和平区二中学校2018-2019学年高二上学期二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和平区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数f (x )=x 2﹣
,则函数y=f (x )的大致图象是( )
A .
B .
C .
D .
2. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .0a <<
C .02a <<
D .以上都不对
3. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( )
A .f (2)<f (π)<f (5)
B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2) 4. 图
1是由哪个平面图形旋转得到的( )
A .
B .
C .
D . 5. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )
A .p ⌝是真命题
B .q ⌝是真命题
C .p q ∨是真命题
D .()()p q ⌝∨⌝是真命题 6. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )
A .π
B .
C .
D .
7. 正方体的内切球与外接球的半径之比为( )
A .
B .
C .
D .
8. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )
A .
B .
C .
D .
9. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4﹣
B .4

C .
D . +
10.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O
P Q ∆的面积等于( )
A .
B .
C .
2 D .4
11.已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
12.复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )
A .﹣
B .3
C .﹣3
D .
二、填空题
13.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .
15.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下:
①若()()0f x f x '+>,且(0)1f =,则不等式()x
f x e -<的解集为(0,)+∞;
②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
16.已知线性回归方程=9,则b= .
17.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
18.长方体1111ABCD A BC D -中,对角线1AC 与棱
CB 、CD 、1CC 所成角分别为α、β、, 则2
22sin
sin sin αβγ++= .
三、解答题
1920142015CBA5场比赛中的投篮次数及投中次数如下表所示:
3分球的平均命中率;
(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.
20.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1
率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
21.24.(本小题满分10分)选修4-5:不等式选讲.
已知函数f(x)=|x+1|+2|x-a2|(a∈R).
(1)若函数f(x)的最小值为3,求a的值;
(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.
22.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.
(Ⅰ)求数列{a n}通项公式;
(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.
23.已知△ABC 的顶点A (3,1),B (﹣1,3)C (2,﹣1)求: (1)AB 边上的中线所在的直线方程; (2)AC 边上的高BH 所在的直线方程.
24.(本小题满分12分)已知1
()2ln ()f x x a x a R x
=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;
(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.
和平区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.
∵当x >0时,t==在x=e 时,t 有最小值为
∴函数y=f (x )=x 2

,当x >0时满足y=f (x )≥e 2
﹣>0,
因此,当x >0时,函数图象恒在x 轴上方,排除D 选项 故选A
2. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 3. 【答案】B
【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
4. 【答案】A 【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念. 5. 【答案】C 【解析】]
试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;
()()p q ⌝∨⌝是假命题.故选C.
考点:命题真假判断. 6. 【答案】D
【解析】解:由函数f (x )=sin 2
(ωx )﹣=﹣cos2ωx (ω>0)的周期为
=π,可得ω=1,
故f (x )=﹣cos2x .
若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;
再根据所得图象关于原点对称,可得2a=k π+,a=
+
,k ∈Z .
则实数a 的最小值为.
故选:D
【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.
7. 【答案】C
【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:
a ,
所以,正方体的内切球与外接球的半径之比为:
故选C
8. 【答案】B
【解析】解:△ABC 中,a 、b 、c 成等比数列,则b 2
=ac , 由c=2a ,则b=
a ,
=

故选B .
【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.
9. 【答案】 A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB , 若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,


cos θ+
sin θ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
10.【答案】C
【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -==.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质. 11.【答案】A
【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1, 若p 是q 的充分不必要条件, 则a ≥1, 故选:A .
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
12.【答案】D
【解析】解:∵(3﹣i )•z=a+i ,


又z 为纯虚数,

,解得:
a=.
故选:D.
【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.二、填空题
13.【答案】[,1].
【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,
∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],
故答案为[,1].
14.【答案】cm2.
【解析】解:如图所示,是正六棱台的一部分,
侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.
取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,
则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.
根据正六棱台的性质得OC=,O
C1==,
1
∴CC1==.
又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.
∴正六棱台的侧面积:
S=.
=
=(cm2).
故答案为:cm2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.
15.【答案】②④⑤
【解析】解析:构造函数()()x
g x e f x =,()[()()]0x
g x e f x f x ''=+>,()g x 在R 上递增,
∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;
构造函数()()x f x g x e =

()()
()0x
f x f x
g x e '-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴
1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;
由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递
减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;
由()()x e xf x f x x '+=得2
()()x e xf x f x x
-'=,设()()x
g x e xf x =-,则()()()x
g x e f x xf x ''=--(1)x x x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当
0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
16.【答案】 4 .
【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
17.【答案】1
231n -
- 【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 18.【答案】 【解析】
试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:
222
2
2
2
1111
222111sin sin sin BC DC AC AC AC AC αβγ++=++22212
12()2AB AD AA AC ++==.
考点:直线与直线所成的角.
【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.
三、解答题
19.【答案】
【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:
=,
3分球的命中率为: =.
(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,, ξ的可能取值为0,2,3,5,
P (ξ=0)=(1﹣)(1﹣)=,
P (ξ=2)=
=,
P (ξ=3)=(1﹣)×=,
P (ξ=5)=
=,
∴该运动员在最后1分钟内得分ξ的分布列为:
0 2 5
∴该运动员最后1分钟内得分的数学期望为E ξ=
=2.
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想.
20.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 21.【答案】
【解析】解:(1)f (x )=|x +1|+2|x -a 2|
=⎩⎪⎨⎪
⎧-3x +2a 2-1,x ≤-1,
-x +2a 2
+1,-1<x <a 2
,3x -2a 2
+1,x ≥a 2

当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,
所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )= ⎩⎪⎨⎪
⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,
由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积
最大,此时面积为1
2
×|3-(-1)|×|6-3|=
6.
22.【答案】
【解析】(Ⅰ)解:由4S n =(a n +1)2

令n=1
,得
,即a 1=1,
又4S n+1=(a n+1+1)2


,整理得:(a n+1+a n )(a n+1﹣a n ﹣2)=0.
∵a n >0,∴a n+1﹣a n =2,则{a n }是等差数列,
∴a n =1+2(n ﹣1)=2n ﹣1; (Ⅱ)证明:由(Ⅰ)可知,b n
=
=

则b 1+b 2+…+b n
=
=
=

23.【答案】
【解析】解:(1)∵A (3,1),B (﹣1,3),C (2,﹣1), ∴AB 的中点M (1,2), ∴直线CM
的方程为
=
∴AB 边上的中线所在的直线方程为3x+y ﹣5=0; (2)∵直线AC
的斜率为=2,
∴直线BH
的斜率为:﹣,
∴AC 边上的高BH 所在的直线方程为y ﹣3=
﹣(x+1), 化为一般式可得x+2y ﹣5=0
24.【答案】
【解析】(Ⅰ))(x f 的定义域),0(+∞,
当3a =时,1()23ln f x x x x =--,2'
22
13231()2x x f x x x x
-+=+-= 令'()0f x >得,102
x <<或1x >;令'
()0f x <得,112x <<,
故()f x 的递增区间是1
(0,)2和(1,)+∞;
()f x 的递减区间是1
(,1)2

(Ⅱ)由已知得x a x
x x g ln 1
)(+-=,定义域为),0(+∞,
2
22111)(x
ax x x a x x g ++=++=',令0)(='x g 得012
=++ax x ,其两根为21,x x , 且21212
40010a x x a x x ⎧->⎪
+=->⎨⎪⋅=>⎩,。

相关文档
最新文档