七年级数学下册期末试卷(提升篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册期末试卷(提升篇)(Word 版 含解析)
一、选择题
1.下列事件中,不是必然事件的是( )
A .同旁内角互补
B .对顶角相等
C .等腰三角形是轴对称图形
D .垂线段最短
2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 3.在平面直角坐标系中,点(﹣1,m 2+1)一定在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )
A .1
B .2
C .3
D .4
5.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )
A .∠1+∠2−∠3=90°
B .∠1−∠2+∠3=90°
C .∠1+∠2+∠3=90°
D .∠2+∠3−∠1=180° 6.下列说法不正确的是( )
A .327=3--
B .81=9
C .0.04的平方根是0.2±
D .9的立方根是3
7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )
A .35︒
B .45︒
C .50︒
D .52︒
8.如图,在平面直角坐标系中,长方形ABCD 的各边分别平行于x 轴或y 轴,一物体从点A (-2,1)出发,沿矩形ABCD 的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )
A .(﹣2,1)
B .(﹣2,﹣1)
C .( 2,﹣1)
D .( 2,1)
二、填空题
9.36的平方根是_________
10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为15,DE =3,AB =6,则AC 的长是 _______
12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.
13.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为 ___.
14.材料:一般地,n 个相同因数a 相乘:n a a a a a
⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做
以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,
()2231log 16log 813
+=_____. 15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.
16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.
三、解答题 17.计算:(1)
;(2)
18.求下列各式中的x 值:
(1)169x 2=144;
(2)(x -2)2-36=0.
19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE
证明:∵AB //CD (已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF =∠2+∠CAF ( )
即:∠ =∠ . ∴∠3=∠ .
∴AD //BE ( )
20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A →C ( , ),B →D ( , ),C → (+1, );
(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.
21.实数A 在数轴上的对应点A 的位置如图所示,|2||3|b a a =-+-.
(1)求b 的值;
(2)已知2b +的小数部分是m ,8b -的小数部分是n ,求221++m n 的平方根. 二十二、解答题
22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.
(1)大正方形的边长是________cm ;
(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.
二十三、解答题
23.如图,直线HD //GE ,点A 在直线HD 上,点C 在直线GE 上,点B 在直线HD 、GE 之间,∠DAB =120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.
24.课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,
∴∠B=∠EAB,∠C=
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
解题反思:
从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,
∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
25.在ABC中,射线AG平分BAC
∠交BC于点G,点D在BC边上运动(不与点G重DE AC交AB于点E.
合),过点D作//
(1)如图1,点D在线段CG上运动时,DF平分EDB
∠.
①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;
(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.
26.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.
(1)l 2与l 3的位置关系是 ;
(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;
(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、选择题
1.A
解析:A
【分析】
必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答.
【详解】
解:A 、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;
B、为必然事件,不合题意;
C、为必然事件,不合题意;
D、为必然事件,不合题意.
故选A.
【点睛】
本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质.必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件.
2.D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其形成过程,故此选项错误;
C、不能用平移变换来分析其形成过程,故此选项正确;
D、能用平移变换来分析其形成过程,故此选项错误;
故选:D.
【点睛】
本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
3.B
【分析】
应先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,
所以满足点在第二象限的条件.
故选:B.
【点睛】
本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键.
4.C
【分析】
根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可
【详解】
解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;
两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;
经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.
故选:C.
【点睛】
本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.6.D
【分析】
利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项.
【详解】
解:A、,正确,不符合题意;
B,正确,不符合题意;
C、0.04的平方根是±0.2,正确,不符合题意;
D、9,故错误,符合题意;
故选:D.
【点睛】
本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单.
7.D
【分析】
由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.
【详解】
解:∵//CD EF ,26C ∠=︒,
∴26EFC C ∠=∠=︒,
∵FC 平分AFE ∠,
∴26EFC CFA ∠=∠=︒,
∴52EFA ∠=︒,
∵//AB CD ,
∴52A EFA ∠=∠=︒;
故选D .
【点睛】
本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.
8.C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=16
解析:C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=168×12+6,
∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,
∴从A 点开始按逆时针运动6秒到达了C 点,
∴经过2022秒后,物体所在位置的坐标为(2,-1).
