近四年陕西中考数学考点对比分析表

合集下载

陕西省中考数学历年(2016-2022年)真题分类汇编 统计与概率

陕西省中考数学历年(2016-2022年)真题分类汇编 统计与概率

陕西省中考数学历年(2016-2022年)真题分类汇编统计与概率一、填空题(共1题;共1分)1.(1分)已知一组数据:3,5,x,7,9的平均数为6,则x=.【答案】6【解析】【解答】解:由题意知,(3+5+x+7+9)÷5=6,解得:x=6.故答案为6.【分析】根据平均数的概念,因为该组数据有5个数,由此可列方程(3+5+x+7+9)÷5=6,计算即可求解.二、综合题(共15题;共150分)2.(10分)(2016·陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500mL)、红茶(500mL)和可乐(600mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)(5分)求一次“有效随机转动”可获得“乐”字的概率;(2)(5分)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【答案】(1)解:∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:1 5(2)解:画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:2 25.【解析】【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.3.(11分)(2022·陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)(1分)这100名学生的“劳动时间”的中位数落在组;(2)(5分)求这100名学生的平均“劳动时间”;(3)(5分)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【答案】(1)C(2)解:x̅=1100×(50×8+75×16+105×40+150×36)=112(分钟),∴这100名学生的平均“劳动时间”为112分钟;(3)解:∵1200×40+36100=912(人),∴估计在该校学生中,“劳动时间”不少于90分钟的有912人.【解析】【解答】解:(1)由题意可知,100名学生的“劳动时间”的中位数是第50、51个数,故本次调查数据的中位数落在C 组. 故答案为:C ;【分析】(1)100名学生的“劳动时间”的中位数是第50、51个数,据此判断; (2)利用时间乘以对应的人数求出总时间,然后除以总人数可得平均“劳动时间”; (3)利用样本中C 、D 组的频数之和除以总人数,然后乘以1200即可.4.(6分)(2022·陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg ,6kg ,7kg ,7kg ,8kg.现将这五个纸箱随机摆放.(1)(1分)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg 的概率是 ;(2)(5分)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg 的概率.【答案】(1)25(2)解:列表如下:由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg 的结果有4种. ∴P =420=15. 【解析】【解答】解:(1)所选纸箱里西瓜的重量为6kg 的概率是25,故答案为:25;【分析】(1)利用质量为6kg 的西瓜的个数除以总个数可得对应的概率;(2)此题是抽取不放回类型,列出表格,找出总情况数以及两个西瓜的重量之和为15kg 的情况数,然后根据概率公式进行计算.5.(6分)(2021·陕西)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)(1分)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;(2)(5分)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.【答案】(1)12(2)解:列表如下:由上表可知,共有12种等可能的结果,其中牌面数字恰好相同的结果有2种, ∴P 牌面相同=212=16【解析】【解答】(1)四张牌为:2,3,3,6,从中抽取一张,共有四种等可能结果,抽到牌面数字是3的有两种, ∴P (抽到3)=24=12; 【分析】(1)由题意用概率公式即可求解;(2)由题意可列表格,由表格中的信息可知:共有12种等可能的结果,其中牌面数字恰好相同的结果有2种, 再用概率公式即可求解.6.(12分)(2021·陕西)今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)(1分)这60天的日平均气温的中位数为 ,众数为 ; (2)(5分)求这60天的日平均气温的平均数;(3)(5分)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.【答案】(1)19.5;19(2)解: x ̅=160(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20 ,∴这60天的日平均气温的平均数为20℃ (3)解:∵12+13+9+660×30=20 ,∴预估西安市今年9月份日平均气温为“舒适温度”的天数为20天【解析】【解答】解:(1)由题意得样本共60个数据,故中位数取排序后第30、31个数的中位数,由统计图得排序后第30个数为19,第31个数为20, ∴中位数为 19+202=19.5 ,平均气温19出现的次数最多, ∴众数为19, 故答案为:19.5,19;【分析】(1)中位数是指一组数据按序排列后①偶数个数据时,中间两个数的平均数就是这组数据的中位数;②奇数个数据时,中间的数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;众数是指一组数据中出现次数最多的数;根据定义并结合条形图可求解; (2)根据加权平均数的计算公式可求解;(2)用样本估计总体可求解.7.(12分)(2020·陕西)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)(1分)这20条鱼质量的中位数是,众数是.(2)(5分)求这20条鱼质量的平均数;(3)(5分)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【答案】(1)1.45kg;1.5kg(2)解:x̅=120(1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×1.0)=1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)解:18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.【解析】【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.4+1.52=1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.【分析】(1)根据中位数和众数的定义求解可得;(2)利用加权平均数的定义求解可得;(3)用单价乘以(2)中所得平均数,再乘以存活的数量,从而得出答案.8.(10分)(2020·陕西)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)(5分)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)(5分)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【答案】(1)解:小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率=6 10=3 5;(2)解:画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率=216=18.【解析】【分析】(1)由频率定义即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球中一个是白球、一个是黄球的情况,利用概率公式求解即可求得答案.9.(10分)(2019·陕西)现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

近三年中考数学考点分布与频次统计表

近三年中考数学考点分布与频次统计表

1 数的运算15-1 ★2 数的分类及概念:倒数、相反数、绝对值、正负数15-2,14-1,13-1 ★★★3 对称问题:轴对称和中心对称,折纸问题15-3,13-3 ★★4 整式乘法及重要公式:平方差及完全平方公式15-4,14-3 ★★5 科学计数法:先保留一位整数,再移动小数点15-4,14-20,13-2 ★★★6 立体图形三视图:主视图,俯视图左视图15-5,13-26 ★★7 图形的外接与内切圆:图形各顶点都在外接圆上15-6 ★8 确定无理数的范围:介于哪两个相邻整数之间15-7,14-5 ★★9 平行线的性质求角度:内错角相等,同位角相等15-8,13-19 ★★10 方位表示15-9,13-8 ★★11 反比例函数图像及性质:k的几何意义,15-10,14-14,13-10 ★★★12 解二元一次方程组:加减消元法15-11 ★13 一元二次方程根的判别式:△=b −4ac 15-12 ★14 随机事件的概率计算:目标情况数除以总情况数15-13,14-11,13-17 ★★★15 一次函数图像及性质:k和b的几何意义15-14,14-6 ★★16 三角形中位线的性质:平行且等于底边一半15-15,14-2 ★★17 勾股定理及图形拼接:剪裁后能出现目标正方形的边长15-16,14-8,13-16 ★★★18 去绝对值符号:非负数等于本身,负数等于相反数15-17,13-5 ★★19 分式的化简与求值:通分与约分15-18,14-7,13-18 ★★★20 正多边形及其内角和:180°(n-2) 15-19,14-15,13-13 ★★★21 三角形的内角与外角:三角形一个外角等于不相邻的两个内角的和15-20,14-4,13-13 ★★★22 整式化简与求值:移项,合并同类项15-21 ★23 尺规作图的证明:三角形全等15-22,14-12,13-12 ★★★24 平行四边形判定:两组对边分别平行的四边形是平行四边形15-22 ★25 命题的改写:先改写成如果那么的形式,再改写出逆命题15-22 ★26 函数的基本应用:根据题意写出函数表达式15-23,14-26,13-25 ★★★27 自变量的取值范围:使实际问题有意义15-23,13-23,13-26 ★★☆28 根据条件补全统计图:折线统计图,条形统计图和扇形统计图的互参15-24,14-22,13-22 ★★★29 统计中的特殊数:中位数,众数,平均数,方差15-24,14-16,13-22 ★★★30 待定系数法求二次函数表达式和顶点坐标:15-25,14-24,13-25 ★★★31 二次函数求最值,单调性比较大小15-25,13-25 ★★32 二次函数分情况讨论对称轴与区间位置15-25 ★33 判断点是否在线上:若在,则带入表达式能使等式成立15-26,14-24 ★★34 直角三角形特殊三角函数反推角度15-26,14-25,13-24 ★★★35 几何临界条件求最值15-26,14-25,13-24 ★★★15-26,14-19,13-14 ★★★36 扇形面积:S= π37 相似三角形求比例线段15-26,14-25,13-24 ★★★38 方程和函数的应用:找准等量关系14-9,13-7 ★★39 立体图形的展开面14-10 ★40 相似与位似:对应点的连线交于位似中心14-13,13-14 ★★41 定义新运算14-14,13-21 ★★42 无理数的计算14-17,13-6 ★★43 非负性求值:绝对值、二次方、二次根式都具有非负性14-18 ★44 一元二次方程的解法:配方法和求根公式法14-21 ★45 三角函数求长度14-22,13-26 ★★46 三角形全等证明:SAS 14-23,13-24 ★★47 等腰三角形判定及性质:等角对等边14-23,13-8,13-23 ★★☆48 菱形的性质与证明14-23,13-11 ★★49 按规律数数14-24 ★50 圆的垂径定理:勾股定理计算弦心距14-25 ★51 动点问题:结合函数考察14-26,13-16,13-23 ★★☆52 因式分解的定义:写成多个因式相乘的形式13-4 ★53 相似三角形的判定与性质13-11,13-26 ★☆54 三角形的三边定理:两边之和大于第三边13-15 ★55 函数图像的平移旋转和周期性13-20 ★55 解不等式:乘除负数时注意改变不等号方向13-21 ★56 坐标中的对称规律13-23 ★57 根据面积相等列函数,求自变量范围13-26 ★585960 思墨教育任老师整理。

