitroEvaluationoftheProbioticCharacteristicsandFunctionofSaccharomycesCerevisiaeBoulardiiHUIJing∗ꎬBAIQi ̄qiꎬYANGYingꎬZHANGYe ̄qi(SchoolofLifeSciencesꎬLiaoningUniversityꎬShenyang110036ꎬChina)Abstract:㊀SaccharomycescerevisiaeboulardiiisoneofthespeciesofSaccharomycescerevisiaeandtheonlyyeastintheprobiotics.ProbioticcharacteristicsandfunctionalpropertiesofSaccharomycescerevisiaeboulardiiweretestinthisexperiment.Firstofallꎬthisexperimentusedthemethodofplatedilutioncoatingtomeasurethenumberofviablebacteriatoexploreitstoleranceinsimulatedgastricjuiceandbile.Theresultsshowedthat:SaccharomycescerevisiaeboulardiicanwithstandsimulatedgastricpH=3.0and0.3%concentrationofbilesalt.ThefunctionalpropertiesofSaccharomycescerevisiaeboulardiiwereexploredbyinvirtrocholesterol ̄loweringandantioxidant.Theresultsshowedthat:Saccharomycescerevisiaeboulardiidegradedmediumcholesterollevelsꎬremoveratewas25.05%.Moreoveithadahighantioxidantcapacityꎬ㊀㊀andthecapacityshowedincreasingtrendwiththeconcentrationofbacteriaincreasing.Whenthebactercityconcentrationwasabout108CFU/mLꎬDPPH clearanceratewas31.74%ꎬO-2clearanceratewas13.17%ꎬ OHclearanceratewas41.26%ꎬreducingpowerwasequivalentto25.79μmol/Lascobicacid OH.Keywords:㊀Saccharomycescerevisiaeboulardiiꎻprobioticscharacteristicsꎻfunction0㊀引言益生菌是一类定殖于动物口腔㊁肠道或生殖道内ꎬ对宿主有益的活性微生物.益生菌既有细菌类又有真菌类ꎬ主要分为乳杆菌类㊁双歧杆菌类㊁链球菌类以及酵母菌类4种类型.益生菌应用十分广泛ꎬ在人类生活的方方面面都起着重要的作用ꎬ它既可以作为治疗腹泻的药物和促进肠道健康的保健食品ꎬ又可以作为畜禽饲料来提高动物生产性能.近年来ꎬ人们发现益生菌可替代抗生素且不产生副作用ꎬ其中双歧杆菌㊁嗜酸乳杆菌目前已被广泛使用ꎬ但它们的耐热性和抗逆性较差ꎬ在产品中更难以长时间存活ꎬ因此继续寻找新的益生菌菌株以满足实际的使用需要显得尤为重要.不同于市面上大多数的益生菌ꎬ布拉氏酵母菌(S.Boulardii)是一种真菌类益生菌ꎬ该菌属于酿酒酵母益生菌的亚种ꎬ具有酿酒酵母益生菌特性的同时却比酿酒酵母益生菌具有更高的耐酸耐热性.布拉氏酵母菌作为微生态制剂的一种ꎬ具有天然㊁无毒副作用㊁安全可靠㊁无残留等多重优点ꎬ可与抗生素同时使用ꎬ并能有效预防抗生素滥用导致的肠道菌群失调[1].虽然布拉氏酵母菌具有十分广阔的应用前景ꎬ但人体环境十分苛刻ꎬ布拉氏酵母菌只有在胃胆环境中具备稳定的耐受能力ꎬ才能够在进入人体后顺利抵达肠道并发挥其功能ꎬ可见深入开展布拉氏酵母菌益生性和功能性的研究ꎬ对于其功能和安全的后续探究是不可缺少的前提.1㊀材料与试剂1.1㊀主要试剂本文的主要试剂:胃蛋白酶㊁牛胆盐㊁无菌生理盐水㊁稀盐酸㊁胆固醇㊁冰乙酸㊁巯基乙酸钠㊁邻苯二甲醛㊁氢氧化钾㊁1ꎬ1-二苯基-2-三硝基苯肼(DPPH)㊁正己烷㊁铁氰化钾㊁浓硫酸㊁三氯化铁(FeCl3)㊁邻二氮菲㊁硫酸亚铁㊁过氧化氢㊁三羟甲基氨基甲烷(Tris)㊁邻苯三酚.1.2㊀培养基本文所用培养基如下:酵母浸出粉胨葡萄糖培养基(YPD)ꎬMRS培养基ꎬ胆盐培养基和高胆固醇培养基.胆盐培养基的制备方法:取牛胆盐于液体培养基中ꎬ使胆盐浓度(g/mL)为0.3%㊁0.5%ꎬ121ħ灭菌15minꎬ冷却备用ꎻ高胆固醇培养基的制备方法:向培养基中加入0.2%巯基乙酸钠㊁0.3%牛胆盐及100μg/mL胆固醇.1.3㊀仪器与设备本文所使用的仪器为V7000D型紫外分光光度计(上海美谱达仪器有限公司)和LC-RE-52AA旋转蒸发仪(上海力辰邦西仪器科技有限公司).173㊀第4期㊀㊀㊀㊀㊀㊀回㊀晶ꎬ等:布拉氏酵母菌益生性和功能性的体外评价㊀㊀2㊀实验方法2.1㊀耐模拟胃液实验本实验取4.5mL现配现用的模拟胃液与0.5mL的布拉氏酵母菌悬液混合ꎬ37ħ培养6hꎬ在培养过程中ꎬ分别于0㊁1㊁3和6h无菌取出0.1mL混合液并作适当稀释ꎬ30ħ培养48hꎬ采用平板计数法测定活菌数[2]ꎬ计算存活率[3-4].存活率(%)=lg(1㊁3或6h活菌数)lg(0h活菌数)ˑ100%(1)2.2㊀耐胆盐实验本实验将布拉氏酵母菌悬液按3%的接种量接种于5mL不同浓度的胆盐培养基中ꎬ于37ħ培养6hꎬ在培养过程中ꎬ分别于0㊁3和6h无菌取出培养液并作适当稀释ꎬ30ħ培养48hꎬ测定活菌数[2]ꎬ计算存活率[5].存活率(%)=lg(3或6h活菌数)lg(0h活菌数)ˑ100%(2)2.3㊀体外降胆固醇能力本实验以胆固醇浓度(μg/mL)为横坐标ꎬOD550为纵坐标ꎬ绘制胆固醇标准曲线[6-7].通过邻苯二甲醛(OPA)法进行测定[8]胆固醇去除率ꎬ根据标准曲线计算样本中胆固醇含量.胆固醇去除率(%)=C0-CC0ˑ100%(3)式中:C0为未接种培养液离心上清液中胆固醇实测质量浓度ꎬμg/mLꎻC为接种后发酵液离心上清液中胆固醇实测质量浓度ꎬμg/mL.2.4㊀布拉氏酵母菌的抗氧化能力2.4.1㊀DPPH 清除率本文参考Kandi[9]的方法ꎬ采用分光光度法[10-11]ꎬ将0.2mmol/LDPPH乙醇溶液与待测菌悬液按1ʒ1体积比混合ꎬ振荡ꎬ室温下暗反应30min后ꎬ3500r/min离心10minꎬ收集上清液ꎬ于517nm波长处测定上清液的吸光值ꎬ并以乙醇溶液调零ꎬ清除率按下式计算:清除率(%)=1-Ai-AjAc[]ˑ100%(4)式中:Ai为1mL待测菌悬液加1mLDPPH乙醇溶液的吸光值ꎻAj为1mL待测菌悬液加1mL无水乙醇的吸光值ꎻAc为1mL磷酸盐缓冲液(PBS)加1mLDPPH乙醇溶液的吸光值.2.4.2㊀ OH清除率本文参考毕秋芸[12]的方法并略作改动[13]ꎬ测定羟自由基清除率.