巧求周长与面积

合集下载

三年级奥数经典课题――巧求周长和面积

三年级奥数经典课题――巧求周长和面积

巧求周长和面积-授课学案学生姓名:授课教师:班主任:科目:三年级奥数上课时间: 2012 年月日时—时跟踪上次授课情况○完全掌握○基本掌握○部分掌握○没有掌握上次授课回顾○全部完成○基本完成○部分完成○没有完成作业完成情况本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。

拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。

原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。

(单位:米)图3 图4例4.图7是一座厂房的平面图,求这座厂房平面图的周长。

例5.图9是个多边形,图中每个角都是直角,它的周长是多少?例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。

图10例7.图11是由四个一样大的长方形和一个周长是4分米的小正方形拼成的一个边长是11分米的大正方形。

每个长方形的长和宽各是多少?周长是多少?图4.有两个相同的长方形,长7厘米,宽3厘米,把它们按图(16)的样子重叠在一起,这个图形的周长是多少厘米?5.一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?6.用4个一样大的长方形和一个小正方形,拼成一个边长是16分米的大正方形(如图18),每个长方形的周长是多少?例题与方法例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多项式少平方米?例5.如图5,已知正方形ABCD的边长为6分米,长方形BCEF和长方形AGHD 的面积分别为24平方分米和20平方分米,求阴影部分和面积。

例6.一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明。

练习与思考1.用长36厘米长的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2.如图8,已知大正方形的面积比小正方形多52平方分米,大正方形比小正方形的边长多2分米。

四年级几何巧求周长与面积学生版

四年级几何巧求周长与面积学生版

知识要点巧求周长【例 1】 如图所示,在一个大长方形的右上角挖去一个小长方形。

如果大长方形的长是7厘米,宽是5厘米。

小长方形的长是5厘米,宽是3厘米。

那么该图形的周长是多少厘米?3575巧求周长与面积巧求周长长方形周长公式:长方形周长=(长+宽)2⨯,记作:C 长方形()2a b =+⨯; 正方形周长公式:正方形周长=边长4⨯,记作:C 正方形4a =⨯; 巧求周长时,常用到“平移线段法”和“标向法”。

巧求面积长方形面积公式:长方形面积=长⨯宽,记作:S 长方形a b =⨯; 正方形面积公式:正方形面积=边长⨯边长,记作:S 正方形2a a a =⨯=; 巧求面积时,常用到“割补法”(将图形平移、对称、旋转)。

【例 2】如图所示,这个多边形任意相邻的两条边都互相垂直。

请根据图中所给出的数,求出这个多边形的周长。

(单位:分米)【例 3】如图所示,这个多边形任意相邻的两条边都互相垂直。

请根据图中所给出的数,求出这个多边形的周长。

(单位:厘米)68【例 4】如图所示,将3个边长为8厘米的正方形叠放在一起。

后一个正方形的顶点恰好落在前一个正方形的正中心。

那么它们覆盖住的图形周长是多少厘米?【例 5】(2010年3月14日第八届小学“希望杯”全国数学邀请赛四年级第1试第9题)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为_______厘米。

【例 6】 如图是由10个边长为4厘米的小正方形组成.每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长。

【例 7】 如图所示,从一个大正方形的边上挖去一个正方形得到一个多边形。

大长方形的长是6厘米,宽是4厘米,正方形的边长是2厘米。

这个图形的周长是多少厘米?462【例 8】 如图所示,四个长方形组成了一个多边形,如果图中所标数值的单位都是厘米,那么这个多边形的周长是多少厘米?836512【例 9】 如图,某人从点A 走到点B 所走的路程是多少?【例 10】如图,把长为2厘米、宽为1厘米的6个长方形摆成3层。

