西湖区高中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西湖区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)
2. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:
0.7,则这组样本数据的回归直线方程是( )
A . =0.7x+0.35
B . =0.7x+1
C . =0.7x+2.05
D . =0.7x+0.45
3. 已知一个算法的程序框图如图所示,当输出的结果为
2
1
时,则输入的值为( )
A .2
B .1-
C .1-或2
D .1-或10
4. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )
A .(0,1)
B .(e ﹣1,1)
C .(0,e ﹣1)
D .(1,e )
5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D .
6. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B .
C .
D .2
7. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .
B .
C .1:
D (1 8. 函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件
B .p 是q 的充分条件,但不是q 的必要条件
C .p 是q 的必要条件,但不是q 的充分条件
D .p 既不是q 的充分条件,也不是q 的必要条件
9. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4} C .M D .{2,7}
10.如图所示,阴影部分表示的集合是( )
A .(∁U
B )∩A B .(∁U A )∩B
C .∁U (A ∩B )
D .∁U (A ∪B ) 11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形
个数为( ) A .0
B .1
C .2
D .以上都不对
12.已知f (x )=,则f (2016)等于( )
A .﹣1
B .0
C .1
D .2
二、填空题
13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .
14.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .
15.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.
16.已知
是等差数列,
为其公差
,
是其前项和,若只有
是中的最小项,则可得出的结论中
所有正确的序号是___________
① ②
③
④
⑤
17.log 3
+lg25+lg4﹣7
﹣(﹣9.8)0
= .
18.已知实数x ,y 满足2330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
,目标函数3z x y a =++的最大值为4,则a =______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.
三、解答题
19.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.
20.从5名女同学和4名男同学中选出4人参加演讲比赛,
(1)男、女同学各2名,有多少种不同选法?
(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?
21.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?
22.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
23.椭圆C :
=1,(a >b >0)的离心率
,点(2,
)在C 上.
(1)求椭圆C 的方程;
(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM
的斜率与l 的斜率的乘积为定值.
24.(本小题满分12分)
如图长方体ABCD-A1B1C1D1中,AB=16,
BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由);
(2)求平面α将长方体分成的两部分体积之比.
西湖区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:易知函数f (x )=lnx+2x ﹣6,在定义域R +
上单调递增.
因为当x →0时,f (x )→﹣∞;f (1)=﹣4<0;f (2)=ln2﹣2<0;f (3)=ln3>0;f (4)=ln4+2>0. 可见f (2)•f (3)<0,故函数在(2,3)上有且只有一个零点.
故选C .
2. 【答案】A
【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.
因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.
故选A .
【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.
3. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111] 4. 【答案】 D
【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k . 由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1, 所以f (x )=lnx+e ,
f ′(x )=,x >0.
∴f (x )﹣f ′(x )=lnx ﹣+e ,
令g (x )=lnx ﹣+﹣e=lnx ﹣,x ∈(0,+∞)
可判断:g (x )=lnx ﹣,x ∈(0,+∞)上单调递增,
g (1)=﹣1,g (e )=1﹣>0, ∴x 0∈(1,e ),g (x 0)=0,
∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)
故选:D.
【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.
5.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×()+=,
故选:D.
6.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x
|=2,
P
∴S△POF=|0F|•|x P|=.
故选:C.
7.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.
8.【答案】C
【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要条件,但不是q的充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
9.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
10.【答案】A
【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,
∴对应的集合表示为A∩∁U B.
故选:A.
11.【答案】B
【解析】解:∵a=3,,A=60°,
∴由正弦定理可得:sinB===1,
∴B=90°,
即满足条件的三角形个数为1个.
故选:B.
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
12.【答案】D
【解析】解:∵f(x)=,
∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,
故选:D.
【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.
二、填空题
13.【答案】cm3.
【解析】解:如图所示,
由三视图可知:
该几何体为三棱锥P﹣ABC.
该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,
由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,
由几何体的正视图可得:AD+BD=AB=4cm,
故几何体的体积V=×8×4=cm3,
故答案为:cm3
【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.14.【答案】③.
【解析】解:由y=f'(x)的图象可知,
x∈(﹣3,﹣),f'(x)<0,函数为减函数;
所以,①在区间(﹣2,1)内f(x)是增函数;不正确;
②在区间(1,3)内f(x)是减函数;不正确;
x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,
③在x=2时,f(x)取得极大值;
而,x=3附近,导函数值为正,
所以,④在x=3时,f(x)取得极小值.不正确.
故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
15.【答案】75
【解析】计数原理的应用.
【专题】应用题;排列组合.
【分析】由题意分两类,可以从A 、B 、C 三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
【解答】解:由题意知本题需要分类来解,
第一类,若从A 、B 、C 三门选一门,再从其它6门选3门,有C 31C 63
=60,
第二类,若从其他六门中选4门有C 64
=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故答案为:75.
【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
16.【答案】①②③④ 【解析】
因为只有是
中的最小项,所以
,
,所以
,故①②③正
确;
,故④正确;
,无法判断符号,故⑤错误, 故正确答案①②③④
答案:①②③④
17.【答案】 .
【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=, 故选:
【点评】本题考查了对数的运算性质,属于基础题.
18.【答案】3-
【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线
l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273
z a -=⨯+=,所以max 74z a =+=,故
3a =-.
三、解答题
19.【答案】
【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,
∴BD⊥AC,可知A(),
故,m=2;
(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,
设E(x1,y1),由于A,E均在椭圆T上,则
,
由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,
显然x1≠x0,从而=,
∵AE⊥AC,∴k AE•k AC=﹣1,
∴,
解得,
代入椭圆方程,知.
【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.
20.【答案】
【解析】解:(1)男、女同学各2名的选法有C 42×C 52
=6×10=60种;
(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,
故选人种数为C 41×C 53+C 42×C 52+C 43×C 51
=40+60+20=120.
男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,
故总的选法有C 32+C 41×C 31+C 42
=21,
故有120﹣21=99.
21.【答案】
【解析】解:设至少需要同时开x 个窗口,则根据题意有,.
由①②得,c=2b ,a=75b ,代入③得,75b+10b ≤20bx ,
∴x ≥
,
即至少同时开5个窗口才能满足要求.
22.【答案】
【解析】(1)∵0a =,12
b =-, ∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)
若
112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
23.【答案】
【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,
,解得a2=8,b2=4,所求椭圆C方程为:.
(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),
把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,
故x M==,y M=kx M+b=,
于是在OM的斜率为:K OM==,即K OM k=.
∴直线OM的斜率与l的斜率的乘积为定值.
【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.
24.【答案】
【解析】解:
(1)交线围成的四边形EFCG(如图所示).
(2)∵平面A1B1C1D1∥平面ABCD,
平面A1B1C1D1∩α=EF,
平面ABCD∩α=GC,
∴EF∥GC,同理EG∥FC.
∴四边形EFCG 为平行四边形, 过E 作EM ⊥D 1F ,垂足为M , ∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4. ∴GC =EF =EM 2+MF 2=
102+42=116,
∴GB =
GC 2-BC 2=
116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1GBC 两部分组成. 其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1 =12×8×8×10+1
2
×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V 1V 2=800480=53
, ∴其体积比为53(3
5
也可以).。