清除率按下式计算:清除率(%)=Am-AnA0-Anˑ100%(5)式中:Am为含有样品和H2O2的吸光值ꎻAn为不含样品但含H2O2的吸光值ꎻA0为不含样品和H2O2的吸光值.2.4.3㊀总还原力本文参考林祥娜等[13]㊁黄丽等[14]的铁氰化钾法ꎬ向15mL离心管中加入0.5mL待测菌悬液ꎬ273㊀㊀㊀辽宁大学学报㊀㊀自然科学版2022年㊀㊀㊀㊀0.5mL1%铁氰化钾ꎬ0.5mL0.2mol/LpH6.8PBSꎬ充分混匀后ꎬ50ħ保温20minꎻ迅速冷却后ꎬ加入0.5mL10%三氯乙酸(TCA)ꎬ沉淀蛋白后ꎬ3500r/min离心10min并收集上清液.取1mL上清液ꎬ加入1mL0.1%的FeCl3溶液ꎬ于700nm处测定吸光值ꎬ以抗坏血酸为标准品ꎬ测定总还原力.2.4.4㊀O-2 清除能力的测定本文参考何美书[15]的方法并略作改动[16]ꎬ测定超氧阴离子自由基清除率.清除率按下式计算:清除率(%)=1-A11-A10A01-A00[]ˑ100%(6)式中:A11为含样品和邻苯三酚的吸光值ꎻA10为含样品但不含邻苯三酚的吸光值ꎻA01为不含样品但含邻苯三酚的吸光值ꎻA00为不含样品和邻苯三酚的吸光值.3㊀结果与讨论3.1㊀耐模拟胃液实验益生菌在抵达肠道环境之前ꎬ需要以活菌的形式通过胃部酸性环境ꎬ因此ꎬ益生菌在酸性胃液里仍需要有较高的存活率是发挥其功能的前提之一[17-18].在正常pH值下(见表1)ꎬ布拉氏酵母菌的存活率不低于100%ꎬ模拟胃液pH=4时(见表2)ꎬ布拉氏酵母菌几乎不受影响ꎬ能够很好存活.模拟胃液pH=3时(见表3)ꎬ随着时间的增加存活率略有降低ꎬ6h后的存活率仍高达96.27%ꎬ优于对照组鼠李糖乳杆菌(LGG).因此可知ꎬ在模拟胃液实验中ꎬ布拉氏酵母菌的存活情况良好ꎬ能够耐受胃液环境.表1㊀布拉氏酵母菌对空白模拟胃液的耐受能力菌株活菌数/(CFU mL-1)0h1h3h6h存活率/%1h3h6h布拉氏酵母菌6.812ʃ0.0906.819ʃ0.0946.852ʃ0.0326.98ʃ0.048100.10100.58101.70鼠李糖乳杆菌9.113ʃ0.0789.216ʃ0.0219.278ʃ0.0369.384ʃ0.129101.13101.81102.97表2㊀布拉氏酵母菌对pH=4模拟胃液的耐受能力菌株活菌数/(CFU mL-1)0h1h3h6h存活率/%1h3h6h布拉氏酵母菌6.815ʃ0.0946.878ʃ0.0126.682ʃ0.2136.681ʃ0.026100.9398.0698.04鼠李糖乳杆菌9.106ʃ0.0899.232ʃ0.5269.228ʃ0.2139.312ʃ0.178101.38101.34102.26表3㊀布拉氏酵母菌对pH=3模拟胃液的耐受能力菌株活菌数/(CFU mL-1)0h1h3h6h存活率/%1h3h6h布拉氏酵母菌6.813ʃ0.1296.754ʃ0.0506.605ʃ0.0906.598ʃ0.07298.5596.3996.27鼠李糖乳杆菌9.115ʃ0.0229.063ʃ0.1988.789ʃ0.1258.725ʃ0.04699.4396.4295.723.2㊀耐胆盐实验正常情况下ꎬ人体肠道中胆盐浓度变化范围是0.03%~0.3%ꎬ益生菌只有能够抵抗胆盐的拮抗作用才有可能在肠道中定殖发挥益生作用[19-20].所设置的不加胆盐空白对照组环境下(见表4)ꎬ布拉氏酵母菌在6h后存活率维持在100%左右.布拉氏酵母菌在0.3%浓度胆盐环境下(见表5)ꎬ布拉氏酵母菌生存受到影响ꎬ3h存活率为89.98%ꎬ6h存活率为78.15%ꎬ对照菌鼠李糖乳杆菌在作用了6h后存活率为83.69%ꎬ与布拉氏酵母菌存活率相近.在0.5%浓度胆盐环境下(见表6)ꎬ布拉373㊀第4期㊀㊀㊀㊀㊀㊀回㊀晶ꎬ等:布拉氏酵母菌益生性和功能性的体外评价氏酵母菌在经过3h的胆盐反应后ꎬ其活菌数量下降ꎬ存活率为78.55%ꎬ低于同等时长0.3%浓度胆盐实验ꎬ在0.5%浓度胆盐作用6h时ꎬ已检测不到活菌.由此可知ꎬ布拉氏酵母菌对于0.3%浓度胆盐环境具有良好耐受能力ꎬ但对于0.5%的胆盐环境不具有耐受能力.表4㊀布拉氏酵母菌对空白胆盐的耐受能力菌株活菌数/(CFU mL-1)0h3h6h存活率/%3h6h布拉氏酵母菌6.809ʃ0.0226.812ʃ0.0796.919ʃ0.035100.04101.61鼠李糖乳杆菌9.019ʃ0.1819.137ʃ0.2029.158ʃ0.040101.30101.54表5㊀布拉氏酵母菌对0.3%浓度胆盐的耐受能力菌株活菌数/(CFU mL-1)0h3h6h存活率/%3h6h布拉氏酵母菌6.590ʃ0.0335.930ʃ0.1015.151ʃ0.21389.9878.15鼠李糖乳杆菌9.199ʃ0.0448.126ʃ0.0547.699ʃ0.21288.3483.69表6㊀布拉氏酵母菌对0.5%浓度胆盐的耐受能力菌株活菌数/(CFU mL-1)0h3h6h存活率/%3h6h布拉氏酵母菌6.568ʃ0.0245.159ʃ0.275-78.55-鼠李糖乳杆菌9.129ʃ0.1568.008ʃ0.2156.151ʃ0.21387.7267.37图1㊀布拉氏酵母菌对胆固醇的降解能力3.3㊀布拉氏酵母菌对胆固醇的降解能力在硫酸存在的条件下ꎬ由于胆固醇及其酯与邻苯二甲醛作用会产生紫红色的物质ꎬ该物质在550nm有最大吸收值ꎬ因此可以用比色法测定胆固醇含量[21].由图1可知ꎬ布拉氏酵母菌的胆固醇清除率为25.05%ꎬ清除量为16.37μg/mLꎬ与对照的鼠李糖乳杆菌相比ꎬ布拉氏酵母菌的体外胆固醇清除率略低于鼠李糖乳杆菌ꎬ具有较好的胆固醇降解能力.3.4㊀布拉氏酵母菌的抗氧化能力3.4.1㊀DPPH 清除能力DPPH 是一种相对比较稳定的自由基ꎬ当DPPH溶液中加入抗氧化剂时DPPH 吸收能力将会减弱ꎬDPPH 的清除能力经常用于评价物质抗氧化的能力[22-23].由图2(a)可以看出ꎬ布拉氏酵母菌在106~108CFU/mL均具有清除DPPH 的能力ꎬ且随着菌体浓度的增大ꎬ清除能力随之增强.与对照组相比ꎬ布拉氏酵母菌对DPPH 的清除能力比鼠李糖乳杆菌略低ꎬ但差异不大ꎬ仍有较好的清除DPPH 的能力.3.4.2㊀ OH清除能力邻二氮菲-Fe2+是一种氧化还原指示剂ꎬ它的颜色改变可反映溶液中氧化还原状态的变化.通过Feton反应体系ꎬ产生的 OH可使邻二氮菲水溶液氧化成邻二氮菲-Fe3+ꎬ通过测定536nm处的吸光值变化反映系统中 OH的变化[24].由图2(b)可以看出ꎬ布拉氏酵母菌菌体浓度为106CFU/mL时ꎬ OH的清除能力较弱ꎬ但当菌体浓度达到108CFU/mL时可达到41.26%ꎬ略低于鼠李糖乳杆菌ꎬ但差异不显著ꎬ具有较好的 OH清除能力.3.4.3㊀总还原力铁氰化钾在弱酸性的环境下能够还原生成黄血盐[K4Fe(CN)6]ꎬ之后再与FeCl3提供的Fe3+作473㊀㊀㊀辽宁大学学报㊀㊀自然科学版2022年㊀㊀㊀㊀㊀㊀用生成普鲁士蓝.还原能力的强弱常以普鲁士蓝的生成量为指标ꎬ通过测定其在700nm处的吸光值(A700)的大小来判定物质的还原能力强弱[25].A700越大ꎬ其还原能力越大ꎬ还原能力是通过转化为抗坏血酸的量来表示的.结果如图2(c)所示ꎬ不同菌体浓度的总还原能力差异显著.随着菌体浓度增加ꎬ布拉氏酵母菌的还原能力比鼠李糖乳杆菌略强ꎬ当菌体浓度达到108CFU/mL时ꎬ布拉氏酵母菌转化为抗坏血酸的浓度高达25.79μmol/L.由此可知ꎬ布拉氏酵母菌具有较强的还原能力.图2 布拉氏酵母菌的抗氧化能力(不同小写字母代表布拉氏酵母菌菌体浓度对清除能力差异显著性ꎻ不同大写字母代表鼠李糖乳杆菌菌体浓度对清除能力差异显著性)3.4.4㊀O-2 清除能力邻苯三酚在碱性环境下能释放O-2 ꎬ生成有色的中间产物ꎬ在有抗氧化物质的存在下ꎬ有色中间产物的生成受到阻碍ꎬ导致吸光值下降.