巧求周长与面积

巧求周长与面积

巧求周长与面积办法技巧:经由过程扭转.平移.朋分等办法,然后本身着手绘图,可以或许奇妙地在简略平面图形周长与面积的基本上求较为庞杂的平面图形的周长与面积.【例1】下图是一座衡宇的平面图,求这座衡宇平面图的周长.【例2】有一块长方形广场,沿着它不合的两条边各划出2米预备种树,剩下的部分仍是长方形,且周长为280米.问:种树的面积是若干平方米?【例3】一块花圃如图所示,梯形ABCD中有个直角三角形,AD=10米,BC=14米,AE=6米,DE=8米.暗影部分的面积是若干平方米?闯关演习:1.有一块纸板外形如图(单位:厘米),这块纸板的周长是若干厘米?2.一块长方形木板,把长和宽各锯去6厘米,锯失落的面积为396平方厘米.如今这块木板的周长是若干厘米?3.图中三角形AED的面积是28平方厘米,长方形ABCD中,AD=7厘米,CF=3厘米.求梯形ABCF的面积.4.(选做题)在一个长方形花圃中有个走道(图中的暗影部分),长方形的面积是216平方米,长18米,走道的宽1.2米,走道的面积是若干平方米?填补题1.在一块正方形的地盘上计划出一块长方形的地(暗影部分)用来建活动场,剩下的面积是123200平方米,相邻的双方剩下的长度是40米和120米.求本来正方形地盘的面积是若干平方米?(640000平方米)2. 将一个长方形和一个正方形按如图方法拼接成一个大长方形,已知拼接后的大长方形的长是25厘米,求本来小长方形的周长.. 50厘米3. 如右下图所示,一个腰长是20厘米的等腰三角形的面积是140平方厘米,在底边上随意率性取一点,这个点到两腰的垂线段的长分离是a 厘米和b 厘米.求a + b 的长.14厘米4. 如下图,一个平行四边形被分成甲.乙两部分,甲的面积比乙大80平方米,甲的上底是若干米?10米6. 如图,三角形ABC 的面积是48平方分米,AD = DE = EC,F 是BC 的中点,FG=GC,暗影部分的面积是若干平方厘米?28平方厘米7. 如右图,把一个三角形的底边延伸2厘米后,面积增长了2.4平方厘米,你知道原三角形的面积是若干吗?例题1:一个等腰直角三角形,最长的边是10厘米,这个三角形的面积是若干平方厘米?【巩固演习1】:如图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的极点把正方形的四条边各分成两段,个中长的一段是短的2倍.求中央长方形的面积.例题2: 求右面平行四边形的周长.【巩固演习2】:求右面三角形的AB 上的高.例题3:求右图等腰直角三角形中暗影部分的面积.(单位:厘米)【巩固演习3】:求四边形ABCD 的面积.(单位:厘米) 例题4:有一种将正方形内接于等腰直角三角 米米410C A 43形.已知等腰直角三角形的面积是72平方厘米,正方形的面积分离是若干?【巩固演习4】:有一种将正方形内接于等腰直角三角形.已知等腰直角三角形的面积是72平方厘米,正方形的面积分离是若干?例题5:图中两个正方形的边长分离是10厘米和6厘米,求暗影部分的面积.【巩固演习5】:图中两个正方形的边长分离是6厘米和4厘米,求暗影部分的面积.【巩固演习6】求右图等腰直角三角形中暗影部分的面积.(单位:厘米)名校真题体验:【例1】下图中甲和乙都是正方形,求暗影部分的面积.(单位:厘米)【练一练】求图中暗影部分的面积.(单位:厘米)【例2】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度.【练一练】平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知暗影部分的面积比三角形EFG的面积大10平方厘米.求CF的长.【例3】两条对角线把梯形ABCD朋分成四个三角形.已知两个三角形的面积(如图所示),求另两个三角形的面积各是若干?(单位:厘米)B【练一练】下面的梯形ABCD中,下底是上底的2倍,E是AB的中点,求梯形ABCD的面积是三角形EDB面积的若干倍?。

六年级奥数讲义-巧求周长及面积(附答案)

六年级奥数讲义-巧求周长及面积(附答案)

数学学科教师辅导教案知识精讲知识点一(长方形、正方形的周长)【知识梳理】同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。

长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。

【典型例题】例1 有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

答案:72课堂练习一:1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。

答案:18*2=36厘米2.下图由1个正方形和2个长方形组成,求这个图形的周长。

答案:178厘米45cm3.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

答案:14厘米例2 一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?答案:192-4*4=176平方厘米176/4=44厘米44*2=88厘米课堂练习二:1.有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。

求这个正方形的周长。

答案:6*4=24米2.有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?答案:4*8=32厘米3.有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。

求划去的绿化带的面积是多少平方米?答案:280/2*2+2*2=284平方米例3 已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?答案:2a+4b课堂练习三:1.有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。

巧算面积和周长

巧算面积和周长

名师教育授课讲义教师:芳芳科目:数学学生:年级:上课时间:年月日时分至时分共小时课题:图形的周长和面积备注一、教学目标:掌握长方形、正方形的周长和面积并能灵活应用,巧算周长和面积二、教学重难点:灵活使用公式,计算周长和面积三、教学容及过程:【知识梳理】正方形:周长=边长×4 面积=边长×边长长方形:周长=(长+宽)×2 面积=长×宽【融知于题】【典型例题分析】例1、如下图,一个长方形土地里面有一块正方形花坛,这个花坛的周长是200米,它的各边和长方形的各边恰好平行,和长方形各边的距离如图所示(单位:米),那么这个长方形的周长是多少?这样做正方形的边长是200÷4=50(米)所以长方形的长=50+40+60=150(米)宽=50+20+30=100(米)因此长方形的周长是:(150+100)×2=500(米)答:这个长方形的周长是500米。

例2、下图是四个一样的长方形和一个小正方形拼成了一个大正方形,大正方形的面积为121平方米,小正方形的面积是25平方米。

求长方形的长和宽。

这样做由题意可知大正方形的面积是121平方米,所以它的边长为11米。

小正方形的面积是25平方米,所以它的边长是5米。

大正方形的边长恰等于长方形的长、宽的和,或者等于小正方形的边长再加上长方形的两个宽。

由第二个条件可以得到长方形的宽是:(11-5)÷2=3(米)再由第一个条件可以得到长方形的长是:11-3=8(米)答:长方形的边长是8米,宽是3米。

例3、如下图是一个长22米,宽18米的迷宫,其中道路的宽为2米,从A 点出发,沿道路的中心线向里走去,一直到B点(到迷宫的尽头,挨到墙)。

所走过的路线的长度是多少米?这样做将长方形的迷宫割补平移为宽1米的路,路的总面积和以前迷宫的面积一样,那么路有多长在迷宫里就走了多远,22×18÷2=198(米)答:在迷宫里所走的路线的长度是198米。