陕西省西安市长安区2024届中考数学模拟预测题含解析

陕西省西安市长安区2024届中考数学模拟预测题含解析

陕西省西安市长安区2024届中考数学模拟预测题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩2.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.平行四边形3.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b34.方程371x x-=+的解是().A.14x=B.34x=C.43x=D.1x=-5.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.6.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.105C.103D.1537.若关于x的不等式组221x mx m->⎧⎨-<-⎩无解,则m的取值范围()A.m>3 B.m<3 C.m≤3D.m≥38.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.9.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q10.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.611.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠112.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.14.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.15.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A 和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.16.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)17.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,∠A=∠BCD=90°,210BC CD==,CE⊥AD于点E.(1)求证:AE =CE ;(2)若tan D =3,求AB 的长.20.(6分)如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF ,使得ABEF ABC S S ∆=.21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.22.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x +1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?23.(8分)如图,在四边形ABCD 中,AB=AD ,BC=DC ,AC 、BD 相交于点O ,点E 在AO 上,且OE=OC .求证:∠1=∠2;连结BE 、DE ,判断四边形BCDE 的形状,并说明理由.24.(10分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6;(1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?25.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a 、b.队别平均分 中位数 方差 合格率 优秀率 七年级6.7 m 3.41 90% n 八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a 、b 的值;(2)直接写出表中的m 、n 的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(12分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.27.(12分)如图,Rt △ABC 中,∠C =90°,⊙O 是Rt △ABC 的外接圆,过点C 作⊙O 的切线交BA 的延长线于点E ,BD ⊥CE 于点D ,连接DO 交BC 于点M.(1)求证:BC 平分∠DBA ;(2)若23EA AO =,求DM MO的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】利用加减消元法解二元一次方程组即可得出答案【题目详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【题目点拨】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解题分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解题分析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.4、B【解题分析】直接解分式方程,注意要验根.【题目详解】解:371x x-+=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=34,经检验,x=34是原方程的解.故选B.【题目点拨】本题考查了解分式方程,解分式方程不要忘记验根.5、C【解题分析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可. 【题目详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【题目点拨】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.6、B【解题分析】作点E 关于BC 的对称点E′,连接E′G 交BC 于点F ,此时四边形EFGH 周长取最小值,过点G 作GG′⊥AB 于点G′,如图所示,∵AE=CG ,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴2255E G GG ''+'=∴C 四边形EFGH 5故选B .【题目点拨】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.7、C【解题分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【题目详解】221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【题目点拨】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.8、B【解题分析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.9、A【解题分析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.10、B【解题分析】根据三角形的中位线等于第三边的一半进行计算即可.【题目详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【题目点拨】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.11、C【解题分析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、D【解题分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【题目详解】∵点P的坐标为(3,4),∴OP2234=+=1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【题目点拨】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】试题分析:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.14、1【解题分析】先由DE ∥BC ,可证得△ADE ∽△ABC ,进而可根据相似三角形得到的比例线段求得BC 的长.【题目详解】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC =AD :AB ,∵AD =2,DB =4,∴AB =AD +BD =6,∴1:BC =2:6,∴BC =1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.15、1.【解题分析】设P (0,b ),∵直线APB ∥x 轴,∴A ,B 两点的纵坐标都为b ,而点A 在反比例函数y=4x -的图象上, ∴当y=b ,x=-4b ,即A 点坐标为(-4b,b ), 又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ), ∴AB=2b -(-4b )=6b , ∴S △ABC =12•AB•OP=12•6b•b=1. 16、2a+12b【解题分析】如图2,翻折4次时,左侧边长为c ,如图2,翻折5次,左侧边长为a ,所以翻折4次后,如图1,由折叠得:AC =A 1C = 11A C =12A C =22A C b =,所以图形2112A BCAC AC 的周长为:a+c+5b ,因为∠ABC <20°,所以()9120200360+⨯︒=︒<︒, 翻折9次后,所得图形的周长为: 2a +10b ,故答案为: 2a +10b .17、-1【解题分析】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k 1y x +=,得:k 121+=-,解得:k =-1. 18、8【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【题目详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【题目点拨】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)AB =4【解题分析】(1)过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证;(2)由(1)可知:CF=DE ,四边形AEFB 是矩形,从而求得AB=EF ,利用锐角三角函数的定义得出DE 和CE 的长,即可求得AB 的长.【题目详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE==, 设DE =x ,CE =3x ,∴10210==.CD x∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【题目点拨】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20、(1)见解析;(2)见解析.【解题分析】(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【题目详解】(1)如图所示:CD即为所求.(2)【题目点拨】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.21、(1)14;(2)116【解题分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【题目详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【题目点拨】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22、(1)35元;(2)30元.【解题分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.【题目详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:210700100002000x x -+-=,解得:130x =,240x =,销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【题目点拨】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.23、(1)证明见解析;(2)四边形BCDE 是菱形,理由见解析.【解题分析】(1)证明△ADC ≌△ABC 后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE 是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【题目详解】解:(1)证明:∵在△ADC 和△ABC 中,∴△ADC ≌△ABC (SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形,理由如下:如答图,∵∠1=∠2,DC=BC ,∴AC 垂直平分BD.∵OE=OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.【题目点拨】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.24、 (1)当AD BD ⊥,BC BD ⊥时有最大值1;(2)当8BD =时,面积有最大值32.【解题分析】(1)由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,由此即可解决问题.(2)设BD=x ,由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,构建二次函数,利用二次函数的性质即可解决问题.【题目详解】(1) 由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大, 最大面积为12×6×(16-6)=1. 故当AD BD ⊥,BC BD ⊥时有最大值1;(2)当AD BD ,BC BD ⊥时有最大值,设BD x =, 由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,16AD BD BC ++=16AD BC x ∴+=-ABD CBD ABCD S S S ∴=+四边形1122AD BD BC BD =⋅+⋅ ()12AD BC BD =+⋅ ()1162x x =- ()21=8322x --+ 102-< ∴抛物线开口向下∴当8BD = 时,面积有最大值32.【题目点拨】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.25、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解题分析】试题分析:(1)根据题中数据求出a 与b 的值即可;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:31671819110 6.710{111110a b a b ⨯++⨯+⨯+⨯+=⨯+++++= 解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111105+==20%,即n=20%; (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.26、甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .【解题分析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点D 作DE AB ⊥,垂足为E .则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒.可得四边形BCDE 为矩形.∴78ED BC ==,DC EB =.在Rt ABC 中,tan AB ACB BC∠=, ∴tan5878 1.60125AB BC =⋅︒≈⨯≈. 在Rt AED 中,tan AE ADE ED ∠=, ∴tan48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒ 78 1.6078 1.1138≈⨯-⨯≈.∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.27、 (1)证明见解析;(2)85 【解题分析】 分析: (1)如下图,连接OC ,由已知易得OC ⊥DE ,结合BD ⊥DE 可得OC ∥BD ,从而可得∠1=∠2,结合由OB=OC 所得的∠1=∠3,即可得到∠2=∠3,从而可得BC 平分∠DBA ;(2)由OC ∥BD 可得△EBD ∽△EOC 和△DBM ∽△OCM ,由根据相似三角形的性质可得得EB DM EO MO =,由23EA AO =,设EA=2k ,AO=3k 可得OC=OA=OB=3k ,由此即可得到85DM EB MO EO ==. 详解:(1)证明:连结OC ,∵DE 与⊙O 相切于点C ,∴OC ⊥DE.∵BD ⊥DE ,∴OC ∥BD. .∴∠1=∠2,∵OB=OC ,∴∠1=∠3,∴∠2=∠3,即BC 平分∠DBA. .(2)∵OC ∥BD ,∴△EBD ∽△EOC ,△DBM ∽△OCM ,.∴BD EB BD DM CO EO CO MO==,, ∴EB DM EO MO=, ∵23EA AO =,设EA=2k ,AO=3k , ∴OC=OA=OB=3k.∴85 DM EBMO EO==.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.。

