竹溪县一中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竹溪县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )
A .{, }
B .{,, }
C .{V|≤V ≤}
D .{V|0<V ≤}
2. 抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )
A .
B .
C .
D .
3. 计算log 25log 53log 32的值为( )
A .1
B .2
C .4
D .8
4. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )
A .(0,1)
B .(e ﹣1,1)
C .(0,e ﹣1)
D .(1,e )
5. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}
6. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能
7. 如图,空间四边形OABC 中,,
,
,点M 在OA 上,且
,点N 为BC 中点,
则
等于( )
A .
B .
C .
D .
8. 已知向量
,
,其中
.则“
”是“
”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件 9. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )
A .若x ∉A ,则y ∉A
B .若y ∉A ,则x ∈A
C .若x ∉A ,则y ∈A
D .若y ∈A ,则x ∉A
10.已知直线34110m x y +-=:与圆22
(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意
一点,则PAB ∆的面积为( )
A . B.
C. D. 11.曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )
A .30°
B .45°
C .60°
D .120°
A .甲
B .乙
C .丙
D .丁
二、填空题
13.设函数f (x )=
的最大值为M ,最小值为m ,则M+m= .
14.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.
①函数f (x )的极大值点为0,4;
②函数f (x )在[0,2]上是减函数; ③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;
⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是 .
15.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,
在90组数对(x i ,y i )(1≤i ≤90,i ∈N *
)中,
经统计有25组数对满足,则以此估计的π值为 .
16.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
17.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.
18.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫
⎨
⎬⎩⎭
项中 的最大值为_________.
三、解答题
19.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *
).
(1)求a 2,a 3,a 4;
(2)猜测数列{a n }的通项公式,并用数学归纳法证明.
20.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
21.已知等差数列{a n},满足a3=7,a5+a7=26.
(Ⅰ)求数列{a n}的通项a n;
(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和S n.
22.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
23.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
24.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨
迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,
线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
竹溪县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:根据几何体的正视图和侧视图,得;
当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12
×2=;
当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;
所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .
【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.
2. 【答案】C
【解析】解:抛物线y 2
=2x 的焦点F (,0),
由点到直线的距离公式可知:
F 到直线x ﹣
y=0的距离d=
=,
故答案选:C .
3. 【答案】A
【解析】解:log 25log 53log 32==1.
故选:A .
【点评】本题考查对数的运算法则的应用,考查计算能力.
4. 【答案】 D
【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k .
由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1, 所以f (x )=lnx+e ,
f ′(x )=,x >0.
∴f (x )﹣f ′(x )=lnx ﹣+e ,
令g (x )=lnx ﹣+﹣e=lnx ﹣,x ∈(0,+∞)
可判断:g (x )=lnx ﹣,x ∈(0,+∞)上单调递增,
g (1)=﹣1,g (e )=1﹣>0, ∴x 0∈(1,e ),g (x 0)=0,
∴x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是(1,e ) 故选:D .
【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.
5. 【答案】A
【解析】解:∵U={0,1,2,3,4},集合A={0,1,3}, ∴C U A={2,4}, ∵B={0,1,4}, ∴(C U A )∪B={0,1,2,4}.
故选:A .
【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
6. 【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值. 7. 【答案】B
【解析】解: ==
=
;
又,
,
,
∴.
故选B .
【点评】本题考查了向量加法的几何意义,是基础题.
8. 【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若
,则
或
所以“”是“”成立的充分而不必要条件。
故答案为:A 9. 【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .
10.【答案】 C
【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.
圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆
的面积为
1
||2
AB d '⋅=,选C . 11.【答案】B
【解析】解:y /=3x 2﹣2,切线的斜率k=3×12
﹣2=1.故倾斜角为45°.
故选B .
【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.
12.【答案】C
【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大, 甲、乙、丙、丁四人的射击环数的方差中丙最小, ∴丙的射击水平最高且成绩最稳定,
∴从这四个人中选择一人参加该运动会射击项目比赛, 最佳人选是丙. 故选:C .
【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.
二、填空题
13.【答案】 2 .
【解析】解:函数可化为f(x)==,
令,则为奇函数,
∴的最大值与最小值的和为0.
∴函数f(x)=的最大值与最小值的和为1+1+0=2.
即M+m=2.
故答案为:2.
14.【答案】①②⑤.
【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x <5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;
因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;
由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,
根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,
综上正确的命题序号为①②⑤.
故答案为:①②⑤.
【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.
15.【答案】.
【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所
围成的弓形面积S 1,由图知,
,又
,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
16.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
17.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得
10×2+10×9
2×c =200,∴c =4.
答案:4 18.【答案】 【解析】
考
点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
三、解答题
19.【答案】
【解析】解:(1)由a n+1=,可得a2==,
a3===,
a4===.
(2)猜测a n=(n∈N*).
下面用数学归纳法证明:
①当n=1时,左边=a1=a,
右边==a,猜测成立.
②假设当n=k(k∈N*)时猜测成立,
即a k=.
则当n=k+1时,a k+1==
==
.
故当n=k+1时,猜测也成立.
由①,②可知,对任意n∈N*都有a n=成立.
20.【答案】
【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,
∴0<x≤8时,y=0.15x;x>8时,y=1.2+log5(2x﹣15)
∴奖金y关于销售利润x的关系式y=
(2)由题意知1.2+log5(2x﹣15)=3.2,解得x=20.
所以,小江的销售利润是20万元.
【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.21.【答案】
【解析】解:(Ⅰ)设{a n}的首项为a1,公差为d,
∵a5+a7=26
∴a6=13,,
∴a n=a3+(n﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴.
22.【答案】
【解析】解:(Ⅰ)由题意得,2c=2,=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N的纵坐标为0,
故k2=k1=0,这与k2≠k1矛盾.
当k1≠0时,直线PM:y=k1(x+2);
由得,
(+4)y2﹣=0;
解得,y M=;
∴M(,),
同理N(,),
由直线MN与y轴垂直,则=;
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.23.【答案】
【解析】解:(1)由已知,切点为(2,0),故有f(2)=0,
即4b+c+3=0.①
f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.
得8b+c+7=0.②
联立①、②,解得c=1,b=﹣1,
于是函数解析式为f(x)=x3﹣2x2+x﹣2.
(2)g(x)=x3﹣2x2+x﹣2+mx,
g′(x)=3x2﹣4x+1+,令g′(x)=0.
当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,
由△=4(1﹣m)≥0,得m≤1.
①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.
②当m<1时,g′(x)=0有两个实根,
x1=(2﹣),x2=(2+),
极大值
当x=(2﹣)时g (x )有极大值;
当x=(2+
)时g (x )有极小值.
【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
24.【答案】(1) 2
4y x =;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222
(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系.
【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)('
'
<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件
),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('
x f 不恒等于的参数的范围.。