通过测定反应物在325nm处的吸光值变化反映其对O-2 的清除能力[26].由图2(d)可知布拉氏酵母菌不同浓度均具有超氧阴离子的清除能力ꎬ菌体细胞产生的抗氧化物质如超氧化物歧化酶(SOD)等有清除体内O-2 的能力ꎬ且浓度越高ꎬ清除能力越强.当菌体浓度达到108CFU/mL时ꎬ布拉氏酵母菌对O-2 的清除率为13.17%ꎬ相同浓度的布拉氏酵母菌清除能力高于对照菌鼠李糖乳杆菌ꎬ但差异较小ꎬ说明布拉氏酵母菌具有较强的抗氧化能力.本文对布拉氏酵母菌的益生性和功能性进行研究ꎬ运用体外模拟人体胃胆环境的方法ꎬ观察布拉氏酵母菌在该环境下的存活率ꎬ掌握该菌在人体内的存活特性.在pH=3.0的模拟胃液实验中ꎬ随着时间的增加存活率略有降低ꎬ但直到6hꎬ存活率仍高达96.27%ꎬ存活率情况良好ꎬ能够耐受胃液环境.布拉氏酵母菌在0.3%浓度胆盐环境下ꎬ3h存活率为89.98%ꎬ6h存活率为78.15%ꎬ能够耐受0.3%的胆盐环境.本文还对布拉氏酵母菌的降胆固醇能力和抗氧化能力进行了讨论ꎬ结果表明布拉氏酵母菌可以降解培养基中的胆固醇ꎬ去除率可达到25.05%ꎬ同时其具有较好的抗氧化能力ꎬ并随着菌体浓度增大抗氧化能力增强.布拉氏酵母菌菌体浓度为108CFU/mL时ꎬDPPH 清除率为31.74%ꎬ OH清除率为41.26%ꎬO-2 清除率为13.17%ꎬ还原能力相当于25.79μmol/L抗坏血573㊀第4期㊀㊀㊀㊀㊀㊀回㊀晶ꎬ等:布拉氏酵母菌益生性和功能性的体外评价㊀㊀酸.布拉氏酵母菌现今常用于牲畜的肠道治疗中[27]ꎬ本文通过对布拉氏酵母菌益生性和功能性的讨论ꎬ为后续研究其功能开发并应用到医疗领域及人类疾病治疗ꎬ进行了探索性尝试.参考文献:[1]㊀李春慧ꎬ吴润ꎬ蒲万霞.布拉酵母菌制剂的研究进展[J].动物营养学报ꎬ2013ꎬ25(11):2535-2541.[2]㊀朱艳静ꎬ李宇.测定菌体浓度的简便方法[J].工业微生物ꎬ2006ꎬ36(4):47-49.[3]㊀刘诗宇.益生菌体内外降胆固醇效果评价[D].沈阳:辽宁大学ꎬ2020.[4]㊀余萍ꎬ赵迪ꎬ张春宇ꎬ等.动物双歧杆菌乳亚种菌株HCS04-002益生特性的研究[J].中国酿造ꎬ2021ꎬ40(5):86-90.[5]㊀刘之园ꎬ贾俊霞ꎬ姜昊蔚ꎬ等.耐酸耐胆盐益生菌的筛选及其益生特性研究[J].中国酿造ꎬ2020ꎬ39(11):103-108.[6]㊀张汝娇ꎬ何腊平ꎬ李翠芹ꎬ等.邻苯二甲醛法(OPA)与高效液相色谱法(HPLC)测定降胆固醇的双歧杆菌的对比[J].食品与发酵工业ꎬ2014ꎬ40(7):177-181.[7]㊀张旻.降胆固醇功能乳杆菌的筛选及降解机理研究[D].上海:上海交通大学ꎬ2006.[8]㊀赵芳ꎬ李艳琴ꎬ李彬春.模拟人体胃肠道环境筛选益生乳杆菌[J].微生物学通报ꎬ2016ꎬ43(6):1396-1403.[9]㊀KandiSꎬCharlesAL.StatisticalcomparativestudybetweentheconventionalDPPHspectrophotometricanddroppingDPPHanalyticalmethodwithoutspectrophotometer:Evaluationfortheadvancementofantioxidantactivityanalysis[J].FoodChemistryꎬ2019ꎬ287:338-345.[10]㊀郑义ꎬ王卫东ꎬ李勇ꎬ等.高良姜多糖提取工艺优化及其抗氧化活性[J].食品科学ꎬ2014ꎬ35(2):126-131.[11]㊀SirivibulkovitKꎬNouanthavongSꎬSameenoiY.Paper ̄basedDPPHassayforantioxidantactivityanalysis[J].AnalyticalSciencesꎬ2018ꎬ34(7):795-800.[12]㊀毕秋芸.裙带菜多肽的制备及其抗氧化活性的研究[J].中国调味品ꎬ2019ꎬ44(5):104-110.[13]㊀林祥娜ꎬ夏永军ꎬ王光强ꎬ等.抗氧化活性乳酸菌的筛选[J].中国食品学报ꎬ2017ꎬ17(6):103-109.[14]㊀黄丽ꎬ杨攀ꎬ曾庆坤ꎬ等.不同乳酸菌胞外分泌物抗氧化活性的研究[J].中国酿造ꎬ2019ꎬ38(11):49-53.[15]㊀何书美.酸奶中乳酸菌清除超氧阴离子能力的研究[J].食品科技ꎬ2011ꎬ36(4):15-17ꎬ21.[16]㊀林祥潮ꎬ黄晓东.中药对超氧阴离子自由基清除率的测定[J].广州化学ꎬ2012ꎬ37(1):32-36.[17]㊀冯丽莉ꎬ张栋ꎬ刘尧尧ꎬ等.一株动物双歧杆菌乳亚种的分离鉴定及其特性研究[J].食品科技ꎬ2021ꎬ46(6):1-6.[18]㊀ReisNAꎬSaraivaMAFꎬDuarteEAAꎬetal.Probioticpropertiesoflacticacidbacteriaisolatedfromhumanmilk[J].JournalofAppliedMicrobiologyꎬ2016ꎬ121(3):811-820.[19]㊀KaktchamPMꎬTemgouaJBꎬZambouFNꎬetal.Invitroevaluationoftheprobioticandsafetypropertiesofbacteriocinogenicandnon ̄bacteriocinogeniclacticacidbacteriafromtheintestinesofNiletilapiaandcommoncarpfortheiruseasprobioticsinaquaculture[J].ProbioticsandAntimicrobialProteinsꎬ2018ꎬ10(1):98-109.[20]㊀赖玉健ꎬ陈素梅ꎬ罗珮桓ꎬ等.产乳酸芽孢杆菌DU-106益生特性的研究[J].中国酿造ꎬ2021ꎬ40(3):33-38.[21]㊀陈霞ꎬ熊智强ꎬ夏永军ꎬ等.益生菌体外降解胆固醇的研究进展[J].工业微生物ꎬ2020ꎬ50(4):52-58.[22]㊀丁丽丽ꎬ吕欣然ꎬ高永悦ꎬ等.鱼肠道中抗氧化活性乳酸菌的筛选及鉴定[J].食品科学ꎬ2021ꎬ42(10):127-132.[23]㊀CiafardiniGꎬZulloBA.Invitropotentialantioxidantactivityofindigenousyeastsisolatedfromvirginoliveoil[J].JournalofAppliedMicrobiologyꎬ2020ꎬ128(3):853-861.[24]㊀李颖ꎬ刘玉珍ꎬ张雨晴ꎬ等.具有抗氧化活性的人源乳杆菌菌株筛选[J].食品研究与开发ꎬ2019ꎬ40(8):199-205.[25]㊀冯美琴ꎬ栾晓旭ꎬ孙健.3株发酵香肠源乳酸菌体外功能特性的比较[J].食品科学ꎬ2020ꎬ41(24):39-45.[26]㊀ZolotukhinPVꎬPrazdnovaEVꎬChistyakovVA.Methodstoassesstheantioxidativepropertiesofprobiotics[J].ProbioticsandAntimicrobialProteinsꎬ2018ꎬ10(3):589-599.[27]㊀汪棋ꎬ邹朋ꎬ周元浩ꎬ等.布拉迪酵母菌在畜牧业中的应用研究进展[J].动物营养学报ꎬ2020ꎬ32(12):5596-5605.(责任编辑㊀李㊀超)673㊀㊀㊀辽宁大学学报㊀㊀自然科学版2022年㊀㊀。

