慈溪市第一中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
慈溪市第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .(0,]
C .(0,
)
D .[
,1)
2. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直
3. 设曲线2
()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )
A .
B . C. D . 4. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
5. 已知集合{}
2|10A x x =-=,则下列式子表示正确的有( ) ①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.
A .1个
B .2个
C .3个
D .4个 6. 已知a=log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .a <c <b D .b <c <a 7. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( )
A .117⎡⎤⎢⎥⎣⎦,
B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞, 8. 如图,棱长为的正方体1111D ABC A B C D -中,,
E
F 是侧面对角线11,BC AD 上一点,若 1BED F
是菱形,则其在底面ABCD 上投影的四边形面积( )
A .
12 B .3
4
C. 2 D .34-9. 复数i i
i
z (21+=是虚数单位)的虚部为( )
A .1-
B .i -
C .i 2
D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 10.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3
y x π
=+
B .22sin(2)3y x π=+
C .2sin()23x y π=-
D .2sin(2)3
y x π=-
11.sin3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin3cos8.5<< B .cos8.5sin3sin1.5<< C.sin1.5cos8.5sin3<<
D .cos8.5sin1.5sin3<<
12.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )
A .
π B .2
π
C .4
π
D .
π
二、填空题
13.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .
14.在数列
中,则实数a= ,b= .
15.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则
= .
三、解答题
17.(本题12分)在锐角ABC ∆中,内角A ,B ,C 所对的边分别为,,,且2sin a B =.111] (1)求角A 的大小;
(2)若6a =,8b c +=,求ABC ∆的面积.
18.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
19.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.
(Ⅰ)当x ∈[0,
]时,求函数f (x )的值域;
(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=, =2+2cos (A+C ),
求f (B )的值.
20.(本小题满分12分)
已知椭圆C 的离心率为
2
,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;
(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.
21.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
22.已知函数()()x
f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.
(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦
及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.
慈溪市第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,
∵
=0,
∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,
∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2
.
∴e 2=
<,∴0<e <
.
故选:C .
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
2. 【答案】B
【解析】解:∵ =(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥, 因此l ⊥α. 故选:B .
3. 【答案】A
【解析】
试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 4. 【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
5. 【答案】C 【解析】
试题分析:{}1,1A =-,所以①③④正确.故选C.
考点:元素与集合关系,集合与集合关系. 6. 【答案】C
【解析】解:由对数和指数的性质可知, ∵a=log 20.3<0 b=20.1>20=1 c=0.21.3 < 0.20=1 ∴a <c <b 故选C .
7. 【答案】D 【
解
析
】
考
点:1、导数;2、单调性;3、函数与不等式.
8. 【答案】B 【解析】
试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x =
解得4
x =
,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为3
4
,故选B. 考点:平面图形的投影及其作法. 9. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 10.【答案】B
【解析】
考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 11.【答案】B 【解析】
试题分析:由于()cos8.5cos 8.52π=-,因为8.522
π
ππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,
∴cos8.5sin3sin1.5<<. 考点:实数的大小比较. 12.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm ;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为: =4
π
故选:C .
二、填空题
13.【答案】 平行 .
【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,
AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D
故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
14.【答案】a=
,b=
.
【解析】解:由5,10,17,a ﹣b ,37知,
a ﹣b=26, 由3,8,a+
b ,24,35知,
a+b=15,
解得,
a=,b=;
故答案为:
,
.
【点评】本题考查了数列的性质的判断与归纳法的应用.
15.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1,
即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
16.【答案】 (﹣
,
) .
【解析】解:∵
,,
设OC 与AB 交于D (x ,y )点
则:AD :BD=1:5
即D 分有向线段AB
所成的比为
则
解得:
∴
又∵||=2
∴
=(﹣
,)
故答案为:(﹣
,
)
【点评】如果已知,有向线段A (x 1,y 1),B (x 2,y 2).及点C 分线段AB 所成的比,求分点C 的坐标,
可将A ,B 两点的坐标代入定比分点坐标公式:坐标公式进行求解.
