2020-2021中考数学(圆与相似提高练习题)压轴题训练及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学(圆与相似提高练习题)压轴题训练及答案
一、相似
1.已知线段a,b,c满足,且a+2b+c=26.
(1)判断a,2b,c,b2是否成比例;
(2)若实数x为a,b的比例中项,求x的值.
【答案】(1)解:设,
则a=3k,b=2k,c=6k,
又∵a+2b+c=26,
∴3k+2×2k+6k=26,解得k=2,
∴a=6,b=4,c=12;
∴2b=8,b2=16
∵a=6,2b=8,c=12,b2=16
∴2bc=96,ab2=6×16=96
∴2bc=ab2
a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,
∴x2=6ab,
∴x2=6×4×6,
∴x=12.
【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

2.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.
(1)求证:AD=DE;
(2)若CE=2,求线段CD的长;
(3)在(2)的条件下,求△DPE的面积.
【答案】(1)解:∵AB是⊙O的直径,
∴∠ADB=90°,即BD⊥AC
∵AB=BC,
∴△ABD≌CBD
∴∠ABD=∠CBD
在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦
∴AD=DE;
(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,
∵∠C=∠C,∴△CED∽△CAB,∴,
∵AB=BC=10,CE=2,D是AC的中点,
∴CD= ;
(3)解:延长EF交⊙O于M,
在Rt△ABD中,AD= ,AB=10,
∴BD=3 ,
∵EM⊥AB,AB是⊙O的直径,
∴,
∴∠BEP=∠EDB,
∴△BPE∽△BED,
∴,
∴BP= ,
∴DP=BD-BP= ,
∴S△DPE:S△BPE=DP:BP=13:32,
∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,
∴S△BDE=12,
∴S△DPE= .
【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。

(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。

(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。

3.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).
(1)AP=________cm(同含t的代数式表示).
(2)当点N落在边AB上时,求t的值.
(3)求S与t之间的函数关系式.
(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.
【答案】(1)(10-5t)
(2)解:如图①,
当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:
AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.
(3)解:分三种情况讨论:
a)如图②,过点P作PE⊥BD于点E,则PE=3t.
当时,.
b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则

当时,.
c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:
AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .
综上所述:
(4)解:分三种情况讨论.
①当NQ∥AB时,如图5,
过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.
②当AD∥NQ,且Q在BD上时,如图6.
∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.
③当AD∥NQ,且Q在DC上时,如图7,
可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,
此时DQ=AB= =6,t= =2.
综上所述:或或.
【解析】【解答】解:(1)(10-5t);
【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;
(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩
形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得
比例式:,则可得关于t的方程,解方程即可求解;
(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:
a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;
b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;
c)如图④,当1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;
(4)由题意NQ与△ABD的一边平行可知,有3种情况:
①当NQ∥AB;
②当AD∥NQ,且Q在BD上时;
③当AD∥NQ,且Q在DC上时。

分这三种情况根据已知条件即可求解。

4.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)当t为何值时,△PQF为等腰三角形?试说明理由.
【答案】(1)解:∵四边形ABCD是矩形,
∴ AD∥BC,
在中,
∵别是的中点,
∴EF∥AD,
∴ EF∥BC,


(2)解:如图1,过点Q作于,
∴QM∥BE,


∴(舍)或秒
(3)解:当点Q在DF上时,如图2,

∴ .
当点Q在BF上时,,如图3,


时,如图4,


时,如图5,


综上所述,t=1或3或或秒时,△PQF是等腰三角形
【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。