初中数学《巧求周长与面积》讲义及练习

初中数学《巧求周长与面积》讲义及练习

1、 巩固三四年级学习的几何图形并深化构造思想2、 将等量代换等解题方法用到解题中本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.模块一、旋转平移变换【例 1】 在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1) (2)【解析】 方法一:本题就此图来看计算起来比较麻烦,但是我们可以把图⑴经过旋转后变成图⑵这样我们就可以根据我们学过的知识来解决这道题了.八条虚线的长度正好是大小两个正方形的周长差,空白处即为两个正方形的面积差,所以虚线长为:1682÷=(厘米)从图中可以看出上、下、左、右四个长方形的面积相等为:(96224-⨯⨯)420÷=(平方厘米),所以小正方的边长为:20210÷=(厘米),即小正方形的面积为:1010100⨯=(平方厘米)方法二:本题还可以将里面的正方形移到一角上来计算,由右图可知虚线长度为:1644÷=(厘米)所以小正方形的面积为:4416⨯=(平方厘米)白色长方形的面积为:(9616-)240÷=(平方厘米),所以小正方形的边长为:40410÷=(厘米),正方形的面积为:1010100⨯=(平方厘米).【巩固】 有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?知识点拨教学目标例题精讲第二讲:巧求周长与面积c b ca图a图b【解析】 根据已知条件,我们将两个正方形试验田的一个顶点对齐,画出示意图(如图a ),将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形(如图b ).由于两个正方形的周长相差40米,从而它们的每边相差40410÷=米,即图b 中的长方形的宽是10米.又因为长方形的面积是两个正方形的面积之差,即为220平方米,从而长方形的长为:2201022÷=(米).由图可知,长方形的长是大正方形与小正方形的边长之和,长方形的宽为大正方形与小正方形的边长之差,从而小正方形的边长为:(2210)26-÷=(米).所以小正方形的面积为:6636⨯=(平方米).【例 2】 长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?C 1D 1E 1A 1EBC DA【解析】 从图形我们可以看出,1A B 的长度恰好为长方形的长与宽之和,即为长方形ABCD 周长的一半,可以看出若以1A B 和1BC 为边能构成大正方形111A BC E (如右下图所示),其中包含两个长方形和两个正方形,而且两个长方形的面积是相等的,两个正方形的面积刚好是290平方厘米的一半.这样我们容易求出:大正方形111A BC E 的边长为30215÷=厘米,面积为:1515225⨯=平方厘米,正方形11CDD C 与正方形1ADEA 的面积之和为:2902145÷=(平方厘米).长方形ABCD 与长方形11EDD E 的面积相等.所以,长方形ABCD 的面积为:(225145)240-÷=(平方厘米).【例 3】 一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【解析】 方法一:由于手帕边长是18厘米,所以手帕的面积是1818324⨯=(平方厘米).要求白色部分的面积,只需减去红色部分的面积就可以了.红色部分是四个长为18厘米,宽为2厘米的红色长条,所以这四个红色长条面积是:4182144⨯⨯=(平方厘米),但每个横红条与每个竖红条在交叉处重叠一个边长为2厘米的正方形,即多计算了224⨯=(平方厘米),因此两个横红条与两个竖红条共重叠4416⨯=(平方厘米),所以两个横红条与两个竖红条覆盖的面积为14416128-=(平方厘米),所以这块白手帕白色部分的面积是324128196-=(平方厘米)方法二:换个方式思考:把竖的两个红条平行移动一下,使它们紧贴在一起,再移到紧贴正方形的左端边上,把横的两个红条也做同样的位置平移,使它们紧贴在正方形下端的边上,如图所示.这样通过平移横、竖红条后使原来分散的白色部分集中起来了,而且所得图形的白色部分的面积不变.这时白色部分面积一目了然,它等于变成为14厘米的正方形面积,即1414196⨯=(平方厘米)【例 4】 7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?【解析】 由图可知,长方形的长是宽的4倍,宽的6倍是24厘米,则长方形的宽是4厘米,故图中空白部分的面积是44232⨯⨯=(平方厘米).【巩固】 (第五届”祖冲之杯”数学邀请赛)如右图所示,在长方形ABCD 中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.B【解析】 由图中可以看出小长方形的长3+⨯小长方形的宽14=,小长方形的长-小长方形的宽6=. 第二式乘以3再与第一式相加得 4⨯小长方形的长146332=+⨯=.所以小长方形的长8=,小长方形的宽2=,小长方形的面积8216⨯=,大长方形的面积14(622)140=⨯+⨯=, 阴影面积14061644=-⨯=.模块二、完美长方形【例 5】 (第十二届“迎春杯”刊赛试题)如图,边长是整数的四边形AFED 的面积是48平方厘米,FB为8厘米.那么,正方形ABCD 的面积是 平方厘米.A BCDE F 488【解析】 根据题意,有48AD AF ⨯=且8AF AD +=,又AD 、AF 都是整数,于是根据尝试可得,12AD =厘米,4AF =厘米.所以1212144ABCDS=⨯=(平方厘米).【例 6】 如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【解析】 为了方便叙述,将某些点标上字母,如右上图。

小学数学五年级《巧求周长和面积》练习题(含答案)

小学数学五年级《巧求周长和面积》练习题(含答案)

《巧求周长和面积》练习题(含答案)【复习1】若干个长2cm、宽1cm的长方形摆成如右图的形状,求该图形的周长.分析:观察图形,上下共有13层,所以左、右的高共长:1×13×2=26(cm);从下层往上数,第四层最长,有2×10=20cm,所以上下的宽共有:20×2=40(cm),故该图形的周长为:26+40=66(cm) .【复习2】右图中是一个方形螺线.已知两相邻平行线之间的距离均为l厘米,求螺线的总长度.分析:如下图所示,将原图形转化为3个边长分别为3、5、7厘米的正方形和中间一个三边图形.所以螺线的总长度为:(3+5+7)×4+1×3=63 cm .【复习3】有10张长3厘米,宽2厘米的纸片,将它们按照右图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?分析:每多盖一张,遮住的面积增加2×1,所以这10张纸片所盖住的桌面的面积是3×2+2×1×9=24cm2.巧求周长【例1】图1、图2都是由完全相同的正方形拼成的,并且图1的周长是22厘米,那么图2的周长是多少厘米?分析:图1的周长是小正方形边长的12倍。