具有结合胆酸盐作用卵形鲳鲹蛋白酶解物的制备和分子量分布研究

具有结合胆酸盐作用卵形鲳鲹蛋白酶解物的制备和分子量分布研究

具有结合胆酸盐作用卵形鲳鲹蛋白酶解物的制备和分子量分布研究朱晓连;陈华;蔡冰娜;万鹏;孙恢礼;陈得科;潘剑宇【摘要】以卵形鲳鲹(Trachinotus ovatus)鱼肉为原材料,以酶解产物与胆酸盐的体外结合率为指标,从5种常用食品用蛋白酶中筛选最优蛋白酶.进而采用正交法优化酶解条件,以提高酶解产物的胆酸盐结合率,并采用GPC法分析产物中蛋白肽的分子量分布情况.结果表明,胰蛋白酶酶解产物(100 mg·mL-1)与胆酸钠、甘氨胆酸钠和牛磺胆酸钠等3种胆酸盐的体外结合能力均好于其他4种蛋白酶,结合率分别达到42.1%、33.5%和30.1%,分别相当于降血脂药物考来烯胺散(20 mg·mL-1)的78.3%、74.4%和76.8%;经过正交试验优化的制备卵形鲳鲹蛋白肽的工艺条件为酶解时间2 h,加酶量2 000 U·g-1,料液比1:4(g·mL-1、pH 8、37 ℃).该条件下酶解产物(20 mg·mL-1)对甘氨胆酸钠体外结合率达到同浓度阳性对照物(考来烯胺散)的48.3%,酶解产物中相对分子量3 kD以下的肽类组分占总蛋白水解物的77.30%.%Taking ovate pompano (Trachinotus ovatus) meat as raw material and taking enzymatic hydrolysate and bile salts in vitro binding rate as index,we screened the optimal protease from five kinds of food protease.Then we used orthogonal design to optimize hydrolysis conditions in order to improve the binding rate of bile acid salts and used GPC method to analyze the molecular weight distribution of peptides.The results show that the tryptic hydrolysates had higher binding rate than that of the other protease hydrolysates,and the in vitro binding rate of sodium cholate,sodium glycocholate and sodium taurocholate by enzymatic protein (100 mg·mL-1) was 42.1%,33.5% and 30.1%,respectively,which was78.3%,74.4% and 76.8% equivalent to the positive control cholestyramine (20 mg·mL-1).The maximum percentage of sodium glycocholate hydrate binding rate was obtained under the conditions:hydrolytic time of 2h,enzyme additives of 2 000 U·g-1,meal-to-water ratio of 1:4 (g·mL-1,at pH 8,37 ℃).Under the optimal condition,the in vitro binding rate of sodium glycocholate hydrate by enzymatic hydrolysate (20 mg·mL-1) was corresponding to 48.3% of positive control cholestyramine at the same concentration.The relative molecular weight of peptides below 3 kD in enzymolysis products accounted for 77.30%.【期刊名称】《南方水产科学》【年(卷),期】2017(013)002【总页数】8页(P101-108)【关键词】卵形鲳鲹;胆酸盐结合;酶解制备;正交优化;分子量分布;肽【作者】朱晓连;陈华;蔡冰娜;万鹏;孙恢礼;陈得科;潘剑宇【作者单位】中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院大学,北京100049;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301;中国科学院大学,北京100049;中国科学院南海海洋研究所,中国科学院热带海洋生物资源与生态重点实验室,广东省海洋药物重点实验室,广东广州 510301【正文语种】中文【中图分类】S986.1高脂血症(hyperlipidemia)是一种常见的由于血脂代谢或者运转异常而引起的心血管疾病。

