太和区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太和区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B = ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.
2. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A .1
B .2
C .4
D .6
3. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
4. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
5. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )
A .f (x )在(0,1)上恰有一个零点
B .f (x )在(﹣1,0)上恰有一个零点
C .f (x )在(0,1)上恰有两个零点
D .f (x )在(﹣1,0)上恰有两个零点
6. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2
B .﹣2
C .8
D .﹣8
7. 已知向量=(1,),=(
,x )共线,则实数x 的值为( )
A .1
B .
C . tan35°
D .tan35°
8. 圆01222
2
=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )
A .
B .12+
C .
12
2
+ D .122+ 9. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B = ( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.
10.已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )
A .2
B .4
C .8
D .16
11.已知的终边过点()2,3,则7tan 4πθ⎛⎫
+
⎪⎝⎭
等于( ) A .15- B .1
5
C .-5
D .5
12.设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R
二、填空题
13.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3
f x x x =-+的单调增区间是__________.
14.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .
15.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .
16.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
17.8
1()x x
-的展开式中,常数项为___________.(用数字作答)
【命题意图】本题考查用二项式定理求指定项,基础题.
18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
三、解答题
19.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;
(2)求证:PA是圆O的切线.
20X
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.
21.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求AC边的长.
22.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;
(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
24.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.
(1)求顶点C的坐标;
(2)求△ABC的面积.
太和区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B = ð{}|21x x -≤<,故选B. 2. 【答案】B 【解析】
试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=,
解得24a =,由题意得1313
812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以
132,6a a ==,故选B .
考点:等差数列的性质. 3. 【答案】A
【解析】解:由已知得到如图

=
=
=;
故选:A .
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量
表示为.
4. 【答案】B 【解析】由题意,可取,所以
5. 【答案】B
【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014
=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;
又∵f (0)=1,
f (﹣1
)=1﹣1﹣﹣﹣…﹣
<0;
故f (x )在(﹣1,0)上恰有一个零点;
故选B .
【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.
6. 【答案】B 【解析】解:∵f (x+4)=f (x ), ∴f (2015)=f (504×4﹣1)=f (﹣1), 又∵f (x )在R 上是奇函数, ∴f (﹣1)=﹣f (1)=﹣2.
故选B .
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
7. 【答案】B
【解析】解:∵向量=(1,),=(
,x )共线,
∴x==
=
=

故选:B .
【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.
8. 【答案】B 【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半
径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 9. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B = {2,1,0}--,故选C . 10.【答案】D
【解析】解:由等差数列的性质可得a 3+a 13=2a 8,
即有a 82
=4a 8,
解得a 8=4(0舍去), 即有b 8=a 8=4,
由等比数列的性质可得b 4b 12=b 82
=16.
故选:D .
11.【答案】B 【



考点:三角恒等变换. 12.【答案】B
【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M . 故选B .
二、填空题
13.【答案】(
【解析】()2
310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭
14.【答案】 2 .
【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.
∴4m
+2n
≥2
=2=2.
当且仅当4m =2n
,即2m=n ,
即n=,m=时取等号.
∴4m
+2n
的最小值为2

故答案为:2
15.【答案】 ﹣1054 .
【解析】解:∵2a n ,a n+1是方程x 2
﹣3x+b n =0的两根,
∴2a n +a n+1=3,2a n a n+1=b n , ∵a 1=2,∴a 2=﹣1,同理可得a 3=5,a 4=﹣7,a 5=17,a 6=﹣31.
则b 5=2×17×(﹣31)=1054.
故答案为:﹣1054.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.
16.【答案】3
17.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r r r r r
r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
18.【答案】 .
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==

故答案为:

【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
三、解答题
19.【答案】
【解析】证明:(1)∵BC 是圆O 的直径,BE 是圆O 的切线,∴EB ⊥BC . 又∵AD ⊥BC ,∴AD ∥BE .
可得△BFC ∽△DGC ,△FEC ∽△GAC .

,得

∵G 是AD 的中点,即DG=AG . ∴BF=EF .
(2)连接AO ,AB .
∵BC 是圆O 的直径,∴∠BAC=90°.
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB.
又∵OA=OB,∴∠ABO=∠BAO.
∵BE是圆O的切线,
∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.
【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.
20.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P(A)=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P(ξ=7)=0.04,
P(ξ=8)=2×0.2×0.3+0.32=0.21,
P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ7 8 9 10
P 0.04 0.21 0.39 0.36
ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
21.【答案】
【解析】解:(Ⅰ)由题意,因为sinB=,所以cosB=…
又cos∠ADC=﹣,所以sin∠ADC=…
所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…
(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…
故BC=15,
从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3×15×(﹣)=,所以AC=…
【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.
22.【答案】
【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是
∵椭圆经过点D(2,0),左焦点为,
∴a=2,,可得b==1
因此,椭圆的标准方程为.
(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),
由根据中点坐标公式,可得,整理得,
∵点P(x0,y0)在椭圆上,
∴可得,化简整理得,
由此可得线段PA中点M的轨迹方程是.
【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.
23.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.24.【答案】
【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.
∵直线AC⊥BH,∴k AC k BH=﹣1.
∴,
直线AC的方程为,
联立
∴点C的坐标C(1,1).
(2),
∴直线BC的方程为,
联立,即.
点B到直线AC:x﹣2y+1=0的距离为.
又,
∴.
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.。

相关文档
最新文档