图2的周长是小正方形边长的18倍.因此,图2的周长=22÷12×18=33(厘米)【巩固】右图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?分析:因为400÷16=25(平方厘米),所以每个正方形的边长是5厘米.观察右图,从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以周长为170厘米.【例2】计算右面图形的周长(单位:厘米).分析:要求这个图形的周长,似乎不可能,因为缺少条件.但是,我们仔细观察这个图形,发现它的每一个角都是直角,所以,我们可以将图中右上缺角处的线段分别向上、向右平行移动到虚线处(见右下图),这样正好移补成一个长方形。

第21讲 几何(巧求周长与面积)

第21讲 几何(巧求周长与面积)

第21讲 几何(巧求周长与面积)我们已经学过基本图形周长和面积的求法,但对于不规则的多边形周长的周长与面积应该怎样求解呢?我们常用的方法有平移和找规律。

巧求周长常见的不规则多边形可分为“凹”型和“凸”型,对于“凸”型问题通常可以用平移直接转化为矩形求解,“凹”型问题可用平移将其转化为矩形,然后再加上多余的边。

对于矩形拼接问题,周长减少量=拼接线×2。

例1:(1)下图的周长是 厘米。

(2)下图“凸”字的周长是 厘米。

练习:(1)右图是一幢楼房的平面图形,它的周长是 平方米(2)右图中有3个长方形,图①长32厘米,宽16厘米;图②的长、宽分别是图①长、宽的一半;图③的长、宽分别是图②长、宽的一半。

求该图形的周长。

例2:(1)下图是一座楼房的平面图,图中用不同字母表示长度不同的各条边.已知b =50米,c =30米,g =10米,这座楼房平面的周长是 米;4 1 2 45 ① ③ ② c(2)下图“E”字周长是厘米。

(单位:厘米)练习:(1)下图是一“环球游戏探险的隧道”的平面图,一儿童沿隧道周游一周,他走了多少米?(2)下图是一个零件的平面图,图中每一条最短线段均长5厘米.零件长35厘米,高30厘米,这个零件周长是多少厘米?例3:下图是由10个边长为3厘米的小正方形组成。

每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长。

练习:把一块长20厘米,宽12厘米的长方形纸按右下图所示方法一层、二层、三层的摆下去,共要摆十层,摆好后图形周长是厘米。

例4:下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是厘米。

练习:下图由5个边长8厘米的小正方形拼成的“T”字形,它的周长是厘米。

例5:北京某四合院子正好是个边长10米的正方形,在院子中央修了一条宽2米的“十字形”甬路,如图。

这条“十字形”甬路的面积是平方米?练习:下图中有四个正方形,图①的边长是32厘米,图②的边长是图①边长的一半;图③的边长是图②边长的一半;图④的边长是图③边长的一半.(1)图中图①(最大的正方形)的面积是图④(最小的正方形)面积的倍?(2)图中图①的周长是图④的周长的倍?例6:有大、小两个长方形,对应边的距离均为1厘米,如果两个长方形之间(阴影部分)部分的面积是16平方厘米,且小长方形的长是宽的2倍。

五年级奥数-巧求周长与面积(含答案)

五年级奥数-巧求周长与面积(含答案)

巧求周长与面积教学目标:1. 掌握巧求周长与面积的基本方法;2. 理解并掌握割补、平移等数学思想方法。

巧求周长【例1】 (“希望杯”第一试)右图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是__________厘米。

【分析】 由于图中阴影部分BCGF 是个正方形,其四条边的边长都相等,且等于长方形ADHE 的宽。

FH AC +的和应为长方形ADHE 的长加上正方形BCGF 的边长,所以等于长方形ADHE 的长与宽之和。

所以长方形ADHE 的周长为:(1824)284+⨯=厘米。

【例2】 如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L 形区域乙和丙。

甲的边长为4厘米,乙的边长是甲的边长的1.5倍,丙的边长是乙的边长的1.5倍,那么丙的周长为多少厘米?EF 长多少厘米?【分析】 乙的周长实际上是正方形AHJE 的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形ABCD 的周长。

由于4 1.56AE =⨯=,6 1.59AD =⨯=,所以丙的周长为9436⨯=厘米,642EF AE AF =-=-=(厘米)。

【例3】 用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【分析】 大平行四边形上、下两边的长为(24422)2120-⨯÷=厘米,观察上边,每6厘米有两个平行四边形的边,所以共有小平行四边形1206240÷⨯=个,三角形的数量与小平行G FE A C B 乙丙甲J IF E H D BA四边形的数量相等,也是40个。

[拓展] 用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?[分析] 大平行四边形上、下两边的长为(23622)2116-⨯÷=厘米,观察上边,每6厘米有两个平行四边形的边,1166192÷=L ,所以有三角形19238⨯=个,小平行四边形38139+=个。

三年级下册数学试题-巧求周长和面积(无答案) 沪教版(2015秋) (1)

三年级下册数学试题-巧求周长和面积(无答案) 沪教版(2015秋) (1)

巧求周长和面积【知识要点】(1)周长: 长方形周长=(长+宽)×2 正方形周长=边长×4 (2)面积: 长方形面积=长×宽 正方形面积=边长×边长 (3)对于不规则的图形,利用割补成规则图形来求周长与面积。

【典型例题】例1 右图是一块正方形园地,中间有一个正方形花坛,周围是草坪.请算算草坪的面积.例2 求下图的周长和面积.(单位:米)例3 山北中心小学原来操场长120米,宽60米,后来长增加30米,宽增加20米,现在操场的面积是多少平方米?比原来增加多少平方米?例4 用16个边长为2厘米的小正方形拼成一个大正方形,大正方形的周长是多少?5米 18米30506025例5 有一块大水田,由两条水渠分成了四小块,求这四块小水田的面积的和。