替米考星β-CDP载药微球的制备及释药性能研究

替米考星β-CDP载药微球的制备及释药性能研究

替米考星β-CDP载药微球的制备及释药性能研究杨黎燕;余丽丽;姚琳;尤静【摘要】采用共沉淀法制备了替米考星β-CDP载药微球,讨论了投药比、反应时间、反应温度对替米考星β-CDP载药微球的影响,并探讨了其体外释药情况,运用红外光谱仪、电镜、粒度分析仪对产物进行了表征.结果表明,在β-CDP微球质量为3 g、替米考星质量为0.25 g、反应温度为50℃、反应时间为1.0h、搅拌速度为400 r· min-1的条件下制得的载药微球的产率为81.60%、包封率为66.05%.替米考星β-CDP载药微球粒径分布均匀,外观圆整,在pH值为7.4的PBS中释药效果较好.载药微球释药与Korsmeyer-Peppas方程有较好拟合.%Tilmicosin β-cyclodextrin polymer (β-CDP) microspheres was prepared by coprecipitation method. The influence of preparation conditions ontil micosin β-CDP microspheres and its drug release in vitro were investigated. Fourier transform infrared spectroscopy (IR) .scanning electron microscopy (SEM) and granularity analyzer were used to character tilmicosin β-CDP microspheres. The results showed that the optimum preparation conditions were as follows:the quantity of β-CDP was 3 g"the quantity of tilmicosin was 0. 25 g,the reaction temperature was 50℃.the reaction time was 1. 0 h.the stirring speed was 400 r·min-1 The yield and drug encapsulation rate were 81. 60% and 66.05%, respectively under above conditions. The tilmicosin β-CDP microspheres was uniform in particle size distribution, was round in appearance,and had a good drug release in PBS(pH = 7. 4). And Korsmeyer-Peppas equation was adapted for its drug release characteristic.【期刊名称】《化学与生物工程》【年(卷),期】2013(030)001【总页数】4页(P71-74)【关键词】替米考星;β-环糊精聚合物;制备;体外释药【作者】杨黎燕;余丽丽;姚琳;尤静【作者单位】西安医学院药学院,陕西西安710021;西安医学院药学院,陕西西安710021;西安医学院药学院,陕西西安710021;西安医学院药学院,陕西西安710021【正文语种】中文【中图分类】TQ460;O636替米考星(Tilmicosin)是一种以泰乐菌素为前体半合成的畜禽专用抗生素,在兽医临床上具有广阔的应用前景,但水溶性差,导致药物在动物体内的吸收及生物利用度低,用药成本较高,容易造成药物残留、过敏反应等,并诱发耐药菌株的产生,很大程度上限制了其在兽医临床上的推广应用[1]。

不同茶浸提液对胆酸盐的结合及其降血脂机理的研究

不同茶浸提液对胆酸盐的结合及其降血脂机理的研究
图 1 绿茶浸提液对胆酸盐的吸附动力曲线 绿茶浸提液结合胆酸盐的吸附等温线见图 2,三 条曲线近似成 L 形。当胆酸盐初始浓度较低时,绿 茶浸提液对 胆 酸 盐 的 吸 附 率 较 高,随 着 胆 酸 盐 初 始 浓度的增大,绿茶浸提液对胆酸盐的吸附变化趋缓, 最后达到一个极大值而不再变化。其他茶浸提液对 胆酸盐的吸附具有类似的变化趋势。
浸提率( % ) = ( 干茶重量 - 茶渣重量) / 干茶重
量 × 100%
式( 1)
固形物含量( % ) = 干物质重量 / 浸提液重量 ×
100%
式( 2)
1.2.6 茶多酚含量测定 GB / T 8313-2008。
1.2.7 数据分析 采用 SPSS 17.0 软件的 One - Way
ANOVA 进行数据分析,显著性采用 Duncan 法进行
图 2 绿茶浸提液对胆酸盐的吸附等温线 分别以 Freundilich 等 温 式、Langmiur 等 温 式 对 其进行拟合,拟合结果见图 3 和表 2。以上述两种等 温式拟合所 得 到 的 方 程 具 有 较 好 的 相 关 性,其 相 关 系数 R2 > 0.9520,均能良好地反映绿茶浸提液对胆酸 盐的吸附结合行为。由 Langmuir 等温式可知,绿茶 浸提液对牛磺胆酸钠的最大结合量高于对甘氨胆酸 钠的最大结合量,虽然两者均为结合型胆酸盐,但牛 磺胆酸钠侧 链 末 端 为 磺 酸 基,而 甘 氨 胆 酸 钠 侧 链 末 端为羧基,磺酸基较羧基的极性更大,解离性更强[3], 这有利于甾 核 上 活 性 位 置 暴 露,与 绿 茶 中 的 功 能 性 成分反应。绿茶浸提液对胆酸钠的最大结合量是最 低的,仅为 2.9507μmol / mL 绿茶浸提液,这与前述分 析一致。

体外ADME性质向体内PK参数的转化和外推

体外ADME性质向体内PK参数的转化和外推

大连化学物理研究所药用资源开发组大连化学物理研究所药用资源开发组大连化学物理研究所药用资源开发组Volume of distributionClearanceAbsorptionHalf Half--lifeBioavailabilityDosing regimen:Dosing regimen:Dosing regimen:How often?Dosing regimen:How much?大连化学物理研究所药用资源开发组肝细胞亚重组单酶(如新鲜和冷藏肝细胞)肝切片肝灌流细胞组分(如微粒体或S9大连化学物理研究所药用资源开发组大连化学物理研究所药用资源开发组大连化学物理研究所药用资源开发组Dispersion model:扩散模型Dispersion model:>0∞>DN大连化学物理研究所药用资源开发组Root mean squared prediction error (RMSE)Root mean squared prediction error(RMSE)Correlation coefficient squared (r2)Pharmaceutical Research 22(1) 103-112 2005:IVIVE VS Allometric scaling CL int: IVIVE VS. Allometric scaling 大连化学物理研究所药用资源开发组基本假设中忽略肝外代谢和原型药排泄。

蛋白结合的影响。

J. Pharmacol. Exp. Ther. ( 1997 ) 283 (1): 46 58.J.Pharmacol.Exp.Ther.(1997)283(1):46-58.大连化学物理研究所药用资源开发组ProtocolProtocol for inhibitory DDI evaluation 大连化学物理研究所药用资源开发组:simple allometry method V ss:simple allometry method大连化学物理研究所药用资源开发组M Methods based on Oie-Tozer Equation大连化学物理研究所药用资源开发组如何提高预测的准确度?1、体外孵育体系体外体系跟体内情况的差异大连化学物理研究所药用资源开发组•微粒体蛋白结合fuinc大连化学物理研究所药用资源开发组IVIVE与PBPKExpert Opin. Drug Metab. Toxicol. (2007) 3(6)Thanks for your attention! Thanks for your attention!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