故选:C .
【点睛】
本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出
2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.
二、填空题
9..
【详解】
【分析】先确定,再根据平方根定义可得的平方根是±.
【详解】因为,6的平方根是±,所以的平方根是±.
故正确答案为±.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示
解析:
【详解】
6=.
6=,6的平方根是
故正确答案为.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称

∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点(3,)P m 与(,6)Q n -关于x 轴对称
∴36n m =-=-,
∴262(3)0m n -=--⨯-=,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
11.4
【分析】
过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的,,进而解得AC 的长.
过点D 作DF ⊥AC
∵AD 是△AB
解析:4
【分析】
过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的ADB ADC ABC S S S ∆∆∆+=,⨯+⨯=11AB DE AC DF 1522
,进而解得AC 的长.
【详解】
过点D 作DF ⊥AC
∵AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,
∴DE=DF,
又三角形的面积的ADB ADC ABC S S S ∆∆∆+=,
即⨯+⨯=11AB DE AC DF 1522
, 解得AC=4
【点睛】
主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.
12.【分析】
过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;
【详解】
如图,过作,过作,
∴,
∴,,,
∵,
∴,
∴,
∴,
∴,
∴.
故答案为:.
本题考查了平
解析:90x y z +-=︒
【分析】
过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;
【详解】
如图,过C 作//CN AB ,过D 作//DM AB ,
∴//////AB CN DM EF ,
∴1x =∠,23∠∠=,4z ∠=,
∵90BCD ∠=︒,
∴1290∠+∠=︒,
∴390x +∠=︒,
∴3490x z +∠+∠=︒+,
∴90x y z +=︒+,
∴90x y z +-=︒.
故答案为:90x y z +-=︒.
【点睛】
本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;
13.95°
【分析】
首先利用平行线的性质得出∠BMF =100°,∠FNB =70°,再利用翻折变换的性质得出∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,进而求出∠B 的度数以及得出∠D 的度数.
解析:95°
【分析】
首先利用平行线的性质得出∠BMF =100°,∠FNB =70°,再利用翻折变换的性质得出∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,进而求出∠B 的度数以及得出∠D 的度数.
【详解】
解:∵MF ∥AD ,FN ∥DC ,∠A =100°,∠C =70°,
∴∠BMF =100°,∠FNB =70°,
∵将△BMN 沿MN 翻折,得△FMN ,
∴∠FMN =∠BMN =50°,∠FNM =∠MNB =35°,
∴∠F =∠B =180°−50°−35°=95°,
∴∠D =360°−100°−70°−95°=95°.
故答案为:95°.
【点睛】
此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN =∠BMN ,∠FNM =∠MNB 是解题关键.
14.3; .
【分析】
由可求出,由,可分别求出,,继而可计算出结果.
【详解】
解:(1)由题意可知:,
则,
(2)由题意可知:
,,
则,,
∴,
故答案为:3;.
【点睛】
本题主
解析:3; 1173
. 【分析】
由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.
【详解】
解:(1)由题意可知:239=,
则2log 93=,
(2)由题意可知:
4216=,43=81,
则2log 164=,3log 814=, ∴223141(log 16)log 811617333
+=+=, 故答案为:3;1173
. 【点睛】
本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.
15.【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵
解析:【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
16.(506,505)
【分析】
经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1
解析:(506,505)
【分析】
经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.
【详解】
解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2021÷4=505…1;
∴A2021的坐标在第一象限,
横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,
∴点A2021的坐标是(506,505).
故答案为:(506,505).
【点睛】
本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.
三、解答题
17.(1)0 ;(2)2
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
解析:(1)0 ;(2)
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
②原式==
18.(1)x=±;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【详解】
解:(1)169x2=144,
移项得:x2=,
解得:x=±.
解析:(1)x=±12
13
;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】
解:(1)169x2=144,
移项得:x2=144 169

解得:x=±12 13
.
(2)(x-2)2-36=0,
移项得:(x-2)2=36,开方得:x-2=6或x-2=-6
解得:x=8或x=-4.
故答案为(1)x=±12
13
;(2)x=8或x=-4.
【点睛】
本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.
19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行
【分析】
根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=
解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行
【分析】
根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.