(单位:厘米)例6 正方形ABCD的边长是6厘米,在正方形内的任意画四条直线,可把正方形分成9个小长方形.这9个小长方形的周长之和是多少厘米?【小试锋芒】成绩:1.求下图的周长和面积.(单位:厘米)2.求右图的周长和面积.(单位:厘米)12186 186162053.从边长为30厘米的正方形硬纸片的右上角剪去一个小正方形(如右图),剩下部分的面积是多少平方厘米?4.学府小学海文部原来操场长180米,宽60米,今年扩建后,长增加25米,宽增加35米,现在操场面积是多少?比原来增加了多少?5.用9个边长为3厘米的小正方形拼成一个大正方形,大正方形的周长是多少?6.西西剪纸片,一个边长为5分米的正方形,横的剪6刀,竖的剪4刀,共分成35个小长方形,求西西剪的所有小长方形的周长和是多少?厘米30厘米【大显身手】1.求下图的周长和面积.(单位:厘米)2.一个正方形,边长是10厘米,边长增加3厘米后,面积增加了多少?3.一根丝线能围成长12米,宽4米的长方形,现在把它围成一个正方形,正方形的面积是多少?4.求下图的周长.(单位:厘米)3381255151525 厘米5. 9个边长为2分米的正方形拼成一个大正方形,大正方形的周长是多少分米?面积是多少平方分米?。

巧求周长与面积答案版

巧求周长与面积答案版

第1讲巧求周长和面积几何是研究现实世界的空间形式与数量关系的一门科学,是日常生活和进一步学习必不可少的基础和工具.几何问题非常直观、有趣,但是仍然有的同学对解几何问题的基本方法掌握不好.之前已经学习了长方形和正方形的周长和面积公式,利用公式可以解决一些简单的标准图形的周长和面积问题,对于一些复杂的不规则图形的周长和面积问题,我们可以采用平移、转化、分割、添补、合并等方法,将问题转化为我们熟悉的、简单的图形问题,从而顺利的解决.周长:围成一个图形的所有边长的总和就是这个图形的周长.面积:物体的表面或围成的平面图形的大小,叫做它们的面积.长方形的周长2=⨯(长+宽).面积=长⨯宽.正方形的周长4=⨯边长.正方形的面积=边长⨯边长.编写说明知识要点【例1】下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?【分析】每个正方形的面积为4001625÷=(平方厘米),所以每个正方形的边长是5厘米。

观察上图,这个图形的周长从上下方向来看是由7214⨯=条正方形的边组成,从左右方向来看是由⨯+⨯=条正方形的边组成,所以其周长为514520170⨯+⨯=厘米。

423420【前铺】学而思学员中有两只小牛:海海、宝宝,他们是两兄弟,放学后两人一起回家,海海走第一条路,宝宝走第二条路,他们的速度一样,那么谁会先到家呢?【分析】因为海海和宝宝速度相同,所以只要知道谁走的路程少,那么答案也就出来了。

首先可以让大家讨论一下,认为海海先到家的举手,然后认为宝宝先到家的举手。

并请大家说明自己的理由。

【温馨提示】通过这题来引出我们本节课的主题,最后可以点出巧求周长常用的方法是平移,当然还有转化,分割,添补,合并等。

然后第一题例题的拓展就可以用这种方法来解决。

【拓展】图⑴、图⑵都是由完全相同的正方形拼成的,并且图⑴的周长是22厘米,那么图⑵的周长是多少厘米?(1)(2)【分析】图⑴的周长是小正方形边长的12倍,图⑵的周长是小正方形边长的18倍,因此,图⑵的周长为22121833÷⨯=厘米。

三年级数学-巧求周长和巧求面积

三年级数学-巧求周长和巧求面积

巧求周长【知识要点】通过前面的学习,同学们已经知道围成一个图形所有边的长度总和,叫做这个图形的周长。

上册课本中我们接触了用平移法求一些不规则图形的周长,本节课我们【典型例题】例1. 一张长方形纸,长28厘米,宽15厘米,剪下一个最大的正方形后,余下的长方形纸周长是多少?例2.从一个长为100厘米的长方形中截去一个最大正方形,求剩下的长方形的周长是多少?练一练1如图,已知这个长方形的周长为38厘米,阴影部分为正方形,求长方形的长和宽。

例3.如图,一个正方形被分成3个大小、形状完全一样的长方形。

每个小长方形的周长都是32厘米,求这个正方形的周长。

练一练2一个正方形分成三个相同的长方形(如图),一个长方形的周长是64 厘米,正方形的面积是多少平方厘米?例4.如图,四个同样的长方形和一个小正方形拼成一个大正方形,大正方形的面积是100平方米,小正方形的面积是36平方米,求每个小长方形的周长。

练一练3明明用学具盒里的三个同样大小的长方形拼成一个大长方形,已知大长方形的周长是60厘米,长是宽的4倍,求小长方形的周长?※例5.如下图,在长方形ABCD中,EFGH是正方形,已知AF=10㎝,HC=7㎝,则长方形ABCD的周长是多少?能力训练1. 求图(1),图(2)的周长?(单位:分米)2. 下图已知a=18cm、b=16cm、e=6cm。

求图形的周长。

3.一个周长为20厘米的正方形,从中间剪开成为两个大小相等的长方形,这两个长方形周长共多少厘米?4. 两个大小相同的正方形拼成一个长方形后,周长比原来两个正方形周长的和减少了6厘米。

原来每个正方形的周长是多少厘米?5.长方形的长是50厘米,截去一个最大的正方形后,余下一个长方形,这个长方形的周长是多少厘米?6.一张长方形纸,长为32厘米,宽为15厘米,先剪下一个最大的正方形,再从余下的纸片中,又剪一个最大的的正方形,最后余下的长方形周长是多少?7.一根铁丝长80厘米,围成一个边长为8厘米的正方形,余下的铁丝围成一个长为14厘米的长方形,这个长方形的宽为多少厘米?8. 6张同样大小的正方形纸重叠着,每个正方形的边长都是2厘米,重叠部分的边长为原来每个正方形边长的一半。