(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。

(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

5.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:
(1)如图(2),当AC过点E时,求t的值;
(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.
【答案】(1)解:如图(2),当AC过点E时,
在Rt△ABC中,BC=3,AC=6,
∴BC所对锐角∠A=30°,
∴∠ACB=60°,
依题意可知∠ABC=∠EDC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EDC,
∴,即,
∴CD= ,
∴t=CD= ;
(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,
∴DG= =3 ,
在Rt△EDG中,sin∠EGD= ,
∴∠EGD=30°,
∵∠NCB=∠CNG+∠EGD,
∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,
∴∠CNG=∠EGD,
∴NC=CG=DG﹣BC=3 ﹣3;
(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.
分两种情况:①当<t≤3时,如图(4),
△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,
则∠EPN=∠CQN=90°,
∵NC=CG,
∴NC=DG﹣DC=3 ﹣t,
在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,
∴PN=PQ﹣NQ=3﹣ = ,
∵∠PMN=∠NCQ=60°,
∴sin∠PMN= ,MN= =t﹣,
在矩形DEFG中,EF∥DG,
∴∠MEN=∠CGN,
∵∠MNE=∠CNG,∠CNG=∠CGN,
∴∠EMN=∠MNE,
∴EM=MN,
∴EM=MN=t﹣,
∴y=S△EMN= EM•PN= × ;
②当3<t≤3 时,如图(5),
△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,
∵CG=3 ﹣t,
∴S△EMN= ,
∵EP=DB=t﹣3,∠PEQ=30°,
∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,
∴S△EPQ= EP•PQ= (t﹣3)× = ,
∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,
综上所述,y与t的函数关系式:y= .
【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;
(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;
(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.
6.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.
(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;
(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',
①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;
②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.
【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,
∴∠ADP'=∠ADP,
∵AE∥PD,
∴∠EAD=∠ADP,
∴∠EAD=∠ADP',
∴AE=DE
(2)解:①∵DP∥BC,
∴△APD∽△ACB,
∴,
∵旋转,
∴AP=AP',AD=AD',∠PAD=∠P'AD',
∴∠P'AC=∠D'AB,,
∴△AP'C∽△AD'B
②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,
∵AP:PC=5:1,
∴AP:AC=5:6,
∵PD∥BC,
∴ = ,
∵BC=7,
∴PD=,
∵旋转,
∴AD=AD',且AF⊥DD',
∴DF=D'F= D'D,∠ADF=∠AD'F,
∵cos∠ADF== = ,
∴∠ADF=45°,
∴∠AD'F=45°,
∴∠D'AD=90°
∴∠D'AM+∠PAD=90°,
∵D'M⊥AM,
∴∠D'AM+∠AD'M=90°,
∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,
∴△AD'M≌△DAP(AAS)
∴PD=AM=,
∵CM=AM﹣AC=﹣3,
∴CM=,
∴点D'到直线BC的距离为
若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,
同理可证:△AMD'≌△DPA,
∴AM=PD=,
∵CM=AC+AM,
∴CM=3+ =,
∴点D'到直线BC的距离为
综上所述:点D'到直线BC的距离为或;
【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可
得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在
直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比
例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.
7.已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.
(1)如图1,求∠COB的度数(用含α的式子表示);
(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);
(3)如图1,当PQ=2,求的值.
【答案】(1)解:∵∠A的度数为α,
∴∠COB=2∠A=2α
(2)解:当∠ABC=90°时,AC为⊙O的直径,
∵CD∥AB,
∴∠DCB=180°﹣90°=90,
∴BD为⊙O的直径,
∴P与圆心O重合,
∵PQ∥AB交于Q,
∴OQ⊥BC,
∴CQ=BQ,
∵AB=8,
∴OQ= AB=4,
设⊙O的半径为r,
∵△OBC的周长为16,
∴CQ=8﹣r,
∴(8﹣r)2+42=r2,
解得r=5,CB=6,
∴阴影部分面积=
(3)解:∵CD∥AB∥PQ,
∴△BPQ∽△BDC,△CPQ∽△CAB,
∴,
∴,
∵PQ=2,
∴,
∴=2
【解析】【分析】(1)根据圆周角定理可得∠COB=2∠A=2α;(2)当∠ABC=90°时,可得点P与圆心O重合,根据△OBC的周长为16以及AB=8,可求得⊙O的半径为5,可得出扇形COB的面积以及△OBC的面积,进而得出阴影部分面积;(3)由CD∥AB∥PQ,
可得△BPQ∽△BDC,△CPQ∽△CAB,即,两式子相加可得
,即可得出的值.
8.如图①所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.
(1)【问题引入】
若点O是AC的中点,,求的值;
温馨提示:过点A作MN的平行线交BN的延长线于点G.
(2)【探索研究】
若点O是AC上任意一点(不与A,C重合),求证:;
(3)【拓展应用】
如图②所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F.若,,求的值.
【答案】(1)解:过点A作MN的平行线交BN的延长线于点G.∵ON∥AG,∴ .∵O是AC的中点,∴AO=CO,∴NG=CN.∵MN∥AG,∴,∴
.
(2)解:证明:由(1)可知,,∴ =1
(3)解:在△ABD中,点P是AD上一点,过点P的直线与AB,BD的延长线分别相交于
点F,C.由(2)可得 .在△ACD中,过点P的直线与AC,CD的延长线分别相交于点E,B.由(2)可得
【解析】【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得 ,
即 ,同理可证△ACG∽△OCN得 ,结合AO=CO,得NG=CN,从而由进行求解,
(2)由 , 可知: ,
(3)由(2)可知,在△ABD中有 , 在△ACD中有 ,
从而 ,因此可得: .
二、圆的综合
9.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2)3
5
;(3)点E的坐标为(1,2)、(
5
3