2024年陕西省中考数学真题试卷及答案解析

2024年陕西省中考数学真题试卷及答案解析

2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.3-的倒数是()A.3B.13 C.13- D.3-2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B. C. D.3.如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为()A.25︒B.35︒C.45︒D.55︒4.不等式()216x -≥的解集是()A.2x ≤ B.2x ≥ C.4x ≤ D.4x ≥5.如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为()A.3y x = B.3y x =- C.13y x = D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为()A.2B.3C.52 D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:2a ab -=_______________.10.小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12.已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13.如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。

2015年陕西省中考数学总复习教学案:第22讲 平行四边形(含多边形)

2015年陕西省中考数学总复习教学案:第22讲 平行四边形(含多边形)

第22讲 平行四边形(含多边形)三角形的相似结合考查,有时会在二次函数综合题中涉及平行四边形的性质,多边形的性质在2014年考查过一次,预计2015年中考对本部分内容可能会考查以下内容:1.平行四边形的性质与判定;2.多边形及平面图形的镶嵌,对平行四边形的性质与判定的考查题型仍会以解答题为主,对多边形及平面图形的镶嵌可能会以选择或填空题进行考查,难度不会太大.1.n 边形、四边形的性质、平面图形的镶嵌(1)n 边形的内角和为__(n -2)·180°__,外角和为__360°__,对角线条数为__n (n -3)2__.(2)四边形的内角和为__360°__,外角和为__360°__,对角线条数为__2__.(3)正多边形的定义:各条边都__相等__,且各内角都__相等__的多边形叫正多边形. 正(2n -1)边形是轴对称图形,对称轴有__2n -1__条;正2n 边形既是轴对称图形又是中心对称图形.(4)平面图形的镶嵌①定义:把形状、大小相同的一种或几种平面图形拼接到一起,使得平面上不留空隙,又不重叠,这就是平面图形的镶嵌.②用同一种多边形可以镶嵌的有正三角形,正方形,正六边形等;也可用几种不同的多边形进行镶嵌.③正多边形镶嵌问题的关键是几个多边形的同一顶点的几个角,它们的和等于__360°__.注意:通过正多边形的镶嵌问题,进而理解正三角形、正方形、正六边形乃至任意三角形,任意四边形都能进行平面镶嵌的道理.发现拼成一个不留空隙又不重叠的平面图形的关键是几个多边形的同一个顶点的几个角,它们的和等于360°.2.平行四边形的性质以及判定 (1)性质:①平行四边形两组对边分别__平行且相等__; ②平行四边形对角__相等__,邻角__互补__;③平行四边形对角线__互相平分__; ④平行四边形是__中心__对称图形. (2)判定方法:①定义:__两组对边分别平行__的四边形是平行四边形; ②__一组对边平行且相等__的四边形是平行四边形; ③__两组对边分别相等__的四边形是平行四边形; ④__两组对角分别相等__的四边形是平行四边形; ⑤__对角线互相平分__的四边形是平行四边形. 3.三角形中位线定理三角形的中位线平行于第三边,且等于第三边的一半.一个方法面积法:在三角形和平行四边形中,运用“等积法”进行求解,以不同的边为底,其高也不相同,但面积是定值,从而得到不同底和高的关系.一个防范图形的直观性可帮助探求解题思路,但也可能因直观判断失误或用直观判断代替严密推理,造成解题失误.一定要对所有直观判断加以证明,不可以用直观判断代替严密的推理.四个误区误区一:一组对边平行,另一组对边相等的四边形是平行四边形; 误区二:一组对边相等,一组对角相等的四边形是平行四边形;误区三:一组对边相等,一条对角线平分另一条对角线的四边形是平行四边形; 误区四:一组对角相等,一条对角线平分另一条对角线的四边形是平行四边形. 四种辅助线(1)常用连对角线的方法把四边形问题转化为三角形的问题; (2)有平行线时,常作平行线构造平行四边形;(3)有中线时,常作加倍中线构造平行四边形;(4)图形具有等邻边特征时(如:等腰三角形、等边三角形、菱形、正方形等),可以通过引辅助线把图形的某一部分绕等邻边的公共端点旋转到另一位置.(2012·陕西)如图,在▱ABCD 中,∠ABC 的平分线BF 分别与AC ,AD 交于点E ,F. (1)求证:AB =AF ;(2)当AB =3,BC =5时,求AEAC的值.解:(1)如图,在▱ABCD 中,AD ∥BC ,∴∠2=∠3.∵BF 是∠ABC 的平分线,∴∠1=∠2,∴∠1=∠3,∴AB =AF (2)∵∠AEF =∠CEB ,∠2=∠3,∴△AEF ∽△CEB ,∴AE EC =AF BC =AB BC =35,∴AE AC =38平行四边形的判定【例1】 (2014·徐州)如图,在平行四边形ABCD 中,点E ,F 在AC 上,且AE =CF. 求证:四边形BEDF 是平行四边形.解:证明:如图,连接BD,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA =OC,OB=OD.∵AE=CF,OA-AE=OC-CF,∴OE=OF.∴四边形BEDF是平行四边形【点评】探索平行四边形成立的条件,有多种方法判定平行四边形:①若条件中涉及角,考虑用“两组对角分别相等”或“两组对边分别平行”来证明;②若条件中涉及对角线,考虑用“对角线互相平分”来说明;③若条件中涉及边,考虑用“两组对边分别平行”或“一组对边平行且相等”来证明,也可以巧添辅助线,构建平行四边形.1.(2013·鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.证明:(1)∵DF∥BE,∴∠DFE=∠BEF,∴∠DFA=∠BEC.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS)(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD ∥BC,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)运用平行四边形的性质进行推理论证【例2】(2014·聊城)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF 交BE与G点,交DF与F点,CE交DF于H点,交BE于E点.求证:△EBC≌△FDA.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AF∥CE,BE∥DF,∴四边形BHDK和四边形AMCN是平行四边形,∴∠FAD=∠ECB,∠ADF=∠EBC,在△EBC 和△FDA 中,⎩⎪⎪⎨⎪⎪⎧∠EBC =∠ADF ,BC =AD ,∠BCE =∠DAF ,∴△EBC ≌△FDA(ASA )【点评】 利用平行四边形的性质,可以证角相等、线段相等,其关键是根据所要证明的全等三角形,选择需要的边、角相等条件;也可以证明相关联的四边形是平行四边形.2.(2013·宁夏)在▱ABCD 中,P 是AB 边上的任意一点,过P 点作PE ⊥AB ,交AD 于E ,连接CE ,CP ,已知∠A =60°.(1)若BC =8,AB =6,当AP 的长为多少时,△CPE 的面积最大,并求出面积的最大值; (2)试探究当△CPE ≌△CPB 时,▱ABCD 的两边AB 与BC 应满足什么关系?解:(1)延长PE 交CD 的延长线于F ,设AP =x ,△CPE 的面积为y ,∵四边形ABCD 为平行四边形,∴AB =DC =6,AD =BC =8,∵Rt △APE ,∠A =60°,∴∠PEA =30°,∴AE =2x ,PE =3x ,在Rt △DEF 中,∠DEF =∠PEA =30°,DE =AD -AE =8-2x ,∴DF =12DE =4-x ,∵AB ∥CD ,PF ⊥AB ,∴PF ⊥CD ,∴S △CPE =12PE·CF ,即y =12×3x ×(10-x)=-32x 2+53x ,配方得:y =-32(x -5)2+2532,当x=5时,y 有最大值为2532,即AP 的长为5时,△CPE 的面积最大,最大面积为2532(2)当△CPE ≌△CPB 时,有BC =CE ,∠B =∠PEC =120°,∴∠CED =180°-∠AEP -∠PEC =30°,∵∠ADC =120°,∴∠ECD =∠CED =180°-120°-30°=30°,∴DE=CD ,即△EDC 是等腰三角形,过D 作DM ⊥CE 于M ,则CM =12CE ,在Rt △CMD 中,∠ECD =30°,∴cos 30°=CM CD =32,∴CM =32CD ,∴CE =3CD ,∵BC=CE ,AB =CD ,∴BC =3AB ,则当△CPE ≌△CPB 时,BC 与AB 满足的关系为BC =3AB三角形中位线定理【例3】(2013·鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是__11__.【点评】当已知三角形一边中点时,可以设法找出另一边的中点,构造三角形中位线,进一步利用三角形的中位线定理,证明线段平行或倍分问题.3.(2014·邵阳)如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A =30°,AB=8,则DE的长度是__2__.试题如图,已知六边形ABCDEF的六个内角均为120°,CD=10 cm,BC=8 cm,AB=8 cm,AF=5 cm,求此六边形的周长.错解解:如图,连接EB,DA,FC,分别交于点M,N,P.∵∠FED=∠EDC=120°,∴∠DEM=∠EDM=60°,∴△DEM是等边三角形.同理,△MAB,△NFA也是等边三角形.∴FN=AF=5,MA=AB=8.∵∠EFA=120°,∴∠EFC=60°,∴ED∥FC,同理,EF∥DN.∴四边形EDNF是平行四边形.同理,四边形EMAF也是平行四边形,∴ED=FN=5,EF=MA=8.∴六边形ABCDEF的周长=AB+BC+CD+DE+EF+FA=8+8+10+5+8+5=44(cm).剖析上述解法最根本的错误在于多边形的对角线不是角平分线,从证明的一开始,由∠FED=∠EDC=120°得到∠DEM=∠EDM=60°的这个结论就是错误的,所以后面的推理就没有依据了,请注意对角线与角平分线的区别,只有菱形和正方形的对角线才有平分一组对角的特性,其他的不具有这一性质.不可凭直观感觉就以为对角线AD,BE平分∠CDE,∠DEF.切记:视觉不可代替论证,直观判断不能代替逻辑推理.正解解:如图,分别延长ED,BC交于点M,延长EF,BA交于点N.∵∠EDC=∠DCB=120°,∴∠MDC=∠MCD=60°,∴∠M=60°,∴△MDC是等边三角形.∵CD=10,∴MC=DM=10.同理,△ANF也是等边三角形,AF=AN=NF=5.∵AB=BC=8,∴NB =8+5=13,BM=8+10=18.∵∠E=120°,∠E+∠M=180°,∴EN∥MB.∴四边形EMBN是平行四边形,∴EN=BM=18,EM=NB=13,∴EF=EN-NF=18-5=13,ED =EM-DM=13-10=3,∴六边形ABCDEF的周长=AB+BC+CD+DE+EF+FA=8+8+10+3+13+5=47(cm).。