最新三年级奥数经典课题——巧求周长和面积资料

最新三年级奥数经典课题——巧求周长和面积资料

巧求周长和面积-授课学案学生姓名:授课教师:班主任:科目:三年级奥数上课时间: 2012 年月日时—时跟踪上次授课情况上次授课回顾○完全掌握○基本掌握○部分掌握○没有掌握作业完成情况○全部完成○基本完成○部分完成○没有完成本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。

拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。

原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。

(单位:米)图3 图4例4.图7是一座厂房的平面图,求这座厂房平面图的周长。

例5.图9是个多边形,图中每个角都是直角,它的周长是多少?例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。

图10例7.图11是由四个一样大的长方形和一个周长是4分米的小正方形拼成的一个边长是11分米的大正方形。

每个长方形的长和宽各是多少?周长是多少?图例8.一根铁丝长12厘米,能围成几种长和宽都是整厘米数的长方形,每咱长方形的长和宽各是几厘米?围成的正方形的边长是几厘米?例9. 有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是30平方厘米,求这个大长方形的周长。

练习与思考1.把一个长10厘米,宽5厘米的长方形,分成两个大小一样的正方形,每个正方形的周长是多少?2.用一个长8厘米,宽4厘米的长方形与7个边长4厘米的正方形,拼成一个大正方形。

拼成的大正方形的周长是多少?3.图14是一座楼房的平面图,这座楼房平面图的周长是多少米?4.有两个相同的长方形,长7厘米,宽3厘米,把它们按图(16)的样子重叠在一起,这个图形的周长是多少厘米?5.一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?6.用4个一样大的长方形和一个小正方形,拼成一个边长是16分米的大正方形(如图18),每个长方形的周长是多少?例题与方法例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多项式少平方米?1米20米图1例2.图2是由6个相等的三角形拼成的图形,求这个图形的面积。

巧求图形的面积和周长-教师版

巧求图形的面积和周长-教师版

巧求图形的面积和周长第一部分:知识介绍巧求图形的面积和周长的方法:1、平移法2、差不变3、旋转法4、图形的切割拼第二部分:例题精讲【例 1】下图中标出的数表示每边长,单位是厘米.它的周长是多少厘米?【考点】巧求图形的周长。

【解析】长方形的长5+6=11(厘米),宽1+3=4(厘米),周长(11+4)×2=30(厘米)。

【答案】30厘米【例 2】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。

【考点】巧求图形的周长【解析】从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的54 1.25÷=倍。

每个小长方形的面积为4595=,所以宽为2厘米,÷=平方厘米,所以1.25⨯宽⨯宽5长为2.5厘米。

大长方形的周长为(2.542 2.5)229⨯++⨯=厘米。

【答案】29厘米【例 3】如右图,计算这个格点三角形的面积。

【考点】巧求图形的面积【解析】这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积。

矩形面积是6×4=24 ;直角三角形I的面积是:6×2÷2=6 ;直角三角形Ⅱ的面积是:4×2÷2=4 ;直角三角形Ⅲ的面积是:4×2÷2=4 ;所求三角形的面积是:24-(6+4+4)=10(面积单位)。

【答案】10【例 4】如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米.【考点】巧求图形的面积、一半模型A BE FCD【解析】图中阴影部分的面积等于长方形ABCD面积的一半,即4326⨯÷=(平方厘米)。

