高考数学压轴专题2020-2021备战高考《三角函数与解三角形》全集汇编含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新数学《三角函数与解三角形》专题解析(1)
一、选择题
1.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过
E 作AD 的垂线,垂足为
F ,则AF =u u u v
( )
A .3155
AB AC +u u u
v u u u v
B .2155
AB AC +u u u
v u u u v
C .481515AB AC +u u u
v u u u v D .841515
AB AC +u u u
v u u u v 【答案】D 【解析】 【分析】
设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得
cos DAE ∠,由此得到45
AF AD =u u u r u u u r
,进而利用平面向量加法和减法的线性运算,将
45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r
为基底来表示的形式.
【详解】
设6BC =,则32,2AB AC BD DE EC =====,
22π
2cos
4
AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠=
=⨯, 所以
4
5AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()
1133AD AB BC AB AC AB =+=+
-u u u r u u u r u u u r u u u r u u u r u u u r 2133
AB AC =+u u u
r u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=
+ ⎪⎝⎭
u u u r u u u r u u u r u u u r u u u r
. 故选:D 【点睛】
本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.
2.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40︒的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70︒方向的C 处,且A 与C 的距离为15352千米的速度开车直线到达C 处接小
王,则小赵到达C 处所用的时间大约为( )
(
)
7 2.6≈
A .10分钟
B .15分钟
C .20分钟
D .25分钟
【答案】B 【解析】 【分析】
首先根据题中所给的条件,得到30BAC ∠=︒,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】
根据条件可得30BAC ∠=︒,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ︒=+-⋅⋅=, 则5713BC =≈(千米), 由B 到达C 所需时间约为13
0.2552
=(时)15=分钟. 故选:B . 【点睛】
该题是一道关于解三角形的实际应用题,解题的关键是掌握余弦定理的应用,属于简单题目.
3.若函数()sin 2f x x =向右平移6
π
个单位后,得到()y g x =,则关于()y g x =的说法正确的是( ) A .图象关于点,06π⎛⎫
- ⎪⎝⎭
中心对称 B .图象关于6
x π
=-轴对称
C .在区间5,126ππ⎡⎤
--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤
-
⎢⎥⎣
⎦单调递增 【答案】D 【解析】 【分析】
利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一
判断即可. 【详解】
函数()sin 2f x x =向右平移6π
个单位,得()sin 2()sin(2)63
g x x x ππ=-=-. 由23
x π
-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫
- ⎪⎝⎭
不是()g x 的对称中心,故A 错; 由23
x π-
=2
k π
π+
, 得212k x π5π
=
+
()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;
由2222
3
2
k x k π
π
π
ππ-
≤-
≤+
,得1212
k x k π5π
π-
≤≤π+
()k ∈Z , 所以在区间5,12
6ππ⎡⎤
-
-⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】
解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||
T π
ω=
周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫
⎪⎝⎭
,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.
4.在△ABC 中,7b =,5c =,3
B π
∠=,则a 的值为 A .3 B .4
C .7
D .8
【答案】D 【解析】 【分析】
根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】
因为7,5,3
b c B π
==∠=
,由余弦定理可得2222cos b a c ac B =+-,
即2
1
4925252
a a =+-⨯⨯
,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】
该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三
角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.
5.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9
π
)的图象上所有点( ) A .向左平移518
π
个单位长度 B .向右平移518
π
个单位长度 C .向左平移536
π
个单位长度 D .向右平移
536
π
个单位长度 【答案】D 【解析】 【分析】
先将函数cos 29y x π⎛⎫
=- ⎪⎝

转化为7sin 218
y x π⎛⎫
=+
⎪⎝

,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫
⎛⎫⎛
⎫⎛⎫=-
=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝
⎭⎣⎦ ∴要得到函数sin 29y x π⎛
⎫=+ ⎪⎝
⎭的图象,
只需将函数cos 29y x π⎛