2018年陕西省中考数学考点题对题---18题 概率、统计

2018年陕西省中考数学考点题对题---18题 概率、统计

2018年陕西省中考数学考点题对题--- 第18题概率、统计类型一概率(取出放回)1、(2016年西安市铁一中第三次模拟考试)某市一公交线路共设置六个站点,分别为A0,A1,A2,A3,A4,A5.现有甲乙两人同时从A0站点上车,且他们中的每个人在站点Ai(i=1,2,3,4,5)下车是等可能的.(1)求甲在A2站点下车的概率;(2)求甲乙两人不在同一站点下车的概率.2、(2016年西工大附中模考七)如图是一个平均被分成6等分的圆,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.类型二概率(取出不放回)1、(2016年西安市高新一中第七次模拟考试)某中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,共2名男生和1名女生被推荐为候选主持人.(1)如果从3名候选主持人中随机选拔1名主持人,选到女生的概率为________;(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或画树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.2、(2016西工大附中三模)某班举行联欢会有一个抽奖活动,活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字.翻奖牌正面翻奖牌背面(1)第一位抽奖的同学抽中文具的概率是______,抽中计算器的概率是_____;(2)有同学认为,如果甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗?并用列表格或画树状图的方式加以说明.类型三统计1、(2016年西安市高新一中第七次模拟考试)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=________,n=________,并补全频数分布直方图;(2)扇形统计图中“C组”所对应的圆心角的度数是________;(3)规定“听写汉字正确的个数少于24个”为不合格,已知该校共有900人,计算本次听写比赛不合格的学生人数.2、(2016年西安市铁一中第三次模拟考试)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图①和图②两幅尚不完整的统计图.(1)本次抽测的男生有________人,抽测成绩的众数是________;(2)请你将图②的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校900名九年级男生中估计有多少人体能达标?【达标测评】1、(2016年陕师大附中第四次模考)为了推动课堂教学改革,打造高效课堂,配合地区“两型课堂”的课题研究,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图①.请根据图中提供的信息,回答下列问题.(1)求本次被调查的八年级学生的人数,并补全条形统计图②;(2)若该校八年级学生共有540人,请你估算该校八年级支持“分组合作学习”方式的有多少人(只包含“非常喜欢”和“喜欢”两种情况的学生)?2、(2016西安高新一中六模)图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数﹣1,﹣2,﹣3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图2是背面完全一样、牌面数字分别是2,3,4,5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B.计算A+B的值.(1)用树状图或列表法求A+B=0的概率;(2)甲乙两人玩游戏,规定:当A+B是正数时,甲胜;否则,乙胜.你认为这个游戏规则对甲乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.【今日作业】(2016年西工大附中七模)为了解某校九年级男生体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?附:2017年中考典型试题1.(2017年贵州省毕节地区第5题)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是42.(2017年贵州省毕节地区第8题)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条(2017年贵州省毕节地区第10题)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手甲乙丙丁方差0.023 0.018 0.020 0.021则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁4.(2017年湖北省十堰市第5题)某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)48 49 50 51 52车辆数(辆) 5 4 8 2 1则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,85.(2017年湖北省荆州市第4题)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间(小时) 1 2 3 6学生人数(人) 2 2 4 2则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3B.6、2、3C.3、3、2D.3、2、36.(2017年湖北省宜昌市第6题)九一(1)班在参加学校4100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A. 1 B.12C.13D.147. (2017年内蒙古通辽市第3题)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图 B.条形图 C.直观图 D.扇形图8. (2017年内蒙古通辽市第5题)若数据10,9,a,12,9的平均数是10,则这组数据的方差是()A. 1 B.2.1 C.9.0 D.4.19.(2017年山东省东营市第6题)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()10.(2017年山东省泰安市第8题)袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A.14B.516C.716D.12A.47B.37C.27D.1711.(2017年山东省泰安市第11题)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A、B、C、D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误....的是()A.本次抽样测试的学生人数是40B.在图1中,α∠的度数是126C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.212.(2017年山东省泰安市第16题)某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:金额/元 5 10 20 50 100 人数 4 16 15 9 6则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6 C.10,30.6 D .20,30.6 13. (2017年山东省威海市第2题)某校排球队10名队员的身高(厘米)如下: 195,186,182,188,182,186,188,186,188. 这组数据的众数和中位数分别是( )A .186,188B .188,187C .187,188D .188,186 14. (2017年山东省威海市第9题)甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A .31 B .94 C.95 D .3215. (2017年山东省潍坊市第7题)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ). 甲 乙 平均数 9 8 方差11A.甲B. 乙C. 丙D. 丁16.(2017年湖南省郴州市第5题)在创建“全国园林城市”期间,郴州市某中学组织共青团员取植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,则这组数据的中位数和众数分别是()A.3,2 B.2,3 C.2,2 D.3,317.(2017年辽宁省沈阳市第8题)下利事件中,是必然事件的是()A.将油滴在水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果22a b=,那么a b=D.掷一枚质地均匀的硬币,一定正面向上18.(2017年四川省成都市第7题)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100 人数(人)7 12 10 8 3 则得分的众数和中位数分别为()A.70 分,70 分 B.80 分,80 分 C. 70 分,80 分 D.80 分,70 分19.(2017年湖南省岳阳市第5题)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是A.15B.25C.35D.4520.2017年内蒙古通辽市第13题)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是.21.(2017年湖南省郴州市第12题)为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是22==S S0.8, 1.3,从稳定性的角度看,的成绩更稳定(天“甲”或“乙”)甲乙-三个数中任取两个不同的数作为点的坐标,22.(2017年湖南省郴州市第15题)从1,1,0则该点在坐标轴上的概率是.23.(2017年辽宁省沈阳市第12题)一组数2,3,5,5,6,7的中位数是 .24.(2017年辽宁省沈阳市第14题)甲、乙、丙三人进行射击测试,每人10次射击成绩,则三人中成绩最稳定的的平均值都是8.9环,方差分别是222===S S S0.53,0.51,0.43甲乙丙是 .(填“甲”或“乙”或“丙”)25.(2017年湖南省岳阳市第11题)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是,众数是.26.(2017年浙江省杭州市第13题)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.27.(2017年贵州省毕节地区第23题)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.28.(2017年湖北省十堰市第20题)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.29.(2017年贵州省黔东南州第20题)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.30.(2017年湖北省荆州市第21题)(本题满分8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.31.(2017年江西省第15题)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.32.(2017年内蒙古通辽市第23题)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.a,的值;(1)求出下列成绩统计分析表中b(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.33.(2017年辽宁省沈阳市第19题)把3、5、6三个数字分别写在三张完全不同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字、放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.。

