内蒙古包头四中等比数列高考重点题型及易错点提醒 百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009
B .1010
C .1011
D .2020
2.已知数列{}n a 满足:11a =,*1()2
n
n
n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
3.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2±
B .2
C .3±
D .3
4.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
5.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45
B .54
C .99
D .81
6.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
A .15
B .10
C .5
D .3
7.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )
A .3
B .12
C .24
D .48
8.设数列{}n a 的前n 项和为n S ,且()*
2n n S a n n N =+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7 9.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( )
A .6
B .16
C .32
D .64
10.已知q 为等比数列{}n a 的公比,且1212a a =-
,31
4
a =,则q =( )
A .1-
B .4
C .12-
D .1
2
±
11.题目文件丢失!
12.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
13.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6
B .7
C .8
D .9
14.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
15.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1
B .2
C .4
D .8
16.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥
B .若13a a =,则12a a =
C .222
1322a a a +≥
D .若31a a >,则42a a >
17.在等比数列{}n a 中,首项11,2a =11
,,232
n q a ==则项数n 为( ) A .3
B .4
C .5
D .6
18.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a 14a =,则
14
m n +的最小值为( ) A .
53
B .
32
C .
43
D .
116
19.已知等比数列{}n a ,7a =8,11a =32,则9a =( )
A .16
B .16-
C .20
D .16或16-
20.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152
B .142
C .132
D .122
二、多选题
21.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
22.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )
A .101a <<
B
.11b <<
C .22n n S T <
D .22n n S T ≥
23.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,13511121
4
a a a ++=,则( ) A .{}n a 必是递减数列 B .531
4
S =
C .公比4q =或
14
D .14a =或
14
24.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列
D .3a ,6a ,9a 成等比数列
25.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a
3a =,则19p s +的最小值为83
D .若1n n t S m S ≤-
≤恒成立,则m t -的最小值为116
26.已知集合{
}*
21,A x x n n N
==-∈,{}*
2,n
B x x n N ==∈将A
B 的所有元素从
小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( )
A .25
B .26
C .27
D .28
27.数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,若22a =,48a =,则10S 的可能值
为( ) A .1023
B .341
C .1024
D .342
28.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列
D .14n
n n a a +-=
29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件
120192020
1,1a a a >>,
201920201
01
a a -<-,下列结论正确的是( ) A .S 2019<S 2020
B .2019202010a a -<
C .T 2020是数列{}n T 中的最大值
D .数列{}n T 无最大值
30.已知数列{}n a 的首项为4,且满足(
)*
12(1)0n n n a na n N ++-=∈,则( )
A .n a n ⎧⎫

⎬⎩⎭
为等差数列 B .{}n a 为递增数列
C .{}n a 的前n 项和1
(1)24n n S n +=-⋅+
D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
2
n n n T +=
31.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =
C .135********a a a a a +++
+=
D .
222
122019
20202019
a a a a a +++= 32.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列
(){}n
f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在
()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )
A .()2
f x x =
B .()2x
f x
=
C .()f x =
D .()ln f x x =
33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫
⎨⎬⋅⎩⎭
的前
n 项和为n T ,*n ∈N ,则下列选项正确的为( )
A .数列{}1n a +是等差数列
B .数列{}1n a +是等比数列
C .数列{}n a 的通项公式为21n
n a =-
D .1n T <
34.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫

⎬⎩⎭
的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
35.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7a
B .8a
C .15S
D .16S
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到2
10111a =,再利用
11,01a q ><<求解即可.
【详解】
根据题意:2022122022...a a a a =, 所以122021...1a a a =,
因为{a n }等比数列,设公比为q ,则0q >,
所以2
12021220201011...1a a a a a ====,
因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,
所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】
关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关
键是根据定义和等比数列性质得出2
10111a =以及11,01a q ><<进行判断.
2.C 【分析】
根据数列的递推关系,利用取倒数法进行转化得1121n n
a a +=+ ,构造11n a ⎧⎫
+⎨⎬⎩⎭
为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=
+,所以两边取倒数得
12121n n n n a a a a ++==+,则11
1121n n a a +⎛⎫+=+ ⎪⎝⎭
, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则111
11122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭
, 所以121n n a =-,故1010
11
211023
a ==-. 故选:C 【点睛】
方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中
1
q
x p =
-)来进行求解. 3.D 【分析】
根据等比数列定义知3
813q =,解得答案.
【详解】
4个数成等比数列,则3
813q =,故3q =.
故选:D. 4.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,
故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 5.C 【分析】
利用等比数列的通项与基本性质,列方程求解即可 【详解】
设数列{}n a 的公比为q ,因为3
41a a q =,所以3q =,所以24
352299a a q q +=+=.
故选C 6.A 【分析】
根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()5
2212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+
⋅++=
()2475log 15a a =⋅=.
故选:A. 7.C 【分析】
题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】
根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为
1a ,则有()717
1238112
a S ⋅-=
=-,解得13a =,中间层灯盏数3
4124a a q ==,
故选:C. 8.A 【分析】
先求出1a ,再当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减后化
简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出
n a ,可求得3a 的值
【详解】
解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减得
1221n n n a a a -=-+,即121n n a a -=-,
所以112(1)n n a a --=-,
所以数列{}1n a -是以2-为首项,2为公比的等比数列,
所以1122n n a --=-⨯,所以1
221n n a -=-⨯+,
所以232217a =-⨯+=-,
故选:A 9.C
【分析】
根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.
【详解】
设等比数列{}n a 的公比为q ,
则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q

所以55
678123()1232a a a a a a q ++=++⋅=⨯=.
故选:C . 10.C 【分析】
利用等比通项公式直接代入计算,即可得答案; 【详解】
()21114
2211
1111
22211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=
⎪⎪⎩⎩
, 故选:C.
11.无
12.C 【分析】
依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】
第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19
的区间,长度和为2
9;第
三次操作去掉四个长度为
127的区间,长度和为427;…第n 次操作去掉12n -个长度为1
3
n 的区间,长度和为1
23
n n -,
于是进行了n 次操作后,所有去掉的区间长度之和为1
122213933n
n n n S -⎛⎫
=++⋅⋅⋅+=- ⎪⎝⎭

由题意,90
2131n
⎛⎫-≥ ⎪⎝⎭,即21lg lg 1031n ≤=-,即()lg3lg21n -≥,解得:11
5.679lg3lg 20.47710.3010
n ≥
=≈--,
又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】
本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 13.B 【分析】
设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得
515(12)
512a S -==-,解得1
531
a =,由此能求出该女子所需的天数至少为7天. 【详解】
设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,
由题意得515(12)
512a S -==-,解得1531a =
, 5
(12)
3120
12
n n S -∴=-,解得2125n . 因为6264=,72128=
∴该女子所需的天数至少为7天.
故选:B 14.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可 【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则31327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 15.C 【分析】
根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】
因为数列{}n a 是等比数列,由17138a a a =,得3
78a =,
所以72a =,因此2
31174a a a ==.
故选:C. 16.C 【分析】
取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】
解:设等比数列的公比为q ,
对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;
对于B 选项,若13a a =,则2
11a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得222
1313222a a a a a +≥⋅=,故正确;
对于D 选项,若31a a >,则()2110a q ->,所以()
1422
1a a a q q -=-,其正负由q 的符
号确定,故D 不确定. 故选:C. 17.C 【分析】
根据等比数列的通项公式求解即可. 【详解】
由题意可得等比数列通项5
1
11122n n n a a q -⎛⎫⎛⎫
=== ⎪ ⎪⎝⎭⎝⎭
,则5n = 故选:C 18.B 【分析】
设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2
2q q =+,解得2q

根据存在两项m a 、n a
14a =
14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】
解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,
22q q ∴=+,
解得2q

存在两项m a 、n a
14a =,
∴14a =,
6m n ∴+=,
m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),