=- ⎪⎝

的图象上所有点向右平移
536
π
个单位长度,故选D . 【点睛】
本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.
6.若函数()sin()f x A x ωϕ=+(其中0A >,||)2
π
ϕ<图象的一个对称中心为(
3
π
,0),
其相邻一条对称轴方程为712
x π
=
,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )
A .向右平移6
π
个单位长度 B .向左平移12
π
个单位长度 C .向左平移6
π
个单位长度 D .向右平移
12
π
个单位长度
【答案】B 【解析】 【分析】
由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数()sin y A x ωϕ=+的图象变换规律,诱导公式,得出结论. 【详解】
根据已知函数()()sin f x A x ωϕ=+
(其中0A >,)2π
ϕ<
的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫
-
⎪⎝⎭
, 可得1A =,
1274123
πππω⋅=-, 解得:2ω=. 再根据五点法作图可得23
π
ϕπ⋅+=,
可得:3
π
ϕ=

可得函数解析式为:()sin 2.3f x x π⎛
⎫=+ ⎪⎝
⎭ 故把()sin 23f x x π⎛⎫
=+ ⎪⎝

的图象向左平移
12
π
个单位长度, 可得sin 2cos23
6y x x π
π⎛⎫
=++
= ⎪⎝

的图象, 故选B . 【点睛】
本题主要考查由函数()sin y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数()sin y A x ωϕ=+的图象变换规律,诱导公式的应用,属于中档题.
7.已知函数f (x )=sin 2x +sin 2(x 3
π
+),则f (x )的最小值为( )
A .
12
B .
14
C .
4
D .
2
【答案】A 【解析】 【分析】
先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛
⎫=-+ ⎪⎝
⎭,再求最值. 【详解】
已知函数f (x )=sin 2x +sin 2(x 3
π
+
),
=21cos 21cos 2322
x x π⎛

-+
⎪-⎝⎭
+

=1cos 2111cos 22223x x π⎛⎛
⎫-=-+ ⎪ ⎝⎭⎝⎭
, 因为[]cos 21,13x π⎛⎫
+
∈- ⎪⎝

, 所以f (x )的最小值为12
. 故选:A 【点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
8.已知π1
cos 25
α⎛⎫-= ⎪⎝⎭,则cos2α=( )
A .
725
B .725
-
C .
2325
D .2325
-
【答案】C 【解析】 【分析】
由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】
由π1cos α25
⎛⎫-= ⎪⎝⎭,得1sin α5=,又由2
123cos2α12sin α122525=-=-⨯
=. 故选C . 【点睛】
本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.
9.在OAB ∆
中,已知OB =u u u v 1AB u u u v
=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v
的最小值为( )
A

5
B
C

3
D

2
【答案】A 【解析】 【分析】
根据2OB =u u u r
,1AB =uu u r ,45AOB ∠=
︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得
点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r
.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r
的最小值.
【详解】
在OAB ∆中,已知2OB =u u u r
,1AB =uu u r ,45AOB ∠=︒
由正弦定理可得sin sin AB OB
AOB OAB
=
∠∠u u u r u u u r 代入2sin 22
OAB =
∠,解得sin 1OAB ∠=
即2
OAB π∠=
所以OAB ∆为等腰直角三角形
以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:
则点A 坐标为22⎝⎭
所以22OA =⎝⎭u u u r ,)
2,0OB =u u u
r
因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r
则)
222,022OP λμ
⎛ =+ ⎝⎭
u u u r 222,22λμλ⎛⎫
⎪ ⎪⎝⎭
=
则2
2
22222OP λμλ⎛⎫=++⎛⎫
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
u u u r
2222λλμμ=++
因为23λμ+=,则32μλ=- 代入上式可得
==所以当95λ=时
, min OP ==
u u u r 故选:A 【点睛】
本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.
10.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝
⎭( )
A .5
3-
B .35
-
C .
35
D .
53
【答案】B 【解析】 【分析】
根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 147
2πππαα⎡⎤
⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得答案. 【详解】
由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫
+=++=-+
⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣
⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫
-+=-+ ⎪
⎪⎝⎭⎝⎭
, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤
⎛⎫⎛⎫-=+-=-=- ⎪
⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪
⎝⎭
. 故选:B . 【点睛】
本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.
11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3
C π
<”,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【解析】 【分析】
由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】
充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,
整理得,22
12cos a b C ab
++>,
由基本不等式,222a b ab ab
+≥=,
当且仅当a b =时等号成立, 此时,12cos 2C +>,即1
cos 2C >,解得3
C π<, 充分性得证;
必要性:取4a =,7b =,6c =,则164936291
cos 247562
C +-==>⨯⨯,
故3
C π
<
,但228ab c =<,故3
C π
<
推不出2ab c >.
故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】
本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.
12.已知1tan 4,tan θθ
+=则2sin ()4π
θ+=( )
A .
1
5 B .
14
C .
12
D .
34
【答案】D 【解析】 【分析】
根据同角三角函数的关系化简1
tan 4tan θθ
+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2
sin ()4
π
θ+
求解即可.
由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=, 故1
sin 22
θ=.
所以2sin ()4π
θ+=1cos 222
πθ⎛
⎫-+ ⎪⎝⎭1sin 2324
θ+==. 故选:D 【点睛】
本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.
13.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D
,BD =