【详解】
证明:∵AB//CD(已知)
∴∠4=∠FAB(两直线平行,同位角相等)
∵∠3=∠4(已知)
∴∠3=∠FAB(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即:∠FAB=∠CAD
∴∠3=∠CAD
∴AD//BE(内错角相等,两直线平行)
故填:BAF,两直线平行,同位角相等,BAF,等量代换,DAC,DAC,内错角相等,两直线平行.
【点睛】
本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3
解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A →C ( 3,4),B →D (3﹣2),C →D (+1,﹣2);
故答案为3,4;3,﹣2;D ,﹣2;
(2)这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置,如图
【点睛】
本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.
21.(1);(2)
【分析】
(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可;
(2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可
解析:(1)322)3【分析】
(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可; (2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出2m +2n +1,再求平方根.
【详解】
解:(1)由图知:23a <<,
20a ∴>,30a ->,
2332∴=-=b a a
(2)232252b +==
2b ∴+整数部分是3,
(52)322∴=--=-m
88(35-=--=+b 8b ∴-的整数部分是6,
(561=-=n ,
2212()12(21)13m n m n ∴++=++=⨯-+=,
221++m n 的平方根为
【点睛】
本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.
二十二、解答题
22.(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再
解析:(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm 2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.
【详解】
解:(1)两个正方形面积之和为:2×8=16(cm 2),
∴拼成的大正方形的面积=16(cm 2),
∴大正方形的边长是4cm ;
故答案为:4;
(2)设长方形纸片的长为2xcm ,宽为xcm ,
则2x •x =14,
解得:x =
2x ,
∴不存在长宽之比为2:1且面积为214cm 的长方形纸片.
【点睛】
本题考查了算术平方根,能够根据题意列出算式是解此题的关键.
二十三、解答题
23.(1)∠ABC =100°;(2)∠ABC >∠AFC ;(3)∠N =90°﹣∠HAP ;理由见解析.
【分析】
(1)过点B 作BMHD ,则HDGEBM ,根据平行线的性质求得∠ABM 与∠CBM ,便可求得最后
∠HAP;理由见解
解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣1
2
析.
【分析】
(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=
∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得
∠HAF,∠FCG,最后便可求得结果;
(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=
∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BM//HD,则HD//GE//BM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,
∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PK//HD//GE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=1
2∠HAP+1
2
∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣1
2
∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣1
2∠HAP﹣1
2
∠PCG﹣90°+1
2
∠PCG=90°﹣1
2
∠HAP,
即:∠N=90°﹣1
2
∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
24.(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
解析:(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.
【详解】
解:(1)过点A作ED∥BC,
∴∠B=∠EAB,∠C=∠DCA,
又∵∠EAB+∠BAC+∠DAC=180°,
∴∠B+∠BAC+∠C=180°.
故答案为:∠DAC;
(2)过C 作CF ∥AB ,
∵AB ∥DE ,
∴CF ∥DE ,
∴∠D =∠FCD ,
∵CF ∥AB ,
∴∠B =∠BCF ,
∵∠BCF +∠BCD +∠DCF =360°,
∴∠B +∠BCD +∠D =360°;
(3)如图3,过点E 作EF ∥AB ,
∵AB ∥CD ,
∴AB ∥CD ∥EF ,
∴∠ABE =∠BEF ,∠CDE =∠DEF ,
∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,
∴∠ABE =12∠ABC =30°,∠CDE =1
2∠ADC =35°,
∴∠BED =∠BEF +∠DEF =30°+35°=65°.
【点睛】
此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 25.(1)①115°,110°;②,证明见解析;(2),证明见解析.