10
3
)、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则
MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,
②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA =90°,∠BAO =45°,
∴tan ∠BAH =
BH
HA
=1,∴BH =HA =4,∴OC =BH =4. 故答案为4.
(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2). 由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =1
2
(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.
在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴
AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =1
2
BD =2,∴OF =4, ∴OG
同理可得:OB AB ,∴BG =1
2
AB .
设OR =x ,则RG x .
∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴

2﹣x 2=()2﹣(x )2.
解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR
在Rt △ORB 中,sin ∠BOR =BR OB
3
5

故答案为
35
. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.
此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =1
2
,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).
②当∠BED=90°时,如图3.
∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
∴BE
BC =
2
DB BE
OB

,=
25
,∴BE=
5
5
t.
∵PE∥OC,∴∠OEP=∠BOC.
∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
∴OE
OB =
25
OP
BC

,=
2
t
,∴OE=5t.
∵OE+BE=OB=255
,∴t+5
t=25.
解得:t=5
3
,∴OP=
5
3
,OE=
55
,∴PE=22
OE OP
-=
10
3

∴点E的坐标为(510
33
,).
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA=22
PE PA
+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cos∠BED=BE
DE
=
2
,∴DE=2BE,
∴t=22
(t﹣22)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、
(510
33
,)、(4,2).
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
10.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)求CE的长;
(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.
【答案】(1)证明见解析(2)33)4π
【解析】
【分析】
(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;
(2)如图2,连接BF,根据已知可推导得出DE=1
2
BF,CE=EF,根据∠A=30°,AB=16,可
得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;
(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度.
【详解】
(1)如图1,连接AD,OD;
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=DC , ∵OA=OB , ∴OD ∥AC , ∵DE ⊥AC , ∴DE ⊥OD , ∴∠ODE=∠DEA=90°, ∴DE 为⊙O 的切线; (2)如图2,连接BF , ∵AB 为⊙O 的直径, ∴∠AFB=90°, ∴BF ∥DE , ∵CD=BD ,
∴DE=
1
2
BF ,CE=EF , ∵∠A=30°,AB=16, ∴BF=8, ∴DE=4,
∵DE 为⊙O 的切线, ∴ED 2=EF•AE ,
∴42=CE•(16﹣CE ),
∴CE=8﹣43,CE=8+43(不合题意舍去); (3)如图3,连接OG ,连接AD , ∵BG ∥DF , ∴∠CBG=∠CDF=30°, ∵AB=AC , ∴∠ABC=∠C=75°, ∴∠OBG=75°﹣30°=45°, ∵OG=OB ,
∴∠OGB=∠OBG=45°, ∴∠BOG=90°,
∴»BG
的长度=908
180
π⨯⨯=4π.
【点睛】
本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.
11.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.
【答案】(1) S阴影=(a2-b2);(2)PC=6.
【解析】
试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.
试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC-S扇形BPP′=(a2-b2);
(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,
∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,
∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;
又∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.
PC==6.
考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.
12.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;
(3)当CP旋转多少秒时,△BCE是等腰三角形?
【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒
【解析】
【分析】
(1)根据圆周角定理即可解决问题;
(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);
(3)分两种情形分别讨论求解即可;
【详解】
解:(1)如图2﹣1中,
∵∠ACB=90°,OA=OB,
∴OA=OB=OC,
∴∠OCA=∠OAC=30°,
∴∠AOE=60°,
∴点E处的读数是60°,
∵∠E=∠BAC=30°,OE=OB,
∴∠OBE=∠E=30°,
∴∠EBC=∠OBE+∠ABC=90°,
∴△EBC是直角三角形;
故答案为60°,直角三角形;
(2)如图2﹣2中,