【答案】10【例 5】(2005年口试真题)右图中甲的面积比乙的面积大 __________ 平方厘米。

思维拓展第5课时《巧求周长和面积》(教案)人教版四年级上册数学

思维拓展第5课时《巧求周长和面积》(教案)人教版四年级上册数学

思维拓展第5课时《巧求周长和面积》(教案)一、教学内容本节课教学内容为人教版四年级上册数学,主要围绕平面图形的周长和面积展开。

通过本节课的学习,学生将掌握如何巧妙地求解周长和面积,并能灵活运用到实际生活中。

二、教学目标1. 知识与技能目标:学生能够理解周长和面积的概念,掌握计算周长和面积的公式,并能运用巧妙方法求解。

2. 过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力,提高学生的逻辑思维和空间想象力。

3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生良好的学习习惯和团队合作精神。

三、教学难点1. 理解周长和面积的概念及其计算方法。

2. 学会运用巧妙方法求解周长和面积。

四、教具学具准备1. 教具:PPT课件、黑板、粉笔、直尺、圆规。

2. 学具:草稿纸、铅笔、橡皮。

五、教学过程1. 导入:通过PPT展示生活中的实例,引导学生关注周长和面积,激发学生的学习兴趣。

2. 新课导入:讲解周长和面积的概念,以及计算公式。

结合实例,让学生理解并掌握计算方法。

3. 巧求周长和面积:通过PPT展示巧妙求解周长和面积的实例,引导学生发现规律,总结方法。

4. 实践操作:学生分组合作,完成教具学具上的练习题,巩固所学知识。

5. 课堂小结:总结本节课所学内容,强调重难点。

6. 课后作业布置:布置与课堂内容相关的作业,巩固所学知识。

六、板书设计1. 周长和面积的概念及计算公式。

2. 巧求周长和面积的实例及方法。

3. 课堂练习题及答案。

七、作业设计1. 基础题:计算给定图形的周长和面积。

2. 提高题:运用巧妙方法求解周长和面积。

3. 拓展题:联系生活实际,解决与周长和面积相关的问题。

八、课后反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以便更好地为下一节课做好准备。

同时,关注学生的学习兴趣和积极性,激发学生的学习潜能,提高教学质量。

通过本节课的学习,学生能够掌握周长和面积的概念、计算方法,以及巧妙求解周长和面积的方法。

24-27巧求周长及面积

24-27巧求周长及面积

21、巧求周长(1)1.下图是一块小麦地,已知条件如图中所示.这块地的周长是 米.2.下图“十”字的横与竖都长6厘米.问“十”间的周长是 厘米.3..单位:厘米4.下图是由若干个相等的正方形组成的“土山”两个字, 是3厘米,这两个字的周长分别是 、 厘米.5.下图是由三个相同的长方形纸片组成的一个“5”字,已知长方形长4 2厘米,“5”字周长是 厘米.6.下图是一块地,四周都用篱笆围起来,转弯处都是直角.已知西边篱笆长17米,南边篱笆长23米.四 周篱笆长 米.7.求下图周长.单位:厘米8.下图是一个公园的平面图,A 是公园的大门.问:小明从A 门进公园,不重复地沿道路走公园一圈,他走了多少米?9.下图是某建设物的设计图,如图所示(单位:米)现根据需要在它周围绕电线一圈,试求需电线多少米? 23 171 11 1 12 44 360米 240米 5010.用15个边长2厘米的小正方形摆成如下图的形状,求图形周长是多少厘米?22、巧求周长(2)41.下图的周长是 厘米.2.右图“凸”字的周长是 厘米.3.下图是一座楼房的平面图,图中用不同字母表示长度不同的各条边.已知b =50米,c =30米,g =10米,这座楼房平面的周长是 米.4.下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是 厘米.5.下图“E ”字周长是 厘米.6.下图由5个边长8厘米的小正方形拼成的“T ”字形,它的周长是 厘米.7下图是由10个边长为2厘米的小正方形组成.每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长.9.下图是一个“干”字形图形.已知两横均由长6厘米,宽1厘米的长方形构成,中间一竖是由长6厘米,宽2厘米的长方形构成,求出“干”字图形的周长是多少厘米?3 216110.如下图所示,长方形长4厘米,宽2厘米.现沿其对角线BD 对折得到一几何图形,试求图形阴影部分周长.11.如图,在长方形ABCD 中,EFGH 是正方形.如果AF =10厘米,HC =7厘米,那么长方形ABCD 的周长是 厘米?23、长方形的面积 例1、求所示图形的周长和面积。

巧求图形的面积和周长-教师版

巧求图形的面积和周长-教师版

巧求图形的面积和周长第一部分:知识介绍巧求图形的面积和周长的方法:1、平移法2、差不变3、旋转法4、图形的切割拼第二部分:例题精讲【例1】下图中标出的数表示每边长,单位是厘米.它的周长是多少厘米"【考点】巧求图形的周长。

【解析】长方形的长5+6=11(厘米),宽1+3=4(厘米),周长(11+4)×2=30(厘米)。

【答案】30厘米【例2】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。

【考点】巧求图形的周长【解析】从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的54 1.25÷=倍。

每个小长方形的面积为4595=,所以宽为2厘米,÷=平方厘米,所以1.25⨯宽⨯宽5长为2.5厘米。

大长方形的周长为(2.542 2.5)229⨯++⨯=厘米。

【答案】29厘米【例3】如右图,计算这个格点三角形的面积。

【考点】巧求图形的面积【解析】这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积。

矩形面积是6×4=24 ;直角三角形I的面积是:6×2÷2=6 ;直角三角形Ⅱ的面积是:4×2÷2=4 ;直角三角形Ⅲ的面积是:4×2÷2=4 ;所求三角形的面积是:24-(6+4+4)=10(面积单位)。

【答案】10【例4】如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米.【考点】巧求图形的面积、一半模型EC【解析】图中阴影部分的面积等于长方形ABCD面积的一半,即4326⨯÷=(平方厘米)。

【答案】10【例 5】(2005年口试真题)右图中甲的面积比乙的面积大 __________ 平方厘米。

数学教案三升四-5巧求周长和面积

数学教案三升四-5巧求周长和面积

教课设计教材版本:精英版.学校:.教师某某某年级三升四讲课时间年月日课时 2 课时课题第5讲—巧求周长和面积本讲内容是对周长和面积的进一步学习,主要学习了运用割补法,转变法来解决周长和面积的一些有关问题。

教材剖析知识技术教学数学思虑目标问题解决感情态度教课要点、难点教课准备本讲例 1 难度不大,只要对图形进行切割即可,学生可自主达成。

例 2 需考虑全面,掌握每种状况。

例 3、例 4、例 5 难度有所增强,能够师生合作或同桌沟通来达成。

本讲拓展问题和例题对比难度有所降落,针对个别题目能够师生合作达成,其余题目,学生能够单独达成。

拓宽视线题目难度适中,认真察看图形,能够师生合作。

1.使学生进一步理解周长和面积的含义,娴熟掌握长方形,正方形的周长和面积公式。

2.灵巧运用长方形,正方形的周长和面积公式,会利用平移的方法求不规则图形的周长,利用割补的方法计算不规则图形的面积。

经过多种讲堂上的活动,让学生初步认识转变思想,进一步提升学生的空间想象能力。

1.运用平移、转变、化解、归并等方法求不规则图形的周长,化难为易,化繁为简。

2.经过割补的方法来求不规则图形的面积,化难为易,化繁为简。

1.提升学生的察看能力,着手操作能力,综合运用能力。

2.培育学生初步的空间看法。

教课要点1.能运用长方形,正方形的周长和面积的计算方法解决实质问题。

2.掌握计算不规则图形的周长和面积的方法。

教课难点1.掌握计算不规则图形的周长的方法。

2.掌握计算不规则图形的面积计算的方法:割补法。

动画多媒体语言课件第一课时复备内容及讨教课过程论记录一、教课导入师:同学们,欢迎大家再次到达数学讲堂,你们知道图形王国吗?图形王国里都有如何的图形呢?生1:有长方形生2:有正方形生 3:有三角形生 4:几种图形放到一同的组合图形师:同学们,那你们都喜爱这些图形吗?看到这些图形你都想到了什么?(同学们的回答会天壤之别,当老师听到有些同学说周长和面积时,要开始对这些知识点进行增补,引出下文)师:那今日我们就和小方、小长一同来勇闯图形岛吧!看看他们都碰到了哪些困难。