往年陕西省中考数学真题及答案

往年陕西省中考数学真题及答案

往年年陕西省中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年年陕西省)4的算术平方根是()A.﹣2 B. 2 C.±2 D.162.(3分)(往年年陕西省)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.3.(3分)(往年年陕西省)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣14.(3分)(往年年陕西省)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B.C.D.5.(3分)(往年年陕西省)把不等式组的解集表示在数轴上,正确的是() A. BC.D.6.(3分)(往年年陕西省)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的平均数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.(3分)(往年年陕西省)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°8.(3分)(往年年陕西省)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣49.(3分)(往年年陕西省)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A. 4 B. C. D. 510.(3分)(往年年陕西省)二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(共2小题,每小题3分,共18分)11.(3分)(往年年陕西省)计算:= .12.(3分)(往年年陕西省)因式分解:m(x﹣y)+n(x﹣y)= .请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)(往年年陕西省)一个正五边形的对称轴共有条.14.(往年年陕西省)用科学计算器计算:+3tan56°≈(结果精确到0.01)15.(3分)(往年年陕西省)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.16.(3分)(往年年陕西省)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.17.(3分)(往年年陕西省)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.四、解答题(共9小题,计72分)18.(5分)(往年年陕西省)先化简,再求值:﹣,其中x=﹣.19.(6分)(往年年陕西省)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.20.(7分)(往年年陕西省)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A﹣二氧化硫,B﹣氢氧化物,C﹣化学需氧量,D﹣氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园,加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%,按此指示精神,求出陕西省往年年二氧化硫、化学需氧量的排放量供需减少约多少万吨?(结果精确到0.1)21.(8分)(往年年陕西省)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?22.(8分)(往年年陕西省)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.(8分)(往年年陕西省)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?24.(8分)(往年年陕西省)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B 作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.25.(10分)(往年年陕西省)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?26.(12分)(往年年陕西省)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M 安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.参考答案:一、选择题(共10小题,每小题3分,共30分)1.(3分)考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)考点:简单几何体的三视图;截一个几何体.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,故选:A.点评:本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.3.(3分)考点:一次函数图象上点的坐标特征.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.(3分)考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)考点:众数;中位数.分析:根据众数及平均数的定义,即可得出答案.解答:解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+085×4+90×2+95×1)=85.故选B.点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.(3分)考点:平行线的性质.分析:首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.解答:解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.8.(3分)考点:一元二次方程的解.分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.9.(3分)考点:菱形的性质.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.10.(3分)考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a(4,0),>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、根据抛物线的对称性得到抛物线对称轴为直线x=﹣=1,则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;∵抛物线过点(﹣2,0)、(4,0),∴抛物线对称轴为直线x=﹣=1,∴2a+b=0;∵当x=﹣3时,y<0,∴9a﹣3b+c>0,即9a+c>3b.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共2小题,每小题3分,共18分)11.(3分)考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式===9.故答案为:9.点评:本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.12.(3分)考点:因式分解-提公因式法.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)考点:轴对称的性质.分析:过正五边形的五个顶点作对边的垂线,可得对称轴.解答:解:如图,正五边形的对称轴共有5条.故答案为:5.点评:本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.14.考点:计算器—三角函数;计算器—数的开方.分析:先用计算器求出′、tan56°的值,再计算加减运算.解答:解:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02故答案是:10.02.点评:本题考查了计算器的使用,要注意此题是精确到0.01.15.(3分)考点:旋转的性质.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.16.(3分)考点:反比例函数图象上点的坐标特征.分析:设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解答:解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为y=.点评:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17.(3分)考点:垂径定理;圆周角定理.专题:计算题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.四、解答题(共9小题,计72分)18.(5分)考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣==,当x=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)考点:全等三角形的判定与性质.专题:证明题.分析:根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.解答:证明:∵EF⊥AC,∴∠F+∠C=90°,∵∠A+∠C=90°,∴∠A=∠F,在△FBD和△ABC中,,∴△FBD≌△ABC(AAS),∴AB=BF.点评:本题考查了全等三角形的判定和性质,是基础知识要熟练掌握.20.(7分)考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的排放量除以所占的百分比计算求出2013年总排放量,然后求出C的排放量,再根据各部分所占的百分比之和为1求出D的百分比,乘以总排放量求出D的排放量,然后补全统计图即可;(2)用A、C的排放量乘以减少的百分比计算即可得解.解答:解:(1)2013年总排放量为:80.6÷37.6%≈214.4万吨,C的排放量为:214.4×24.2%≈51.9万吨,D的百分比为1﹣37.6%﹣35.4%﹣24.2%=2.8%,排放量为214.4×2.8%≈6.0万吨;(2)由题意得,(80.6+51.9)×2%≈2.7万吨,答:陕西省往年年二氧化硫、化学需氧量的排放量供需减少约2.7万吨.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)考点:相似三角形的应用.分析:根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.解答:解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,即=,解得BD=13.6米.答:河宽BD是13.6米.点评:本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.22.(8分)考点:一次函数的应用.分析:(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x>1时,可以求出y与x的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.解答:解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.点评:本题考查了分段函数的运用,一次函数的解析式的运用,由自变量的值求函数值的运用,解答时求出函数的解析式是关键.23.(8分)考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小英和母亲随机各摸球一次,均摸出白球的情况,再利用概率公式即可求得答案;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)考点:切线的性质;相似三角形的判定与性质.分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.解答:(1)证明:连接OD,∵BD是⊙O的切线,∴OD⊥BD,∵AC⊥BD,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,即AD平分∠BAC;(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,∴,解得:AC=.点评:此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.(10分)考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.分析:(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.26.(12分)考点:圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.专题:压轴题;存在型.分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′==.∴BP′=4﹣.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4﹣;若AP=AD,则BP=.(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=.∴BQ=GQ+BG=3+.∴当∠EQF=90°时,BQ的长为3+.(3)在线段CD上存在点M,使∠AMB=60°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=270,∴AP=135.∵ED=285,∴OH=285﹣135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°.∴OP=AP•tan30°=135×=45.∴OA=2OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=60°,OM=OA=90..∵OH⊥CD,OH=150,OM=90,∴HM===30.∵AE=400,OP=45,∴DH=400﹣45.若点M在点H的左边,则DM=DH+HM=400﹣45+30.∵400﹣45+30>340,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.∵400﹣45﹣30<340,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=60°, 此时DM的长为(400﹣45﹣30)米.点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.。