14m n
+的最小值为143242+=.
故选:B . 19.A 【分析】
根据等比数列的通项公式得出6
18a q =,10
132a q
=且10a >
,再由
819a a q ==.
【详解】
设等比数列{}n a 的公比为q ,则6
18a q =,10
132a q
=且10a >
则81916a q a ====
故选:A 20.A 【分析】
根据29T T =得到7
61a =,再由2121512a a a q ==,求得1,a q 即可.
【详解】
设等比数列{}n a 的公比为q ,
由29T T =得:7
61a =, 故61a =,即5
11a q =. 又2
121512a a a q ==,
所以9
1
512
q =, 故12
q =
, 所以()()21112
2
123411...2n n n n n n n T a a a a a a q
--⎛⎫=== ⎪⎝⎭
,
所以n T 的最大值为15
652T T ==.
故选:A.
二、多选题
21.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错;
选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 22.ABC 【分析】
利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】
因为数列{}n a 为递增数列, 所以123a a a <<,
所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,
所以2
1122b b b <=
,即1b <
又2
2234b b b <=,即21
2
2b b =
<, 所以11b >
,即11b <<,故B 正确;
{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++
= 22(121)
2[13(21)]22
n n n n +-++⋅⋅⋅+-=
=,
因为12n n n b b +⋅=,则1
122n n n b b +++⋅=,所以22n n b b +=,
则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+
=1101101122(222)(222)()(21)n n n
b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-
1)1)n n
>-=-, 当n =1
时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时
假设当n=k
时,21)2k k ->
21)k k ->, 则当n=k +1
1121)21)21)2k k k k k ++-=
+-=->
2221(1)k k k >++=+
所以对于任意*n N ∈
,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】
本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 23.BD 【分析】
设设等比数列{}n a 的公比为q ,则0q >,由已知得11121
14
a a ++=,解方程计算即可得答案. 【详解】
解:设等比数列{}n a 的公比为q ,则0q >,
因为2
153
1a a a ==,2311a a q == , 所以511151351515111111121
11114
a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1
142.
a q ⎧
=⎪⎨
⎪=⎩, 当14a =,12q =时,5514131
21412
S ⎛
⎫- ⎪
⎝⎭==-,数列{}n a 是递减数列;
当11
4
a =
,2q 时,531
4
S =
,数列{}n a 是递增数列; 综上,5314
S =. 故选:BD. 【点睛】
本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121
14
a a ++=,进而解方程计算. 24.AD 【分析】
根据等比数列的定义判断. 【详解】
设{}n a 的公比是q ,则1
1n n a a q -=,
A .23513
a a
q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32
a q a =,363a
q a =,在1q ≠时,两者不相等,错误;
C .
24
2a q a =,484
a q a =,在21q ≠时,两者不相等,错误; D .3
6936
a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】
结论点睛:本题考查等比数列的通项公式.
数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,
a a a 仍是等比数列,
实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,
n k k k k a a a a 仍是等比
数列. 25.ABD 【分析】
根据等差中项列式求出1
2
q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;
3a =求出15p s =⎧⎨
=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为
11
4,C 不正确;利用1n n
y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结
果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q
q
q --=,所以6p s +=,
则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1p s =⎧⎨=⎩
,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪
⎝⎭⎛⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n n S S -
∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 26.CD 【分析】
由题意得到数列{}n a 的前n 项依次为2
3
1,2,3,2,5,7,2,9
,利用列举法,结合等差数列
以及等比数列的求和公式,验证即可求解. 【详解】
由题意,数列{}n a 的前n 项依次为2
3
1,2,3,2,5,7,2,9