【解析】
【分析】
(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=
解析:(1)①115°,110°;②1902
AFD B ︒∠=+∠,证明见解析;(2)1902
AFD B ︒∠=-∠,证明见解析. 【解析】
【分析】
(1)①根据角平分线的定义求得∠CAG=1
2
∠BAC=50°;再由平行线的性质可得
∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知
AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=1
2
∠BAC,
∠FDM=1
2
∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得
∠FDM +∠FMD=1
2∠EDG +∠GAC=1
2
∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=
1
2
×140°=70°;再由三
角形的内角和定理可求得∠AFD=110°;
②∠AFD=90°+1
2
∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得
∠CAG=1
2∠BAC,∠FDM=1
2
∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,
∠FMD=∠GAC;由此可得∠FDM +∠FMD=1
2∠EDG +∠GAC=1
2
∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=1
2
×(180°-∠B)=90°-
1
2
∠B;再由三角形的内角和定理可得
∠AFD=90°+1
2
∠B;
(2)∠AFD=90°-1
2
∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得
∠CAG=1
2∠BAC,∠NDE=1
2
∠EDB,即可得∠FDM=∠NDE=1
2
∠EDB;由DE//AC,根据平行
线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=1
2
∠C,所以∠FDM
+∠FMD =1
2
∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=
1
2
×(180°-∠B)=90°-
1
2
∠B;再由三角形外角
的性质可得∠AFD=∠FDM +∠FMD=90°-1
2
∠B.
【详解】
(1)①∵AG平分∠BAC,∠BAC=100°,
∴∠CAG=1
2
∠BAC=50°;
∵//
DE AC,∠C=30°,
∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;
∵DF平分∠EDB,
∴∠FDM=1
2
∠EDG=15°;
∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,
∴∠BAC+∠C=180°-∠B=140°;
∵AG平分∠BAC,DF平分∠EDB,
∴∠CAG=1
2∠BAC,∠FDM=1
2
∠EDG,
∵DE//AC,
∴∠EDG=∠C,∠FMD=∠GAC;
∴∠FDM +∠FMD=1
2∠EDG +∠GAC=1
2
∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=
1
2
×140°=70°;
∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;
②∠AFD=90°+1
2
∠B,理由如下:
∵AG平分∠BAC,DF平分∠EDB,
∴∠CAG=1
2∠BAC,∠FDM=1
2
∠EDG,
∵DE//AC,
∴∠EDG=∠C,∠FMD=∠GAC;
∴∠FDM +∠FMD=1
2∠EDG +∠GAC=1
2
∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=
1
2
×(180°-∠B)
=90°-1
2
∠B;
∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-1
2∠B)=90°+1
2
∠B;
(2)∠AFD=90°-1
2
∠B,理由如下:
如图,射线ED交AG于点M,
∵AG平分∠BAC,DF平分∠EDB,
∴∠CAG=1
2∠BAC,∠NDE=1
2
∠EDB,
∴∠FDM=∠NDE=1
2
∠EDB,
∵DE//AC,
∴∠EDB=∠C,∠FMD=∠GAC;
∴∠FDM=∠NDE=1
2
∠C,
∴∠FDM +∠FMD =1
2∠C+1
2
∠BAC=1
2
(∠BAC+∠C)=
1
2
×(180°-∠B)=90°-
1
2
∠B;
∴∠AFD=∠FDM +∠FMD=90°-1
2
∠B.
【点睛】
本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.
26.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,1
2
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠DCE=1
2
BCD,
∵∠BCD=70°,
∴∠DCE=35°,
∵l2∥l3,
∴∠CED=∠DCE=35°,
∵l2⊥l1,
∴∠CAD=90°,
∴∠ADC=90°﹣70°=20°;
故答案为:35,20;
(3)∵CF平分∠BCD,
∴∠BCF=∠DCF,
∵l2⊥l1,
∴∠CAD=90°,
∴∠BCF+∠AGC=90°,
∵CD⊥BD,
∴∠DCF+∠CFD=90°,
∴∠AGC=∠CFD,
∵∠AGC=∠DGF,
∴∠DGF=∠DFG;
(4)∠N:∠BCD的值不会变化,等于1
;理由如下:
2
∵l2∥l3,
∴∠BED=∠EBH,
∵∠DBE=∠DEB,
∴∠DBE=∠EBH,
∴∠DBH=2∠DBE,
∵∠BCD+∠BDC=∠DBH,
∴∠BCD+∠BDC=2∠DBE,
∵∠N+∠BDN=∠DBE,
∴∠BCD+∠BDC=2∠N+2∠BDN,
∵DN平分∠BDC,
∴∠BDC=2∠BDN,
∴∠BCD=2∠N,
∴∠N:∠BCD=1

2
【点睛】
本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。

相关文档
最新文档