中考数学总复习考点系统复习第一节 统计

中考数学总复习考点系统复习第一节  统计
所抽取该校七年级学生四月份“读书量”的统计图
第6题图
根据以上信息,解答下列问题: (1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为__3_本_____;
第6题解图
(2)求本次所抽取学生四月份“读书量”的平均数;
(2)∵18÷30%=60(人), ∴x= 1 ×(1×3+2×18+3×21+4×12+5×6)=3(本).
第4题图
根据以上提供的信息,解答下列问题:
(1)求所统计的这组数据的中位数和平均数;
解:(1)∵ 10+11 =10.5(棵); x= 9×1+10×4+11×3+12×2=10.6(棵).
2
10
∴所统计的这组数据的中位数为10.5棵,平均数为10.6棵.(3分)
(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比; (2)∵ 4+3+2×100%=90%. 10 ∴在抽查的10个小组中,90%的小组完成了植树任务.(5分)
返回思维导图
概念:一组数据中出现次数 最多 的数据
数 据众 的数 数代 据表 的
特点:表示一组数据中出现次数最多的数据,次数多能够反映一组数 据的集中程度 通用情况:日常生活中“最佳”、“最受欢迎”、“最满意”、“最 受关注”等,与众数有关,它是反映一组数据的集中程度
分 析
数据的
概念:s2= n1[(x1-x)2+(x2-x)2+…+(xn-x)2]
请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图; 解:(1)补全统计图如解图;(2分)
所抽取七年级学生早锻炼时间统计图
第7题解图
(2)所抽取的七年级学生早锻炼时间的中位数落在_2_0_≤_x_<__3_0_(或__填__C__) _区间内;

陕西中考数学复课会议汇报

陕西中考数学复课会议汇报

近年来中考数学试题解答易错点分析及备考启示西安高新第一中学雒萍一、近三届数学试卷难度分布2009年——易、较易、较难、难的比例3:3:3:12010年——易、较易、较难、难的比例4:3:2:12011年——易、较易、较难、难的比例4:3:2:1二、评卷工作的原则给分合理、扣分有据、宁给少扣、松紧有度如答案写成近似值扣1分,写成分数没化成小数不扣分,根号没化简扣1分,不带单位扣1分,填空要答案写成式子扣1分。

三、近年来中考数学解答题易错点分析1、中学生运算能力的反思近年来中考17题都是分式化简或分式方程,因为这既考察了分解因式又考察了学生实数运算。

学生算理不清,该通分却去掉分母,该去分母却通分。

2、中学生推理能力的反思近年来中考18题都是四边形中运用三角形全等知识和四边形性质,学生证三角形全等是最基础的,但学生书写上逻辑混乱。

3、中学生建模能力的反思,关注实际应用题2010年一次函数出的是卖蒜薹,2011年一次函数出的是世园会买门票。

发现学生会用待定系数法求一次函数表达式较好,但2010年通过改卷发现学生由实际应用关系直接得一次函数关系得分不高。

2011年概率出的是三个同学做手心手背游戏4、中学生综合能力的反思2011压轴题折痕三角形,2010年等分面积5、答题情况分析的教学启示计算基本功,分析基本功,建模基本功,缜密思维功审题基本功综合解题功四、提高复习效率的主阵地是课堂第一轮复习六环节——构建有效的复习课模式问题引入,回顾知识基础习题,巩固训练典例精析,灵活变式题组练习,运用拓展归纳小结,深化方法布置作业,课外延伸第一轮复习还应注意1、引导学生通读初中各年级的数学课本。

学完初中数学并做了各种各样的题后,再回归课本,从概念的引入和表述中,联系它在解题中的作用,更容易把握住概念间的联系,从公式的推导和定理的证明过程中,联想公式定理及其证明方法本身在解题中的应用。

这样能更容易体会到这些应用的必然性,提高用公式定理解题的自觉性,减少盲目性。

2020年陕西中考数学试题分析2篇

2020年陕西中考数学试题分析2篇

2020年陕西中考数学试题分析2篇在取消考纲后第一年中考的背景下,陕西数学试题就已呈现出改革与发展的趋势。

整套试题知识点的考查位置略有调整,压轴题的呈现方式不再象以前那样模式化,有了很大的突破,虽是传统意义上的老题型,但让大家一时不好适应。

从全卷来看,今年试题在数量丶结构上保持了相对稳定,试题的重难点基本保持不变,大的框架结构保持相同,知识点考查全面,层次清晰,能力要求有梯度,平稳合理。

但与学生习惯了以往模式化的最值问题解答比较而言,试题难度略有增加。

试题结构特点与以往比较,试题在结构上保持了一定的稳定性。

填空与选择共14道小题,解答共11道大题, 14道选填总分48分,解答72分,分值分别占到40%与60%,没有变化。

填空与选择考查了学生三年来所学的基本知识和掌握的基本技能,对学生不会造成大的困难,大多数学生会把分数拿回来。

填空与选择在个别题位上的知识考查内容有所调整,如第2 小题由视图变为有关余角的几何问题,第3小题变为科学技术法的内容,第4小题由正比例函数调整为有关有理数的考查,第11小题由实数的概念变为简单的实数计算。

解答题每个题位的知识考查点也基本保持了以往的内容,个别题目有一定变化。

如第15题以前在这个题位上考查实数的混合运算,本次是解不等式组,难度倒是不大。

19题考查了平均数,22题考查了频率,这些内容较简单,以前考查较少,本次作了针对性考查,做到了基本知识点覆盖相对全面,第14与25两道压轴题以新的面孔出现,具有较大的变化,决定了本次试题的风格与走向。

主要题位分析第10题是一个含参抛物线的问题,与往年比较风格一致,没有大的变化,主要考察学生对图形平移、抛物线顶点坐标的求解方法,难度维持以往的水平。

14题形式有较大的变化,由最值变为求平分面积背景下的定值,难度有所下降,学生容易上手,但对代数式的推导变形及式子正负性的确定有较高的要求。

20题相对简单,利用全等三角形来解决,回避了常见的相似方法与三角函数方法,21题利用分段函数解决实际问题,比较常规,没有变化。

中考数学知识内容考点及分值分析

中考数学知识内容考点及分值分析

中考数学知识内容考点及分值(Zhi)分析一、教材设(She)置初中数(Shu)学共学习(Xi)6册(Ce)书,中考数学难易比例(Li)5:3:2。

数(Shu)学授课方式:先讲后练(基础差型学生)先练后讲(基础好型学生)初(Chu)一:1、上册:主要包括四章内容,第一章有理数、第二章整式的加减、第三章一元一次方程和第四章图行的初步认识。