In vitro binding of bile acids by lupin protein isolates and theirhydrolysatesYumiko Yoshie-Starka,b,*,Andreas W €a schebaDepartment of Food Science and Technology,Faculty of Marine Science,Tokyo University of Marine Science and Technology,5-7Konan-4,Minato-ku,Tokyo 108-8477,JapanbDepartment of Process Engineering,Fraunhofer Institute for Process Engineering and Packaging,Freising,GermanyReceived 7October 2003;received in revised form 8January 2004;accepted 8January 2004AbstractThis study investigates the in vitro binding of bile acids by lupin,lupin protein isolates,and their hydrolysates compared to soybean products and cholestyramine.Sodium cholate,sodium deoxycholate,sodium chenodeoxycholate,sodium glycocholate and sodium taurocholate were individually tested and analyzed spectrophotometrically by enzymatic reaction.A degree of hydrolysis of up to 20%did not affect the bile-acid binding capacity.De-oiled lupin and its hydrolysate bound all the bile acids to a significantly greater extent than de-oiled soy and its hydrolysate.Acid-soluble protein isolate from lupin showed a greater bile-acid binding capacity than acid-insoluble protein isolate.The amount of bile acid bound by acid-soluble lupin protein isolate was sometimes greater than the amount of bile acid bound by cholestyramine,which is well known as a cholesterol-reducing agent.There was no selective binding of particular types of bile acids.It can be concluded from these results that acid-soluble protein isolate from lupin may have potential application as a cholesterol-reducing agent for hypercholesterolemic patients.Ó2004Elsevier Ltd.All rights reserved.Keywords:Lupinus albus ;Protein isolate;Bile-acid binding;Soybean;Hydrolysate1.IntroductionProtein is an essential nutrient for growth and for regulating a wide range of body functions.Animal proteins,such as meat,cow’s milk and eggs,and plant proteins,such as soybeans and nuts,are known to be good sources of protein.As animal protein sources often contain large amounts of saturated fat,the consumption of plant protein is recommended for reducing the risk of coronary heart disease.Various trials to replace a cer-tain percentage of animal protein in food products with plant protein have been reported over recent decades and many different types of plant protein isolates have been produced.It was reported that the supplementa-tion of plant protein isolate in model food products changed the product characteristics and nutritional values.Protein isolates are intended to be additives infood products for improving functional properties,such as the foaming/emulsifying capacity,gel formation,viscosity,texture and water-binding capacity.Protein isolates obtained from sesame seed (Lopez,Flores,Galvez,Quirasco,&Farres,2003),defatted maize germ (Zayas &Lin,1989)and peas (Dagorn-Scaviner,Gue-guern,&Lefebvre,1987),as well as wheat and soybean proteins (Boneldi &Zayas,1995),have been added to a variety of products,usually as replacements for egg albumin.Lupin seeds have a high protein content and nutritive value but they contain a large number of quinolizidine alkaloids which make the seeds bitter and potentially toxic.The Ministry of Agriculture,Fisheries and Food Department of Health UK (1996)mentioned that the oral LD50of the lupin alkaloid extract in rats was 2300mg/kg body weight.Since white lupin contained 0.003%of alkaloids (W €a sche,M €uller,&Knauf,2001),there is no risk of the toxicity of white lupin alkaloids for hu-mans.Lupins contain a specific protein fraction,cong-lutin c ,which accounts for approximately 5%of the*Corresponding author.Tel.:+81-3-5463-0582;fax:+81-3-5463-0496.E-mail address:yumikoy@s.kaiyodai.ac.jp (Y.Yoshie-Stark).0308-8146/$-see front matter Ó2004Elsevier Ltd.All rights reserved.doi:10.1016/j.foodchem.2004.01.033Food Chemistry 88(2004)179–184/locate/foodchemFood Chemistrytotal protein content and has the exceptional charac-teristic of being a sulfur-rich protein;it contains amino acids that are scarce in other grain legumes.The interest in lupin proteins,and especially in lupin conglutin c,is based on its unusual functional properties and nutri-tional benefits(Duranti,Sessa,Scarafoni,Bellini,& Dallocchio,2000).In order to utilize the lupin protein,we produced lupin protein isolates(W€a sche et al.,2001).In this work, a novel procedure has been proposed to maintain,two types of lupin protein isolates,one acid-soluble and the other a neutral pH-soluble fraction,in their native protein structures.Proteins were extracted from hexane-deoiled,flaked lupin kernels from low alkaloid-lupin genotypes.Although we reported an improvement in the physicochemical characteristics of protein isolates,the physiological effect,in terms of added value applications as functional ingredients of lupin protein isolate,was still unclear.Protein-enriched food fractions have the potential(on bile-acid binding)to lower cholesterol in blood(Sugano&Goto,1990;Camire&Dougherty, 2003),and have effects on mineral bioavailability(Claye, Idouraine,&Weber,1998),or ACE inhibition(Mull-ally,Meisel,&FitzGerald,1997).Hypercholesterolemia is an excessive level of choles-terol in the blood and this condition increases the risk of heart disease.Exercise,a reduced saturated fat intake and a higher dietaryfibre intake are recommended for decreasing the blood cholesterol level.Eastwood and Hamilton(1968)reported that dietaryfibres were re-sponsible for binding bile acids.As bile acids are prod-ucts of cholesterol decomposition in the liver,the effect offibre/bile-acid binding on cholesterol lowering is based on the negative feedback of bile acids in the en-terohepatic cycle(Pandolf&Clydesdale,1992).Bile acids are secreted into the duodenum after conjugation with glycine or taurine,and they assist the digestion of fat by the formation of micelles.Bile-acid binding therefore also affects the fat digestion ratio.Bile-acid binding by dietaryfibre is well reported;however,only a few reports are available on bile-acid binding by protein. Kahlon and Woodruff(2002)reported in vitro binding of bile acids by soy protein and some beans.Some re-ports have already mentioned the effect of protein for combating hypercholesterolemia(Anderson,Lovati,& Cook-Newell,1995;Sirtori et al.,1998).As a part of the work to determine the health benefits of food fractions,we have investigated bile-acid binding by lupin protein isolates and compared this to soybean and cholestyramine.Unlike dietaryfibre,protein is not resistant to digestion.Some studies have found that protein hydrolysate has higher binding potential than the protein itself(Mullally et al.,1997;Pihlanto-Lepp€a l€a, Rokka,&Korhonen,1998).In order to investigate this, protein,protein isolates and their hydrolysates were prepared and tested for bile-acid binding.2.Materials and methods2.1.MaterialsWhite Lupin(Lupinus albus)seeds were obtained from Chile.Soybeans were obtained from the United States.In a dry milling step,the seed kernels and hulls were separated.The kernels were thenflaked with a roll mill.The oil fraction was extracted from theflaked kernels,using hexane as the solvent.These de-oiled flakes were milled using a Retsch ZM-100mill (D€u sseldorf,Germany)to form a powder(<0.1mm).The lupin proteins were extracted from the de-oiled flakes using a two-stage process(W€a sche et al.,2001).In thefirst stage,the de-oiledflakes were mashed in cold water under acid conditions.The clarified acid extract was concentrated by cross-flow membranefiltration and was then spray-dried(this protein isolate was called Protein isolate F in the report of this work).In the second stage,the main storage protein fraction was ex-tracted under neutral pH conditions and the soluble protein was collected and spray-dried(this protein iso-late was called Protein isolate E).Cholestyramine,sodium cholate,sodium deoxycho-late,sodium chenodeoxycholate,sodium taurocholate, sodium glycocholate and bile-acid analysis kits were purchased from Sigma(St.Louis,MO).All the other reagents that were used for the experiments were ana-lytical grade.2.2.Methods2.2.1.Proximate analysisThe chemical compositions(dry matter content, protein content,oil and ash content)of de-oiled lupin flakes,soybeanflakes and the processed lupin protein samples were determined in accordance with the LMBG method(LMBG,1995).2.2.2.Digestion of samplesThe sample digestion was done by the method of Pihlanto-Lepp€a l€a et al.