1
cos 4
BAC ∠=
,则AD =( ) A .2 B
C
D

2
【答案】A 【解析】 【分析】
先求出sin 4
BAD ∠=,再利用正弦定理求AD. 【详解】
∵2
1cos 12sin 4
BAC BAD ∠=-∠=,
∴sin BAD ∠=
.在ABD ∆中,sin sin AD BD B BAD =∠,
∴sin 2sin B
AD BD BAD =⋅
==∠. 【点睛】
本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.
14.在ABC ∆
中,060,A BC D ∠==是边AB
上的一点,CD CBD =∆的面积
为1,
则BD 的长为( ) A .
32
B .4
C .2
D .1
【答案】C 【解析】
1
sin 1sin
2BCD BCD ∠=∴∠=
2
242
BD BD ∴=-=∴=,选C
15.已知曲线1:sin C y x =,21
:cos 2
3C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )
A .把1C 上各点的横坐标缩短到原来的12
倍,纵坐标不变,再把得到的曲线向右平移3π

单位长度,得到曲线2C
B .把1
C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3
π个单位长度,得到曲线2C
C .把1C 上各点的横坐标缩短到原来的12
倍,纵坐标不变,再把得到的曲线向左平移3π个
单位长度,得到曲线2C
D .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3
π个单位长度,得到曲线2C 【答案】D 【解析】 【分析】
根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】
A 中,将sin y x =横坐标缩短到原来的12
倍得:sin 2y x =;向右平移3π
个单位长度后
得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛


⎫⎛⎫⎛
⎫=-
=-=--=-- ⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭⎝
⎭,A 错误;
B 中,将sin y x =横坐标伸长到原来的2倍得:1sin
2
y x =;向右平移3π
个单位长度后
得:11121sin
sin cos cos 232622632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫
=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣
⎦,B 错
误;
C 中,将sin y x =横坐标缩短到原来的12
倍得:sin 2y x =;向左平移3π
个单位长度后
得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛


⎫⎛⎫⎛
⎫=+
=+=++=+ ⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭⎝⎭
,C 错误;
D 中,将sin y x =横坐标伸长到原来的2倍得:1sin
2
y x =;向左平移3π
个单位长度后
得:1111
sin sin cos cos 232622623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣
⎦,D 正确. 故选:D 【点睛】
本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.
16.函数()sin())f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( ) A .[-2+12k ,4+12k](k ∈Z ) B .[-5+12k ,1+12k](k ∈Z ) C .[1+12k ,7+12k](k ∈Z ) D .[-2+6k ,1+6k](k ∈Z )
【答案】B 【解析】 【分析】
由题意得()23f x sin x πωϕ⎛

=++
⎪⎝

,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6
π
=
ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间. 【详解】
由题意得()()()23f x sin x x sin x πωϕωϕωϕ⎛
⎫=++=++ ⎪⎝
⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=, ∴函数()f x 的周期为12T =, ∴6
π=
ω, ∴()26
3f x sin x π
πϕ⎛⎫=++
⎪⎝⎭.
又函数图象过点()1,2,
∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫
++=+==
⎪ ⎪⎝⎭⎝⎭

∴cos 1ϕ=, ∴2()k k Z ϕπ=∈, ∴()26
3f x sin x π
π⎛⎫=+ ⎪⎝⎭.
由22,2632
k x k k Z π
πππ
ππ-
+≤
+