∵∠ACE=2x,∠AOE=y,
∵∠AOE=2∠ACE,
∴y=4x(0≤x≤45).
(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,
∵AC⊥BC,
∵EO∥AC,
∴∠AOE=∠BAC=30°,
∴∠ECA=1
∠AOE=15°,
2
∴x=7.5.
②若2﹣4中,当BE=BC时,
易知∠BEC =∠BAC =∠BCE =30°,
∴∠OBE =∠OBC =60°,
∵OE =OB ,
∴△OBE 是等边三角形,
∴∠BOE =60°,
∴∠AOB =120°,
∴∠ACE =12
∠ACB =60°, ∴x =30,
综上所述,当CP 旋转7.5秒或30秒时,△BCE 是等腰三角形;
【点睛】
本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
13.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.
【答案】(1)233384y x x =-
++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334
y x =--.
【解析】
【分析】
(1)设出交点式,代入C点计算即可(2)连接AC、BC,过点A作AE⊥BC于点E,过
点P作PD⊥BC于点D,易证△CDP∽△COB,得到比例式PC PD
BC OB
=,得到PD=
4
5
PC,所
以5PA+4PC=5(PA+4
5
PC)=5(PA+PD),当点A、P、D在同一直线上时,5PA+4PC=5
(PA+PD)=5AE最小,利用等面积法求出AE=18
5
,即最小值为18 (3)取AB中点F,
以F为圆心、FA的长为半径画圆, 当∠BAQ=90°或∠ABQ=90°时,即AQ或BQ垂直x轴,所以只要直线l不垂直x轴则一定找到两个满足的点Q使∠BAQ=90°或∠ABQ=90°,即∠AQB=90°时,只有一个满足条件的点Q,∴直线l与⊙F相切于点Q时,满足∠AQB=90°的点Q只有一个;此时,连接FQ,过点Q作QG⊥x轴于点G,利用cos∠QFT求出QG,分出情况Q在x轴上方和x轴下方时,分别代入直接l得到解析式即可
【详解】
解:(1)∵抛物线与x轴交点为A(﹣2,0)、B(4,0)
∴y=a(x+2)(x﹣4)
把点C(0,3)代入得:﹣8a=3
∴a=﹣3
8
∴抛物线解析式为y=﹣3
8(x+2)(x﹣4)=﹣
3
8
x2+
3
4
x+3
(2)连接AC、BC,过点A作AE⊥BC于点E,过点P作PD⊥BC于点D ∴∠CDP=∠COB=90°
∵∠DCP=∠OCB
∴△CDP∽△COB
∴PC PD
BC OB
=
∵B(4,0),C(0,3)
∴OB=4,OC=3,BC
∴PD=4
5
PC
∴5PA+4PC=5(PA+4
5
PC)=5(PA+PD)
∴当点A、P、D在同一直线上时,5PA+4PC=5(PA+PD)=5AE最小∵A(﹣2,0),OC⊥AB,AE⊥BC
∴S△ABC=1
2AB•OC=
1
2
BC•AE
∴AE =631855AB OC BC ⨯==n ∴5AE =18 ∴5PA+4PC 的最小值为18. (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆
当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°
∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个
此时,连接FQ ,过点Q 作QG ⊥x 轴于点G
∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点
∴F (1,0),FQ =FA =3
∵T (﹣4,0)
∴TF =5,cos ∠QFT =35
FQ TF = ∵Rt △FGQ 中,cos ∠QFT =
35FG FQ = ∴FG =35FQ =95
∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭
①若点Q 在x 轴上方,则Q (41255
-,)
设直线l 解析式为:y =kx+b ∴404125
5k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334
y x =+ ②若点Q 在x 轴下方,则Q (41255--,
) ∴直线l :334
y x =-- 综上所述,直线l 的解析式为334y x =+或334
y x =--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论
14.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM
上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,
则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数
15.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC 2=CF×EG .
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;
()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52
G CDG BDG BCD ∠=∠=∠=
∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.
【详解】
证明:()1连接BD ,
Q 四边形BCDE 是正方形,
45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,
C Q 为AB 的中点,
CD ∴是线段AB 的垂直平分线,
AD BD ∴=,
45DAB DBA ∴∠=∠=o ,
90ADB ∴∠=o ,
即BD AD ⊥,
BD Q 为半径,
AD ∴是B e 的切线;
()2BD BG =Q ,
BDG G ∴∠=∠,
//CD BE Q ,
CDG G ∴∠=∠, 122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,
AD AQ ∴=;
()3连接DF ,
在BDF V 中,BD BF =,
BFD BDF ∴∠=∠,
又45DBF ∠=o Q ,
67.5BFD BDF ∴∠=∠=o ,
22.5GDB ∠=o Q ,
在Rt DEF V 与Rt GCD V 中,
67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,
Rt DCF ∴V ∽Rt GED V ,
CF CD ED EG
∴=, 又CD DE BC ==Q ,
2BC CF EG ∴=⋅.
【点睛】
本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.
16.如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .
(1)如图2,当PD ∥AB 时,求PD 的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=1
2
AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)26;(2)①证明见解析;②33﹣3.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.
考点:圆的综合题。

相关文档
最新文档