前三章属于数与代数的内容,最后一章属于空间与图形的内容。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础2、下册:主要包括六章内容,分别是:相交线和平行线、平面直角坐标系、三角形、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

陕西省近三年初中数学学业考试试题分析及2010年考试说明解

陕西省近三年初中数学学业考试试题分析及2010年考试说明解

一、试题整体分析看走向

1.2007---2009陕西三年中考数学试题 整体结构无变化,结构如下表 题型 题量 分值 考试时间及 分值 考试时间: 120分钟 总分:120分
选择题 填空题
解答题
10 6
9
30 18
72
一、试题整体分析看走向

2.2007---2009陕西三年中考数学试题考点对比分析表 2007年 相反数 展开与折叠 2008年 2009年 分 值 3 3
6 4 3 5 10


1.2007---2009陕西三年中考数学试题基本保 持不变的考点和题型
考点 2007年 2008年 2009年 题型
二、深入分析谈趋势
11
12 15 17
数与式
反比例函数 找规律 分式运算
12
13 15 17
11
13
填空题
填空题 填空题
17
解答题
简单几何证明
统计 一次函数的应用
陕西省近三年初中数学学业考试试 题分析及2010年考试说明解读
临渭区教研室
13319138301 lwqjyszjlxf@
吕西峰
一、陕西省近三年初中数学学业考试试题分析 二、《陕西省2010年初中数学学业考试说明》 解读 三、复课备考安排及教学建议
一、陕西省近三年初中数学学业考试试题分析
(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.
(第20题图)
2008年第20题(本题满分7分)
解:(1)皮尺、标杆。 …(1分) (2)测量示意图如图所示。(3分)
(3)如图,测得标杆DE=a, 树和标杆的影长分别为AC=b,EF=c ……………(5分) ∵△DEF∽△BAC ∴ a c x ab DE FE ∴ c (7分) BA CA x b

2015年陕西省中考数学总复习教学案:第15讲 数据的收集与整理

2015年陕西省中考数学总复习教学案:第15讲 数据的收集与整理

第四章统计与概率第15讲数据的收集与整理题,分值为3分,考查形式一般有两种,一种是直接给出一组数据,一种是以表格形式给出一组数据,对于中位数的考查,虽然近三年未考查到,但曾在2011年考查到中位数的计算,因此对中位数的计算考生在复习时不容忽视,2014年中考说明中删除了极差的相关内容,因此以后中考将不会再涉及,预计在2015的中考中,仍会在选择题中可能会考查平均数和众数的计算,也可能会考查中位数的计算.1.数据收集的途径(1)直接手段:__调查、观察、测量、实验__等.(2)间接途径:__查阅文献资料、使用互联网查询__等. 2.数据整理的方法__分类、排序、分组、编码__等.3.平均数、总体、个体、样本及样本容量 (1)总体:把__所要考察对象__的全体叫总体. (2)个体:__每一个考察对象__叫做个体.(3)样本:从总体中所抽取的__一部分个体__叫做总体的一个样本. (4)样本容量:样本中__个体的数目__叫做样本容量.(5)算术平均数:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,那么平均数x =1n(x 1+x 2+x 3+…+x n ).加权平均数:如果在n 个数据中,x 1出现了f 1次,x 2出现了f 2次,…,x k 出现了f k 次,这里f 1+f 2+…+f k =n ,那么这n 个数的算术平均数x =x 1f 1+x 2f 2+…+x k f kn.也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…f k 分别叫做x 1,x 2,…,x k 的权.4.众数与中位数在一组数据中,出现次数最多的那个数据叫做这组数据的__众数__.将一组数据按大、小依次排列,把排在正中间的一个数据称为__中位数__.但中位数并不一定是数据中的一个数.当数据的个数是偶数个时,最中间有两个数,这两个数的平均数就是这组数据的中位数;如果数据的个数是奇数个时,中位数是正中间的那个数.5.方差设一组数据x 1,x 2,…,x n 中,各数据与它们的平均数x 的差的平方分别是(x 1-x)2,(x 2-x)2,…,(x n -x)2.那么我们用它的平均数即s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2]来衡量一组数据的波动大小,并把它叫做这组数据的方差.6.由样本特征估计总体特征是统计数据常用的方法“集中”问“三数”平均数、中位数、众数都是数据的代表,它们是“同一家族的三个成员”,都是用来刻画一组数据的平均水平,表示数据的集中趋势.应用平均数时,所有数据都参与运算,它能充分地利用数据所提供的信息,但当一组数据中存在极大值或极小值时,平均数将不能准确地表示数据的集中情况.应用中位数时,计算较简单,不会受极大值或极小值的影响,但不能充分利用所有数据的信息.应用众数时,某些情况下,人们最关心、最重视的是出现次数最多的数据,这时应用众数比较简单且能够直接满足人们的需求,但当各个数据的重复次数大致相等时,众数往往没有意义.“波动”问“方差”方差是刻画数据离散程度的统计量,能反映一组数据的波动情况.1.(2014·陕西)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:那么这10名学生所得分数的平均数和众数分别是( B )A.85和82.5B.85.5和85C.85和85 D.85.5和802.(2013·陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是( C )A.71.8B.77C.82D.95.73.(2012·陕西)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(3)班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( C )A.92分B.93选择合适的调查方式【例1】(2014·内江)下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是( B )A.①B.②C.③D.④【点评】全面调查可以直接获得总体的情况,调查的结果准确,但搜集、整理、计算数据的工作量大;抽样调查的范围小,节省人力、物力,但往往不如全面调查的结果准确.调查范围的大小是相对而言的,类似的问题应联系实际才不会出错.1.(2013·黔西南州)下列调查中,可用普查的是( C )A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况平均数、众数、中位数的计算【例2】(2014·孝感)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( C ) A .中位数是55 B .众数是60 C .方差是29 D .平均数是54 【点评】 平均数、众数、中位数是中考的热点之一,解决这类问题的关键是弄清概念.平均数的大小与一组数据里的每一个数据均有关系,其中任何一个数据的变动都会引起平均数的变动;众数着眼于各数据出现的频率,其大小只与这组数据中的部分数据有关,可以是一个或多个;中位数则与数据的排列位置有关,某些数据的变动对中位数没有影响,计算时要分清数据是奇数个,还是偶数个.2.(1)(2014·襄阳)五箱梨的质量(单位:kg )分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为( D )A .20和18B .20和19C .18和18D .19和18(2)(2013·内江)一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.方差的计算【例3】 (1)(2014·呼和浩特)某校五个绿化小组一天的植树棵数如下:10,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是__1.6__.(2)(2014·重庆)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11,0.03,0.05,0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( D )A .甲B .乙C .丙D .丁【点评】 理解中位数、方差的概念,灵活运用求平均数、方差的计算公式.3.(2014·湘潭)为测试两种电子表的走时误差,做了如下统计:__B __试题 某校七年级六个班的人数依次为52人,55人,53人,51人,54人,52人,各班的期末数学平均成绩分别为95分,91.5分,`93分,95分,91分,93.5分,求七年级期末数学考试的平均成绩. 错解解:x =16(95+91.5+93+95+91+93.5)≈93.2(分)答:七年级期末数学考试的平均成绩为93.2分.剖析 七年级的平均成绩应该是七年级每个学生成绩的平均数,题目已知六个班各班的平均成绩,求这个年级的平均成绩,只需分别求出每个班的总分数,这些总分数的和就是这个年级所有学生成绩的和,再除以年级总人数,就是所求的这个年级的平均成绩,而上面的错解把六个班的平均成绩的平均数误当成年级的平均成绩,导致了错误.正解x =95×52+91.5×55+93×53+95×51+91×54+93.5×5252+55+53+51+54+52≈93.1(分)答:该校七年级期末数学考试的平均成绩为93.1分.。

