西华县三中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西华县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知向量
|
|=

•=10,
|
+
|=5,则
||=( )
A

B

C .5
D .25
2. 已知数列{}n a 的各项均为正数,
12a =,114
n n n n
a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为5,
则n =( )
A .35
B . 36
C .120
D .121
3. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( ) A

B

C

D

4. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
5. 函数2
-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.
6. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种
7. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4
B .5
C .6
D .9
8. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )
A .
B .
C .
D .
9. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,2
0010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
10.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4

B .4

C .
D .
+
11.函数f (x )=1﹣xlnx 的零点所在区间是( )
A .(0,)
B .(,1)
C .(1,2)
D .(2,3)
12.已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )
A .
B .
C .
D .6
二、填空题
13.抛物线y=x 2的焦点坐标为( )
A .(0,

B .(
,0)
C .(0,4)
D .(0,2)
14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市;
由此可判断乙去过的城市为.
15.已知线性回归方程=9,则b=.
16.设实数x,y满足,向量=(2x﹣y,m),=(﹣1,1).若∥,则实数m的最大值为.
17.在△ABC中,若a=9,b=10,c=12,则△ABC的形状是.
18x和所支出的维修费用y(万元)的统计资料如表:
根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元.
三、解答题
19.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) 2 3 4 5
加工的时间y(小时) 2.5 3 4 4.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
参考公式:回归直线=bx+a,其中b==,a=﹣b.
20.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,
矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.
(1)记游泳池及其附属设施的占地面积为,求的表达式;
(2)怎样设计才能符合园林局的要求?
21.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;
(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .
22.(本小题满分12分)
设0
3πα⎛
⎫∈ ⎪⎝
⎭,αα+
(1)求cos 6πα⎛
⎫+ ⎪⎝
⎭的值;
(2)求cos 212πα⎛
⎫+ ⎪⎝
⎭的值.
23.设函数f (x )=lnx ﹣ax 2﹣bx .
(1)当a=2,b=1时,求函数f (x )的单调区间;
(2)令F (x )=f (x )+ax 2
+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求
实数a 的取值范围;
(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2
]内有唯一实数解,求实数m 的取值范围.
24.数列{a n }满足a 1=
,a n ∈(﹣

),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
西华县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】C 【解析】
解:∵;
∴由
得,
=

∴;


故选:C .
2. 【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n a a +-=,∴{}
2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >

n a =
111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n
项和为
1111
1)(1)52222
n +++==,∴120n =,选C . 3
. 【答案】
B
【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63
=20种,
其中恰有两个球同色C 31C 41
=12种,
故恰有两个球同色的概率为P==,
故选:B . 【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基
础题.
4. 【答案】D
【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,
∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,
∴A=
,或a=b ,
∴△ABC 为等腰三角形或直角三角形
故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和
易错题.
5. 【答案】A 【解析】
试题分析:函数()2
2
2112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,
()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

故选A 。

考点:二次函数的图象及性质。

6. 【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
7. 【答案】B
【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .
8. 【答案】B
【解析】解:先做出y=2x
的图象,在向下平移两个单位,得到y=f (x )的图象,
再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.
故选B
【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.
9.【答案】D
10.【答案】A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,
若存在θ∈R,使得xcosθ+ysinθ+1=0成立,
则(cosθ+sinθ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
11.【答案】C
【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,
∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).
故选:C.
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
12.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
二、填空题
13.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.14.【答案】A.
【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,
但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,
再由丙说:我们三人去过同一城市,
则由此可判断乙去过的城市为A.
故答案为:A.
【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
15.【答案】4.
【解析】解:将代入线性回归方程可得9=1+2b,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
16.【答案】6.
【解析】解:∵=(2x﹣y,m),=(﹣1,1).
若∥,
∴2x﹣y+m=0,
即y=2x+m,
作出不等式组对应的平面区域如图:
平移直线y=2x+m,
由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.
由,
解得,代入2x﹣y+m=0得m=6.
即m的最大值为6.
故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
17.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C是最大角
根据余弦定理,得cosC==>0
∵C∈(0,π),∴角C是锐角,
由此可得A、B也是锐角,所以△ABC是锐角三角形
故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
18.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
三、解答题
19.【答案】
【解析】解:(1)作出散点图如下:
…(3分)
(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)
=54,x i y i=52.5
∴b==0.7,a=3.5﹣0.7×3.5=1.05,
∴所求线性回归方程为:y=0.7x+1.05…(10分)
(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).
∴加工10个零件大约需要8.05个小时…(12分)
【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.
20.【答案】(1)(2)
【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值
(2)要符合园林局的要求,只要最小,
由(1)知,
令,即,
解得或(舍去),
令,
当时,是单调减函数,
当时,是单调增函数,所以当时,取得最小值.
答:当满足时,符合园林局要求. 21.【答案】解:(1)∵a n+1=2a n+1,
∴a n+1+1=2(a n+1),
又∵a1=1,
∴数列{a n+1}是首项、公比均为2的等比数列,∴a n+1=2n,
∴a n=﹣1+2n;6分
(2)由(1)可知b n=n(a n+1)=n•2n=n•2n﹣1,
∴T n=1•20+2•2+…+n•2n﹣1,
2T n=1•2+2•22…+(n﹣1)•2n﹣1+n•2n,
错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n
=
﹣n •2n
=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .
则所求和为12n
n - 6分
22.【答案】(1;(2.
【解析】
试题分析:(1αα+⇒
sin 6πα⎛⎫+ ⎪⎝⎭,又03πα⎛
⎫∈ ⎪⎝
⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,
⇒cos 6πα⎛⎫+=
⎪⎝⎭;(2)由(1)可得21cos 22cos 1364ππαα⎛⎫⎛
⎫+=+-= ⎪ ⎪⎝⎭⎝
⎭⇒sin 23πα⎛⎫+= ⎪⎝⎭
⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫
⎛⎫⎛⎫⎛
⎫+
=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝
⎭⎝⎭⎝⎭⎣⎦.
试题解析:(1αα=∴
sin 6πα⎛
⎫+= ⎪⎝
⎭………………………………3分
∵03πα⎛
⎫∈ ⎪⎝
⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛⎫+= ⎪⎝⎭………………………………6分
(2)由(1)可得2
21
cos 22cos 121364ππαα⎛⎫⎛
⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝
⎭.………………………………8分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫
+∈ ⎪⎝⎭

,∴sin 23πα⎛⎫+= ⎪⎝⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛
⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
.………………………………………………………………………………12分 考点:三角恒等变换. 23.【答案】
【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2
﹣x ,
f ′(x )=﹣2x ﹣1=﹣.
令f ′(x )=0,解得x=.…
当0<x<时,f′(x)>0,此时f(x)单调递增;
当x>时,f′(x)<0,此时f(x)单调递减.
所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…
(2)F(x)=lnx+,x∈[2,3],
所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…
所以a≥(﹣x02+x0)max,x0∈[2,3]…
当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…
(3)当a=0,b=﹣1时,f(x)=lnx+x,
因为方程f(x)=mx在区间[1,e2]内有唯一实数解,
所以lnx+x=mx有唯一实数解.
∴m=1+,…
设g(x)=1+,则g′(x)=.…
令g′(x)>0,得0<x<e;g′(x)<0,得x>e,
∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分
∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…
所以m=1+,或1≤m<1+.…
24.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.。

相关文档
最新文档