第八讲巧求周长与面积

第八讲巧求周长与面积

第八讲 巧求周长和面积
一.巧求周长
什么叫周长?
围成平面图形所有边长的总和,叫做周长。

1.下面图形中,甲和乙的周长哪个的更长?
2.正方形被分为了A 和B 两部份,A 和B 两部份的周长关系如何?
例题一:下图是某机械零件的横截面图,求那个横截面的周长。

练习:
1.求下图的周长。

2.求下图的周长。


甲 B
A 60cm 50cm 30cm
40cm 10cm
3.下面是某楼梯的侧面图,每级台阶的宽和高都是必然的(宽3分米,高2分米),求其周长。

例题二:求下图的周长
练习:
1.求下图的周长。

2.求下图的周长。

奥赛真题:
(“希望杯”第一试)如下图,正方形ABCD的边长是6厘米,过正方形的任意两点画直线,可把正方形分成9个小长方形。

这9个小长方形的周长之和是多少厘米?
A
D
20cm
25cm
40cm
作业:
1.求下图的周长.
2.下图每条小线段是2cm,那个图形的周长是多少cm?
3.求下面中的阴影部份的周长
4.下图的大长方形是由一些小正方形组成的(正方形的边长为1厘米),长方形的边长是多少厘米?
家长签名。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧求周长与面积
方法技能:
通过旋转、平移、分割等方法,然后自己动手画图,能够巧妙地在简单平面图形周长与面积的基础上求较为复杂的平面图形的周长与面积。

【例1】下图是一座房屋的平面图,求这座房屋平面图的周长。

【例2】有一块长方形广场,沿着它不同的两条边各划出2米准备种树,剩下的部分仍是长方形,且周长为280米。

问:种树的面积是多少平方米?
【例3】一块花圃如图所示,梯形ABCD中有个直角三角形,AD=10米,BC=14米,AE=6米,DE=8米。

阴影部分的面积是多少平方米?
闯关练习:
1.有一块纸板形状如图(单位:厘米),这块纸板的周长是多少厘米?
2.一块长方形木板,把长和宽各锯去6厘米,锯掉的面积为396平方厘米。

现在这块木板的周长是多少厘米?
3.图中三角形AED的面积是28平方厘米,长方形ABCD中,AD=7厘米,CF=3厘米。

求梯形ABCF 的面积。

4.(选做题)在一个长方形花园中有个走道(图中的阴影部分),长方形的面积是216平方米,长18米,走道的宽1.2米,走道的面积是多少平方米?
补充题
1.在一块正方形的土地上规划出一块长方形的地(阴影部分)用来建运动场,剩下的面积是123200平方米,相邻的两边剩下的长度是40米和120米。

求原来正方形土地的面积是多少平方米?(640000平方米)
2. 将一个长方形和一个正方形按如图方式拼接成一个大长方形,已知拼接后的大长方形的长是25厘米,求原来小长方形的周长。

. 50厘米
3. 如右下图所示,一个腰长是20厘米的等腰三角形的面积是140平方厘米,在底边上任意取一点,这个点到两腰的垂线段的长分别是a厘米和b厘米。

求a + b的长。

14厘米
4. 如下图,一个平行四边形被分成甲、乙两部分,甲的面积比乙大80平方米,甲的上底是多少米?10米
5. 如图,求四边形ABCD的面积。

(单位:分米)47.5平方分米
6. 如图,三角形ABC的面积是48平方分米,
AD = DE = EC,F是BC的中点,FG=GC,
阴影部分的面积是多少平方厘米?28平方厘米
米米
7. 如右图,把一个三角形的底边延长2厘米后,面积增加了2.4平方厘米,你知道原三角形的面积是多少吗?5.16平方厘米
例题1:一个等腰直角三角形,最长的边是10厘米,这个三角形的面积是多少平方厘米?
【巩固练习1】:如图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

例题2: 求右面平行四边形的周长。

【巩固练习2】:求右面三角形的AB 上的高。

例题3:求右图等腰直角三角形中阴影部分的面积。

(单位:厘米)
8
612
4
10
C A
43
【巩固练习3】:求四边形ABCD的面积。

(单位:厘米)
例题4:有一种将正方形内接于等腰直角三角形。

已知等腰直角三角形的面积是72平方厘米,正方形的面积分别是多少?
【巩固练习4】:有一种将正方形内接于等腰直角三角形。

已知等腰直角三角形的面积是72平方厘米,正方形的面积分别是多少?
例题5:图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

【巩固练习5】:图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

【巩固练习6】求右图等腰直角三角形中阴影部分的面积。

(单位:厘米)
10
6
名校真题体验:
【例1】下图中甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)
【练一练】求图中阴影部分的面积。

(单位:厘米)
【例2】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。

【练一练】平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC 长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米。

求CF的长。

【例3】两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:厘米)
B
【练一练】下面的梯形ABCD中,下底是上底的2倍,E是AB的中点,求梯形ABCD的面积是三角形EDB面积的多少倍?。

相关文档
最新文档