(1998)and the method of van der Ven,Gruppen,de Bont,and Voragen(2002)with some modification.De-oiled lupin,lupin protein isolates and de-oiled soybean were digested with pepsin(en-zyme/substrate ratio¼1:200)for2h at37°C at pH2.0 and then heated at80°C for20min.For pepsin plus pancreatin digestion,the pH of the pepsin-digested samples was adjusted to pH7.0with NaOH before di-gestion with pancreatin(enzyme/substrate ratio¼1:200) for3h at37°C.The samples were then heated at80°C for20min.Digested samples were lyophilized and kept at4°C prior to use.The degree of hydrolysis was de-termined by the method of Nielsen,Petersen,and Dambmann(2001).180Y.Yoshie-Stark,A.W€a sche/Food Chemistry88(2004)179–1842.2.3.Bile-acid binding assayThe in vitro bile-acid binding procedure was a mod-ification of that by Camire and Dougherty(2003)and Kahlon and Woodruff(2002).A buffer solution(0.1M phosphate buffer at pH7.0)was added to the de-oiled lupin,lupin protein isolate,de-oiled soybean and the digested samples to make a10mg/ml suspension.One hundred microlitres of a sample suspension(10mg/ml) was transferred to a test tube and900l l of2mM bile-acid solution in0.1M phosphate buffer at pH7.0were added.As the bile-acid concentration in the human body is1.5–7mM(Calvert&Yeates,1982),it was ad-justed to that range.After incubation at37°C for2h,each sample was centrifuged and the supernatant was transferred to a volumetricflask.A further1ml of0.1M sodium phosphate buffer at pH7.0was added to the sediment, mixed well and centrifuged.The supernatant was re-moved and combined with the earlier supernatant.This procedure was repeated and the supernatant was added to the existing supernatant in the volumetricflask. Aliquots of the pooled supernatant were frozen at)20°C until analysis was carried out.The bile acids were analyzed spectrophotometrically at530nm using Sigma bile-acid analysis kit450.The experimental values were determined from a standard curve obtained using tested bile-acid solutions.The individual substrate blanks were subtracted and the bile-acid concentrations were cor-rected for the mean recovery of bile acid(positive blank).Cholestyramine resin,a drug that binds bile acid and lowers cholesterol,was also evaluated for its ability to bind bile acid.All analyses were at least performed in triplicate.2.2.4.Statistical analysisResults are presented as mean valuesÆs.e.m. (n¼3to8).ANOVA was used to calculate significant differences.3.Results and discussionWe testedfive bile acids for in vitro binding by de-oiled lupin,lupin protein isolates,de-oiled soybean and their hydrolysates.The results of proximate analyses are shown in Table 1.Lupin,lupin protein isolates and soybeans had dry matter contents of89.7–96.2%..Pro-tein isolate F had the lowest concentration of oil (0.24%).Protein isolates E and F had higher protein contents,expressed as nitrogen(N)Â6.25,at91–100%. This showed that the protein isolate production process was efficient.As the proximate analyses were carried out by the LMGB method,the protein content was slightly higher than that calculated using the AOAC method.As previously reported(W€a sche et al.,2001),alkaloid content of lupin was0.003%,and by protein isolation,it became less than0.001%.This decrease indicate that removal of alkaloid was efficient in protein isolation. The degree of hydrolysis of the samples is shown in Table2.Protein isolates were hydrolyzed to a greater degree than lupin and soybean samples,which included dietaryfibres.The sodium cholate binding by lupin,lupin protein isolates and soybean is shown in Fig.1.Sodium cholate was bound by de-oiled lupin and its hydrolysate to a degree of34.7–41.3%,by protein isolate E and its hy-drolysate14.8–29.4%,by protein isolate F and its hy-drolysate54.4–58.3%and by cholestyramine to53.1%. When degree of hydrolysis was increased,the sodium cholate binding capacity was not significantly affected by hydrolysis.Lupin protein isolate F and cholestyr-amine showed significantly higher sodium cholate Table1Chemical composition of de-oiled lupin,lupin protein isolates and de-oiled soybeanSample Drymatter(%)Protein(NÂ6.25)(%)Oil(%)Ash(%) De-oiled lupin89.6956.8 1.95 3.82 Protein isolate F93.5391.440.240.30 Protein isolate E96.17100.62 1.160.15 De-oiled soybean90.0061.0 2.00 6.00Table2Degree of hydrolysis of de-oiled lupin,lupin protein isolates and de-oiled soybeanSample Pepsin Pepsin+pancreatinDe-oiled lupin 2.8813.2Protein isolate F 3.2618.2Protein isolate E0.3611.5De-oiled soybean 3.345.66binding than de-oiled soybeans and its hydrolysate (11.9–18.5%).Story and Krichevsky(1976)tested so-dium cholate binding by cholestyramine and alfalfa at a cholate concentration of10mM.They reported that 60.7%of cholate was bound by cholestyramine and 19.9%of cholate was bound by alfalfa.Camire,Zhao, and Violette(1993)and Camire and Dougherty(2003) reported cholate binding by cholestyramine,three types of raisins,wheat bran and various types of potato peels at a cholate concentration of12.5mM.Their work in-dicated cholate binding of75%,15–20%,10%and1.9–8.1%,respectively.Raisins,wheat bran and potato peels, de-oiled lupin and lupin protein isolate F showed higher cholate binding capacity than alfalfa,while soybean showed similar cholate binding to that in the cited ref-erences(Camire&Dougherty,2003;Camire et al., 1993).As shown in Fig.2,sodium chenodeoxycholate was bound by de-oiled lupin/hydrolysate to a degree of39.2–45.6%,by protein isolate E/hydrolysate14.0–20.9%,byprotein isolate F/hydrolysate55.8–71.4%,by de-oiled soybean/hydrolysate14.3–17.6%and by cholestyramine 60.8%.The sodium chenodeoxycholate binding capacity was also not significantly affected by hydrolysis.Soy-beans/hydrolysate showed significantly lower chen-odeoxycholate binding than cholestyramine and protein isolate F/hydrolysate.Chenodeoxycholate was reported to be bound to a degree of86.5%by cholestyramine and 24.8%by alfalfa(Story&Krichevsky,1976).Protein isolate E showed slightly lower chenodeoxycholate binding than alfalfa,while protein isolate F exhibited higher chenodeoxycholate binding,nearly the same as for cholestyramine.Fig.3shows that sodium deoxycholate was bound by de-oiled lupin/hydrolysate to a degree of34.3–57.7%,by protein isolate E/hydrolysate12.8–19.5%,by protein isolate F/hydrolysate58.4–69.5%,by de-oiled soybean/ hydrolysate12.6–15.0%and by cholestyramine66.4%. The sodium deoxycholate binding capacity was also not significantly affected by hydrolysis.The percentage of deoxycholate bound by the tested samples was slightly higher than was cholate(no significant difference). Cholestyramine has been reported to bind deoxycholate under various in vitro conditions to a degree of92.5% (Story&Krichevsky,1976),85%(Camire&Dougherty, 2003)and99.9%(Camire et al.,1993).Compared to these values,our results showed lower deoxycholate binding by cholestyramine.Alfalfa(Story&Krichevsky, 1976),raisins,wheat bran(Camire&Dougherty,2003) and potato peels(Camire et al.,1993)were reported to bind deoxycholate to degree of10.8%,5–10%,15%and 10.6–18.9%,pared to these samples, our lupin protein isolate F showed a much higher de-oxycholate binding capacity.Cholic acid and chenode-oxycholic acid are primary bile acids which are produced by the body.In contrast,deoxycholic acid is a secondary bile acid which is produced by microorgan-isms living in the gastrointestinal tract.The high con-centration of secondary bile acid may cause intestinal inflammation.It is hence desired to have greater binding of deoxycholic acid than cholic acid.The result of the sodium glycocholate binding tests is shown in Fig.4.Sodium glycocholate was bound by de-oiled lupin/hydrolysate to a degree of42.7–57.5%,by protein isolate E/hydrolysate10.5–28.1%,by protein isolate F/hydrolysate63.9–68.0%,by de-oiled soybean/ hydrolysate0.2–8.5%and by cholestyramine25.0%. Soybean and its hydrolysates had significantly lower binding capacities than the other samples that were tested.Protein isolate F showed significantly higher glycocholate binding than cholestyramine and protein isolate E.The binding capacity of protein isolate Fwasnot affected by hydrolysis.Both pepsin hydrolysate F and pepsin–pancreatin hydrolysate F also exhibited