+∈,
得512112,k x k k Z -+≤≤+∈,
∴()f x 的单调增区间为[]
()512,112k k k Z -++∈. 故选B . 【点睛】
解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.
17.已知函数())(0f x x ωϕω=+>,)22
ππ-
<ϕ<,1
(3A ,0)为()f x 图象的对称中
心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是(
)
A .2(23k -,4
2)3k +,k Z ∈ B .2(23k ππ-,4
2)3k ππ+,k Z ∈
C .2(43k -
,4
4)3
k +,k Z ∈ D .2(43k ππ-,4
4)3
k ππ+,k Z ∈
【答案】C 【解析】 【分析】
由三角函数图像的性质可求得:2
π
ω=
,6
π
ϕ=-
,即()sin(
)26
f x x π
π
=-,再令
222262
k x k ππππ
ππ--+剟,求出函数的单调增区间即可.
【详解】
解:函数())(0f x x ωϕω=+>,)22
ππ
-
<ϕ<, 因为1
(3
A ,0)为()f x 图象的对称中心,
B ,
C 是该图象上相邻的最高点和最低点,
又4BC =,∴2
22
()42T +=,即221216πω
+=,求得2πω=.
再根据123k πϕπ+=g ,k Z ∈,可得6
πϕ=-,()3sin()26f x x ππ
∴=-,
令222262k x k ππππππ--
+剟,求得24
4433
k x k -+剟, 故()f x 的单调递增区间为2(43k -,4
4)3
k +,k Z ∈, 故选:C . 【点睛】
本题考查了三角函数图像的性质及单调性,属中档题.
18.
4
cos2d cos sin x
x x x
π
=+⎰
( )
A
.1) B
1
C
1
D
.2【答案】C 【解析】 【分析】
利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】
因为22cos2cos sin cos sin cos sin cos sin x x x
x x x x x x
-==-++,
∴4
400cos 2d (cos sin )d (sin cos )14cos sin 0
x
x x x x x x x x π
π
π
=-=+=+⎰
⎰,故选C . 【点睛】
本题考查三角恒等变换知与微积分基本定理的交汇.
19.在ABC △中,若a =3,c =7,∠C =60°,则边长b 为 A .5 B .8 C .5或-8 D .-5或8
【答案】B 【解析】
由余弦定理c 2=a 2+b 2-2ab cos C ,得24993b b =+-,即()()850b b -+=, 因为b >0,所以b =8.故选B .
20.将函数sin(2)4
y x π
=-
的图象向左平移
4
π
个单位,所得图象对应的函数在区间(,)m m -上无极值点,则m 的最大值为( )
A .
8
π B .
4
π C .
38
π D .
2
π 【答案】A 【解析】 【分析】
由三角函数的图象变换,求得函数sin 24y x π⎛
⎫=+ ⎪⎝
⎭,求得增区间
3,,88k k k Z ππππ⎡⎤
-++∈⎢⎥⎣⎦
,令0k =,可得函数的单调递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦,进而根据函数sin 24y x π⎛

=+ ⎪⎝

在区间(),m m -上无极值点,即可求解. 【详解】
由题意,将函数sin 24y x π⎛⎫
=- ⎪⎝

的图象向左平移
4
π
个单位, 可得函数sin 2sin 2444y x x πππ⎡⎤
⎛⎫⎛
⎫=+-=+ ⎪ ⎪⎢⎥⎝
⎭⎝
⎭⎣⎦, 令222,2
4
2
k x k k Z π
π
π
ππ-
+≤+

+∈,解得3,88
k x k k Z ππ
ππ-
+≤≤+∈ 即函数sin 24y x π⎛

=+
⎪⎝

的单调递增区间为3,,88k k k Z ππππ⎡⎤
-
++∈⎢⎥⎣⎦

令0k =,可得函数的单调递增区间为3,88ππ⎡⎤
-⎢⎥⎣
⎦, 又由函数sin 24y x π⎛

=+ ⎪⎝

在区间(),m m -上无极值点,则m 的最大值为
8
π
,故选A. 【点睛】
本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟练应用三角函数的图象变换得到函数的解析式,再根据三角函数的性质,求得其单调递增区间是解答的关键,着重考查了运算与求解能力,属于中档试题.。

相关文档
最新文档