2020年 陕西中考备考:图形与几何、综合与实践中考考点分析及备考建议课件(共38张PPT)

2020年  陕西中考备考:图形与几何、综合与实践中考考点分析及备考建议课件(共38张PPT)
考点:以几何图形作为载体,考察抽象、推理、 建模,以三角形、四边形、圆为基本图形
考法:充分应用几何演绎推理、代数演绎推理、 解析演绎,数学建模等
备考:最值问题(距离、周长、面积)、 等分问题
25题.(2017年,12分)问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为
20题(2018年,7分)
周末,小华和小亮想用所学的数学知识测量家门前小河
的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底 部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂 直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起 标杆DE,使得点E与点C、A共线. 已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m, BD=8.5m.测量示意图如图所示.请根据相关测量信息,求 河宽AB.
P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的
路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、
环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小
值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
25题.(2019年,12分) 问题提出
25题、综合与实践 12分
共计42分
近三年17题考情分析
17题.(2017年 5分) 如图,在钝角△ABC中,过钝角顶点B,BD⊥BC交AC于点
D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等 于BP的长(保留作图痕迹,不写作法)
17题.(2018年 5分)
如图,已知:在正方形ABCD中,M是BC边上一定点,连接 AM.请用尺规作图法,在AM上作一点P,使 △DPA∽△ABM.(不写作法,保留作图痕迹)

21年陕西中考数学试卷分析

21年陕西中考数学试卷分析

21年陕西中考数学试卷分析2021年的陕西中考数学已经结束,在中考前对于试卷结构、试题难度的各种猜想,也终于有了一个明确的答案,简单总结为:稳中有变,难度略降。

这与《课程标准》与学科核心素养所传递的信息基本一致,降低考试的难度,增加考试的宽度。

重视“基础知识,基本技能,基本思想,基本活动经验”的考查,今年中考尤其在基本技能中对于数学运算能力考查有较大提升。

一、试题结构分析:试卷分为三大类共26小题,其中选择题由10题减少为8题,填空题由4题增加为5题,解答题由11题增加为13题。

最大的调整有两点:一是选填题数量的调整,二是解答题增加了一道计算题以及一道一元一次方程的应用,另外在解答题中调整了部分题型的题位,与近三年的试题排序有所不同。

二、具体题型分析:选择题难度明显降低,尤其是减少了圆的基本性质,第8题二次函数的图像与性质,只需要根据表格中数据画出图象,就可以判断出相应的函数性质,较前几年明显简单了许多。

填空题增加了一道一元一次方程的简单应用,以“幻方”为背景,较为新颖。

最后一题求线段最值也较为容易,无论是“找点”还是“算线”。

整体来说填空题虽然增加了一题,但是难度反而有所下降。

解答题中计算题变为3道,显然是加大了对运算能力的考查;增加的一元一次方程的应用以销售服装为背景,紧贴七年级教材,回归课本;调查与统计以第十四届全运会为背景,与时俱进,贴近生活;二次函数压轴题考查形式与以往类似,第一问求点的坐标起点低,易入手,重在计算,第二问将三角形相似与函数相结合,仍属常规题,当中包含了分类讨论思想,但是由于增设了条件,减少了答案的数量,使得难度又有下降;最后一道压轴题利用割补法及二次函数求面积最值问题,也打破了近几年图形变化和辅助圆等的“惯例”,重点考查孩子的数学建模能力和运算能力。

整体来说,试题体现了内涵式发展:试题背景紧贴热点,切入角度灵活,综合题体现了对思想方法的考查,更关注学生数学核心素养的发展情况,对于教师今后的教学也起到了指导作用。

2022陕西中考数学试卷分析

2022陕西中考数学试卷分析

2022陕西中考数学试卷分析2022年陕西省初中学业水平考试刚刚落下帷幕,作为“双减”政策落地的第一年,数学试题的变化格外引人关注。

今年的数学试题坚持落实立德树人的理念,全面考查了学生数学学习的过程和结果。

试题内容围绕课程标准,紧扣教材,注重基础知识的考查,关注了数学与实际生活的紧密联系,以课程目标和课程内容为依据,体现了数学课程的基本理念,全面评价了学生在知识技能、数学思考、问题解决和情感态度等方面的表现,在关注知识考查的同时,更加关注数学思想方法的应用渗透,落实数学核心素养。

今年试题的整体难度有所下降,未出现难题、偏题、怪题。

试题在各题型所占分值、分布以及所考查的教学内容上有了一定的变化。

现分析如下:一、试题结构分析:与2021年试题结构相同,为选择题8道,共24分;填空题5道,共15分;解答题13道,共81分;试题共26道题,满分120分。

试卷结构体现义务教育阶段数学的基础性、综合性、应用性、发展性及选拔性功能。

二、试题呈现特点:第一,试题依据数学课程标准,旨在对基础知识、基本技能、基本思想方法和基本活动经验的“四基”考查。

例如,第14、15、16题分别考查实数的运算,解不等式组,分式的化简等基本运算技能。

再如第19题,通过平面直角坐标系中的平移作图,考查学生对图形的平移变化与点坐标的关系的基本知识的应用。

第二,试题注重考查六大数学核心素养:数学抽象、空间观念、推理能力、运算能力、模型思想和数据分析观念。

例如第8题,考查了二次函数图象的性质,学生通过画二次函数图象,确定对称轴,判断三个自变量与对称轴的距离,之后就可以比较三个函数值的大小了。

第11题继“幻方”之后再次引入传统数学文化素材,以华罗庚教授的“优选法”为背景考查黄金分割,丰富了试题内涵,体现了学科育人价值。

第25题以修建隧道为实际背景的题目,考查二次函数的图象表达式以及二次函数图象上符合条件点的存在性问题。

第三,试题稳中有变,突出探究性问题的解决过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18
平行四边形的性质与 正方形的性质及全等 正方形的性质及全等
全等三角形的判定
三角形的证明
三角形的判定
19
统计
统计
统计
20
测量问题(涉及解直 测量问题(涉及相似 测量问题(涉及解直
角三角形的应用)
三角形的应用
角三角形的应用)
21
一次函数的应用 一次函数的应用) 一次函数的应用
22
概率
概率
概率
23
圆的切线、矩形的证 明
正比例函数
一次函数(正比例函 数)图象性质
中位数、众数
中位数、平均数
圆与圆的位置关系 不等式组的解集
两反比例函数与X轴 围成三角形面积
菱形的性质
以平行四边形为背景 圆周角定理及等腰三
找相似三角形
角形(动点问题)
二次函数的性质与 二次函数图象平移
轴对称
与轴对称
绝对值的运算
实数的大小比较
分解因式
平行线、角平分线性 质
解一元二次方程
选作题A扇形面积的 计算
选作题B三角函数及 根式计算
分解因式
相似三角形(条件开 放型题)
不等式方程应用求值
一元一次方程的应用 求值
垂径定理的有关计算
一次函数和反比例函 一次函数的图象及解 反比例函数的图象与
数的性质
不等式组
性质
等腰梯形的面积计 算
梯形的相关计算
17
分式化简
解分式方程
分式化简
勾股定理的应用
圆的切线、圆周角定 理及直角三角形的性

圆的切线、直角三角 形及垂直平分线
24
二次函数与等腰直 角三角形
二次函数与矩形
二次函数与平行四 边形Leabharlann 二次函数与平行四 边形25
数形结合思想及最 值问题
数形结合思想及最 值问题
作图题及存在探究
题号 1 2 3 4 5 6 7 8 9 10 11 12
13
14 15 16
2012
2011年
2010年
负分数的相反数
负分数的绝对值
三视图(主、俯视 三视图(主、俯视
图)
图)
余角
幂的运算性质
大数的科学记数法 (保留有效数字)
幂的运算性质
中位数、平均数
正比例函数
三视图(俯视图)
勾股定理及锐角三角 函数
相关文档
最新文档