significantly higher glycocholate binding than chole-styramine and protein isolate E/hydrolysate.Cholestyr-amine has been reported to bind glycocholate under various conditions to a degree of74.2%(Story&Kri-chevsky,1976)and100%(Camire&Dougherty,2003). Alfalfa and wheat bran were shown to have a glyco-cholate binding capacity of11.5%(Story&Krichevsky, 1976)and100%(Camire&Dougherty,2003).Lupin protein isolate F showed higher glycocholate binding than alfalfa.As shown in Fig.5,sodium taurocholate was bound by de-oiled lupin/hydrolysate to a degree of36.4–40.3%, by protein isolate E/hydrolysate to a degree of5.76–13.1%,by protein isolate F/hydrolysate to a degree of 40.9–51.6%and by cholestyramine to a degree of25.7%. De-oiled soybean/hydrolysate did not bind sodium taurocholate.The sodium taurocholate binding capacity was also not significantly affected by hydrolysis.Cho-lestyramine showed significantly lower taurocholate binding than pepsin–pancreatin-digested protein isolate pared to other bile acids,the taurocholate binding by cholestyramine was lower.Cholestyramine was reported to bind taurocholate to a degree of80.7% (Story&Krichevsky,1976)and75%(Camire& Dougherty,2003),however,cholestyramine showed lower glycocholate and taurocholate binding than in other reports above mentioned.This was supposed to be a result of depending on the range of experimental conditions.Alfalfa,wheat bran and rhubarb were re-ported to bind taurocholate to a degree of6.9%(Story& Krichevsky,1976),9–10%(Camire&Dougherty,2003; Goel et al.,1998)and24.6%(Goel et al.,1998).In our study,lupin protein isolate F showed higher taurocho-late binding than alfalfa,wheat bran and rhubarb.For allfive of the bile acids under test,de-oiled lupin, lupin protein isolate F and cholestyramine showed higher bile-acid binding than protein isolate E and de-oiled soybeans.Iwami,Sakakibara,and Ibuki(1986) and Sugano and Goto(1990)reported that hydrophobic undigested fractions of soy protein have been shown to lower cholesterol and bind bile acids to an even greater extent than soy protein.However,in our study,the bile-acid binding capacity was not affected by hydrolysis (digestion)up to a degree of hydrolysis of20%.Kahlon and Woodruff(2002)tested bile-acid binding with bile acid mixtures at a total concentration at288l M.In order to make a comparison with our results,we have converted their data to‘‘%bound’’values.Cholestyr-amine bound95%of the bile acid pared to cholestyramine,soybean showed approximately15%of the bile-acid binding capacity(for the total bile acid mixture,14.3%of the bile acid mixture was bound by soybean).In our results,soybean showed19.0–34.8% binding(simple bile acids)and0–34.0%bile acids binding(conjugated bile acids)relative to cholestyr-amine,depending on the type of bile acids.Duranti et al. (2000)reported a specific fraction of lupin protein, conglutin c,and how this unusual protein may affect the bile-acid binding or may induce higher bile-acid binding capacity.Further research with purified conglutin c is also required with analysis of the conglutin c content in each protein isolate fraction in order to verify the physiological function of lupin protein.In this study,we tested each bile acid separately,al-though physiological conditions usually involve bile acid mixtures.It is planned to undertake further studies with bile acid mixtures,using HPLC or capillary electro-phoresis to characterize the individual bile acids.Such studies will clarify the functions and potential applica-tions of protein isolates.The present work hasidentifieda useful property of lupin protein isolate,in particular protein isolate F,to bind bile acids to nearly the same extent as cholestyramine.The results suggest that acid-soluble protein isolate from lupin may have potential applications as an agent for reducing cholesterol in hy-percholesterolemic patients.AcknowledgementsThis research was partially supported by the Healthy Profood Project of the European Union.ReferencesAnderson,J.W.,Lovati,M.R.,&Cook-Newell,M.E.(1995).Meta-analysis of the effects of soy protein intake on serum lipid.New England Journal of Medicine,333,276–282.Boneldi,V.,&Zayas,J.F.(1995).Foaming properties of selected plant and animal proteins.Journal of Food Science,60,1025–1029. Calvert,G.D.,&Yeates,R.A.(1982).Adsorption of bile salts by soya-beanflour,wheat bran,Lucerne(Medicago sativa),sawdust and lignin;the effect of saponins and other plant constituents.British Journal of Nutrition,47,45–52.Camire,M. E.,&Dougherty,M.P.(2003).Raisin dietaryfiber composition and in vitro bile acid binding.Journal of Agricultural and Food Chemistry,51,834–837.Camire,M.E.,Zhao,J.,&Violette,D.A.(1993).In vitro binding of bile acids by extruded potato peels.Journal of Agricultural and Food Chemistry,41,2391–2394.Claye,S.S.,Idouraine,A.,&Weber,C.W.(1998).In vitro mineral binding capacity offivefiber sources and their insoluble compo-nents for magnesium and calcium.Food Chemistry,61,333–338. Dagorn-Scaviner,C.,Gueguern,J.,&Lefebvre,J.(1987).Emulsifying properties of pea globulins as related to their adsorption behavior.Journal of Food Science,52,335–341.Duranti,M.,Sessa,F.,Scarafoni,A.,Bellini,T.,&Dallocchio,F.(2000).Thermal stabilities of lupin seed conglutin gamma-protom-ers and tetramers.Journal of Agricultural and Food Chemistry,48, 1118–1123.Eastwood,M.,&Hamilton,D.(1968).Studies on the adsorption of bile salts to non-absorbed components of the diet.Biochimica et Biophysica Acta,152,165–173.Goel,V.,Cheema,S.K.,Agellon,L.B.,Ooraikul,B.,McBurney,M.I.,&Basu,T.K.(1998).In vitro binding of bile salt to rhubarbstalk powder.Nutrition Research,18,893–903.Iwami,K.,Sakakibara,K.,&Ibuki,F.(1986).Involvement of post-digestion hydrophobic peptides in plasma cholesterol-lowering effect of dietary plant proteins.Agricultural and Biological chem-istry,50,1217–1222.Kahlon,T.S.,&Woodruff,C.L.(2002).In vitro binding of bile acids by soy protein,pinto beans,black beans and wheat gluten.Food Chemistry,79,425–429.Lebensmittel-und Bedarfsgegenstaende-Gesetz,Methodenbeschreib-ungen.(1995).Amtliche Sammlung von Untersuchungsmethoden nach x35LMBG.Lebensmittelrecht/Textsammlung15.Auflage. Lopez,G.,Flores,I.,Galvez,A.,Quirasco,M.,&Farres,A.(2003).Development of a liquid nutritional supplement using a Sesamum indicum L.protein isolate.Lebensmittel-Wissenschaft und-technol-ogie,36,67–74.Ministry of Agriculture,Fisheries and Food Department of Health UK(1996).Appendix IX,ACNFP report on seeds from the narrow leaved lupin(lupinus angustifolius),In Advisory committee on novel foods and processes(ACNFP)–annual report1996(pp.107–116).London,UK:MAFF Publications.Mullally,M.M.,Meisel,H.,&FitzGerald,R.J.(1997).Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins.International Dairy Journal,7, 299–303.Nielsen,P.M.,Petersen,D.,&Dambmann,C.(2001).Improved method for determining food protein degree of hydrolysis.Journal of Food Science,66,642–646.Pandolf,T.,&Clydesdale,F.M.(1992).Dietaryfiber binding of bile acid through mineral supplementation.Journal of Food Science,57, 1242–1245.Pihlanto-Lepp€a l€a,A.,Rokka,T.,&Korhonen,H.(1998).AngiotensinI converting enzyme inhibitory peptides derived from bovine milkproteins.International Dairy Journal,8,325–331.Sirtori,C.R.,Lovati,M.R.,Manzoni,C.,Gianazza,E.,Bondioli,A., Steals,B.,&Auwrex,J.(1998).Reduction of serum cholesterol by soy proteins:clinical experience and potential molecular mecha-nism.Nutrition Metabolism and Cardiovascular Diseases,8,334. Story,J.A.,&Krichevsky,D.(1976).Comparison of the binding of various bile acids and bile salts in vitro by several types offiber.Journal of Nutrition,106,1292–1294.Sugano,M.,&Goto,S.(1990).Steroid binding peptides from dietary proteins.Journal of Nutritional Science and Vitaminology,36,s147–s150.van der Ven,C.,Gruppen,H.,de Bont,D.B.A.,&Voragen,A.G.J.(2002).Optimization of the angiotensin converting enzyme inhibi-tion by whey protein hydrolysates using response surface method-ology.International Dairy Journal,12,813–820.W€a sche,A.,M€u ller,K.,&Knauf,U.(2001).New Processing of lupin protein isolates and functional properties.Nahrung/Food,45,393–395.Zayas,J.F.,&Lin,M.(1989).Food applications of corn germ protein flour.Journal of Food Science,56,1135–1145.184Y.Yoshie-Stark,A.W€a sche/Food Chemistry88(2004)179–184。

相关文档
最新文档