利用列举法,可得当25n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,2,4,8,16,32,
可得52520(139)2(12)40062462212
S ⨯+-=+=+=-,2641a =,所以2612492a =,
不满足112n n S a +>; 当26n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,2,4,8,16,32,
可得52621(141)2(12)
44162503212
S ⨯+-=+=+=-,2743a =,所以2612526a =,
不满足112n n S a +>; 当27n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,43,2,4,8,16,32,
可得52722(143)2(12)
48462546212
S ⨯+-=+=+=-,2845a =,所以2712540a =,
满足112n n S a +>; 当28n =时,A
B 的所有元素从小到大依次排列构成一个数列{}n a ,
则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,
37,39,41,43,45,2,4,8,16,32,
可得52823(145)2(12)
52962591212
S ⨯+-=+=+=-,2947a =,所以2812564a =,
满足112n n S a +>,
所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】
本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 27.AB 【分析】
首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】
解:因为数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,所以数列{}n a 为等比数列,因为
22a =,48a =,所以2
4
2
4a q a =
=,所以2q =±, 当2q
时11a =,所以10
1012102312
S -==-
当2q =-时11a =-,所以()(
)()
10
1011234112S -⨯--==--
故选:AB 【点睛】
本题考查等比数列的通项公式及求和公式的应用,属于基础题. 28.BD
证明
12
33 BE BA
BC
=+,所以选项B 正确;设BD tBE
=(0
t>),易得
()
11
4
n n n n
a a a a
+-
-=-,显然
1
n n
a a
-
-不是同一常数,所以选项A 错误;数列{
1
n n
a a
-
-}
是以4为首项,4为公比的等比数列,所以
1
4n
n n
a a
+
-=,所以选项D正确,易得3
21
a=,选项C不正确.
【详解】
因为2
AE EC
=,所以
2
3
AE AC
=,
所以
2
()
3
AB BE AB BC
+=+,
所以
12
33
BE BA BC
=+,所以选项B正确;
设BD tBE
=(0
t>),
则当n≥2时,由()()
11
23
n n n n
BD tBE a a BA a a BC
-+
==-+-,所以
()()
11
11
23
n n n n
BE a a BA a a BC
t t
-+
=-+-,
所以()1
11
2
3
n n
a a
t-
-=,()
1
12
3
3
n n
a a
t+
-=,
所以()
11
322
n n n n
a a a a
+-
-=-,
易得()
11
4
n n n n
a a a a
+-
-=-,
显然1
n n
a a
-
-不是同一常数,所以选项A错误;
因为2a-1a=4,1
1
4
n n
n n
a a
a a
+
-
-
=
-,
所以数列{1
n n
a a
-
-}是以4为首项,4为公比的等比数列,
所以
1
4n
n n
a a
+
-=,所以选项D正确,
易得321
a=,显然选项C不正确.
故选:BD
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 29.AB 【分析】
由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定
20191a >,202001a <<,从可判断各选项.
【详解】
当0q <时,2
2019202020190a a a q =<,不成立;
当1q ≥时,201920201,1a a >>,
201920201
01
a a -<-不成立;
故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;
2201920212020110a a a -=-<,故B 正确;
因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】
本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 30.BD 【分析】
由12(1)0n n n a na ++-=得
121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫
⎨⎬⎩⎭
是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于
1
1
1222
n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】
由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫
⎨⎬⎩⎭是以1141a a ==为首项,2为公比的
等比数列,故A 错误;因为11422n n n
a n
-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;
因为23
112222n n S n +=⨯+⨯+
+⋅,342212222n n S n +=⨯+⨯++⋅,所以 2
3
1
2
1222
2
n n n S n ++-=⨯++
+-⋅(
)222122
12
n
n n +-=
-⋅-,故
2(1)24n n S n +=-⨯+,
故C 错误;因为1
11
222
n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
(1)22n n n n n T ++==,
故选:BD 【点晴】
本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 31.ACD 【分析】
由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】
对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;
对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:
13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-+
+-=,故C
正确.
对于D ,斐波那契数列总有21n n n a a a ++=+,则2
121a a a =,
()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,
()220182018201920172018201920172018a a a a a a a a =-=-,2
20192019202020192018a a a a a =-,可得222
12201920202019201920202019
a a a a a a a a
+++==,故D 正确;
故选:ACD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题. 32.AC 【分析】
直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】
设等比数列{}n a 的公比为q .
对于A ,则
2
2
211
12()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭
,故A 是“保等比数列函数”; 对于B ,则
1
11()22()2
n n n n a a a n a n f a f a ++-+==≠ 常数,故B
不是“保等比数列函数”; 对于C
,则
1()
()
n n f a f a +==
=,故C 是“保等比数列函数”;
对于D ,则
11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n n
a a q a q
q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】
本题考查等比数列的定义,考查推理能力,属于基础题. 33.BCD 【分析】
由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公
式可得n a ,1112211
(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】
解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,
可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,
则12n
n a +=,即21n n a =-,
又1112211
(21)(21)2121n n n n n n n n a a +++==-----,可得2
2311111111
111212*********
n n n n T ++=-
+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】
本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 34.AB 【分析】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭
为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为 11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
,通过裂项求和可求得
11
1
n
i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确;
1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确; 因为
11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以11
11111116=1=455494132451n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45
n m =不成立,故选项D 错误.
故选:AB.
【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般. 35.BC
【分析】
根据等差中项的性质和等差数列的求和公式可得出结果.
【详解】
由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,
()
11515815152a a S a +==为定值,但()
()11616891682a a S a a +==+不是定值.
故选:BC.
【点睛】
本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。

相关文档
最新文档