功能高分子材料论文黄俊强

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能高分子材料课程论文

生物降解高分子材料的研究现状

及应用前景

姓名:黄俊强

班级:高分子08-1班

老师:齐民华

日期:2010.12.18

生物降解高分子材料的研究现状及应用前景

摘要:目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。

关键词:生物降解高分子材料定义降解机理影响因素研究现状应用前景

0 引言

随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。

1.生物降解高分子材料的定义和分类

生物降解高分子材料( Biodegradable polymeric materials)是指在一定的条件下,一定的时间内, 能被微生物( 细菌、真菌、霉菌、藻类等) 或其分泌物在酶或化学分解作用下发降解的高分子材料。生物降解的高分子材料具有以下特点: 易吸附水, 含有敏感的化学基团, 结晶度低,分子量低,分子链线性化程度高和较大的比表面积等。按照来源, 生物可降解高分子材料可分为天然高分子和人工合成高分子两大类;按照用途,分为医用和非医用生物降解高分子材料两大类;按照原料组成和制造工艺不同可分为天然高分子合成材料、微生物合成高分子材料和化学合成生物可降解高分子材料。

天然高分子包括淀粉、纤维素、甲壳质、木质素等,这些高分子可被微生物完全降解, 但因纤维素等存在物理性能上的不足,不能满足工程材料的性能要求, 因此,它大多与其它高分子, 如由甲壳质制得的脱乙酰基多糖等共混, 得到有使用价值的生物降解材料; 微生物合成高分子是生物通过各种碳源发酵制得的一

类高分子材料, 主要包括微生物聚酯、聚乳酸及微生物多糖, 具有生物可降解性, 具有代表性的是聚β- 羟基烷酸系列聚酯,可用于制造不污染环境的生物可降解塑料。由于在自然界中酯基容易被微生物或酶分解,所以化学合成生物降解高分子材料大多是分子结构中含有酯基结构的脂肪族聚酯。可以用化学合成法生产的有生物降解高分子包括聚乳酸( PLA) 、聚己内酯( PCL) 、多酚、聚苯胺、聚碳酸酯等。

2.生物降解高分子材料的降解机理

一般高分子材料的生物降解可分为完全生物降解机理和光—生物降解机理。完全生物降解机理大致有三种途径: ①生物物理作用: 由于生物细胞增长而使聚合物组分水解, 电离质子化而发生机械性的毁坏, 分裂成低聚物碎片;②生物化学作用:微生物对聚合物作用而产生新物质( CH4、CO2 和H2O);③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光—生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时, 日光、热、氧引发光敏剂等使高聚物生成含氧化物, 并氧化断裂,分子量下降到能被微生物消化的水平。进一步研究发现, 不同的生物降解高分子材料的生物降解性与其结构有很大关系, 包括化学结构、物理结构、表面结构等。

3.影响生物降解的因素

生物降解高分子在制造和使用过程中应保持稳定,并要求在废弃后及时进行生物降解,因此影响生物降解性的因素成为人们关注的焦点之一。环境因素是指水、温度、pH 值和氧的浓度。水是微生物生成的基本条件,因此聚合物能保持一定的湿度是其可生物降解的首要条件。每一种微生物都有其适合生长的最佳温度,通常真菌的适宜温度为20℃~28℃,细菌则为28℃~37℃。一般来说,真菌适宜长在酸性环境中,而细菌适宜长在微碱性条件下。真菌为好氧型的,细菌则可在有氧或无氧条件下生长。材料的结构是决定其是否可生物降解的根本因素。

一般情况下只有极性高分子材料才能与酶相粘附并很好地亲和,因此高分子材料具有极性是生物降解的必要条件。高分子的形态、形状、分子量、氢键、取代基、分子链刚性、对称性等均会影响其生物降解性。另外,材料表面的特性对微生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。

4.各类材料的研究现状

按照材料来源的不同,其主要分为天然高分子材料、合成高分子材料和掺混型高分子材料。

4.1 天然高分子材料

天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是利用它们制备的生物高分子材料可完全降解,

具有良好的生物相容性,且安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视。

在天然高聚物中,淀粉是被研究得最多的一种材料,研究工作主要是通过共混改性来制备薄膜。如意大利Feruzzi 公司利用70%的变性淀粉与30%的聚乙烯醇共混制备出降解塑料,我国在淀粉与低密聚乙烯共混制备农膜方面也已开展了卓有成效的工作。尽量提高淀粉含量并保持优良的力学性能是其中的技术关键,即如何让薄膜具备完全的分解性是其中存在着的一个尚待解决的问题,在国外已有利用遗传学方法生产直链淀粉的报道,这项研究将为制备全淀粉型降解薄膜提供技术支持。

纤维素及其衍生物同样也是重要的生物降解原料,它们在石油开采、造纸业、印刷业、农业、高吸水性材料以及粘接剂方面均有广泛的应用。日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳糖复合制备薄膜,该薄膜具有与通用薄膜同样的强度,并可在两个月后完全降解。近几年,利用纤维素和淀粉制备发泡材料也有着较多的研究。甲壳素及其衍生物——壳聚糖是另一类有发展前途的多糖。它们在自然界中的含量仅次于纤维素,可生物降解,也可在体内降解并有抗菌作用。基于甲壳素——壳聚糖的可生物降解的新型材料是近年来研究的热点之一。

4.2 合成高分子材料

天然高分子材料虽然价格低廉、能完全降解,但是合成的高分子材料却具有更多的优点。它可以从分子化学的角度来设计分子主链的结构,从而来控制高分子材料的物理性能,而且可以充分利用来自自然界中提取或合成的各种小分子单体。合成高分子主要有化学合成、微生物合成和最新研究的酶促合成高分子。目前,开发的合成高分子产品主要有聚乳酸(PLA)、聚己内酯(PCL)、聚丁二醇丁二酸酯(PBS)等。除了脂肪族聚酯外,多酚、聚苯胺、聚碳酸脂、聚天冬氨酸等也已相继开发成功。

◆聚乳酸(PLA)聚乳酸是一种典型的完全生物降解性高分子材料,有关聚乳酸的研究一直是生物降解性高分子材料研究领域的热点。目前,合成聚乳酸的方法主要有直接法和间接法两种。直接法合成聚乳酸是在脱水剂的存在下,乳酸分子间受热脱水,直接缩聚成低聚物,然后在继续升温,低分子量的聚乳酸扩链成更高分子量的聚乳酸。早在20世纪30年代,美国化学家Carothers.W.H 就通过乳酸的直接缩聚合成了聚乳酸,但得到的聚乳酸分子量并不高,没有价值,直到70年代,经过改进合成工艺条件,聚乳酸的分子量有所提高,近20年来聚乳酸直接缩聚合成方法的研究工作有了较大的突破,研究表明使用高沸点溶剂可以有效降低反应体系的粘度,加入有机碱类,促使丙交酯的分解,从而有利于形成高分子

相关文档
最新文档