三、解答题
17.【答案】(1)3
π
=A ;(2)3
3
7=
∆ABC S . 【解析】
试题分析:(1)利用正弦定理A
a
B b sin sin =
及b B a 3sin 2=,便可求出A sin ,得到A 的大小;(2)利用(1)中所求A 的大小,结合余弦定理求出bc 的值,最后再用三角形面积公式求出1
sin 2
ABC S bc A ∆=值.
试题解析:(1)由b B a 3sin 2=及正弦定理A
a
B b sin sin =
,得23sin =A .…………分 因为A 为锐角,所以3
π
=
A .………………分
(2)由余弦定理A bc c b a cos 22
22-+=,得3622=-+bc c b ,………………分
又8=+c b ,所以3
28
=bc ,………………分
所以3
3
72332821sin 21=⨯⨯==∆A bc S ABC .………………12分
考点:正余弦定理的综合应用及面积公式.
18.【答案】(1)()2
6ln f x x x x =--;(2)3n =;(3)证明见解析.
【解析】
试
题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-==⇒=-或2x =,
当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212
ln ln ()x x b x x x x -=
-+-. 1
'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202
x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211
121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥
⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设211x t x =>,2(1)()ln 1
t h t t t -=-+, ∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =, ∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 19.【答案】
【解析】解:(Ⅰ)f (x )
=4
sinxcosx ﹣5sin 2x ﹣cos 2
x+3=2sin2x
﹣
+3=2
sin2x+2cos2x=4sin (
2x+
).
∵x ∈[0
,], ∴
2x+
∈[
,
],
∴f (x )∈[﹣2,4].
(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ), ∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA ,
由正弦定理得:c=2a , 又b=
,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=
,
故解得:A=,B=
,C=
,
∴f (B )=f (
)=4sin =2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
20.【答案】(1)22
142
x y +=;(2)22[2,7)F M F N ∈-. 【解析】
试
题解析:(1)根据题意知2c a =,即221
2
c a =,
∴222
12a b a -=,则22
2a b =, 设(,)P x y ,
∵(,)(,)PA PB a x y a x y =-----,
222
2
2
2
2
2
21()222
a x x a y x a x a =-+=-+-=-,
∵a x a -≤≤,∴当0x =时,2
min ()22
a PA PB =-=-, ∴24a =,则2
2b =.
∴椭圆C 的方程为22
142
x y +=.
11
11]
设11(,)M x y ,22(,)N x y ,则12x x +=,2122
4(1)
12k x x k -=+,
∵211(2,)F M x y =-,222()F N x y =,
∴222121212)2(F M F N x x x x k x x =+++
2221212(1))22k x x x x k =+++++
222
2
224(1)42(1)2(1)2212k k k k k k --=++-+++ 2
9
712k =-
+. ∵2
121k +≥,∴2
10112k
<≤+. ∴2
9
7[2,7)12k -∈-+.
综上知,22[2,7)F M F N ∈-.
考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.
【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.
21.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-. 【解析】
试
题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题.
22.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,
1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.
【解析】
(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;
当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值; 当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.
(3)()(221)x
g x x k e =-+,∴'()(223)x
g x x k e =-+,
由'()0g x =,得32
x k =-, 当3
2x k <-
时,'()0g x <; 当3
2
x k >-时,'()0g x >,
∴()g x 在3(,)2k -∞-上递减,在3
(,)2
k -+∞递增,
故323
()()22
k g x g k e -=-=-最小值,
又∵35,22k ⎡⎤
∈⎢⎥⎣⎦
,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,
∴()g x λ≥对[]0,1x ∀∈恒成立等价于32
()2k g x e λ-
=-≥最小值;
又32
()2k g x e λ-
=-≥最小值对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
恒成立.
∴3
2
min (2)k e
k --≥,故2e λ≤-.1
考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.。