2018年连云港市灌云县中考数学一模试卷含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省连云港市灌云县中考数学一模试卷
一、选择题
1.比2小1的数是
A. 3
B. 1
C.
D. 0
2.下列计算正确的是
A. B. C. D.
3.若式子有意义,在实数范围内有意义,则x的取值范围是
A. B. C. D.
4.一个物体的从不同方向看到的是如图所示的三个图形,则该物体的形状为
A. 圆柱体
B. 棱柱
C. 圆锥
D. 长方体
5.
年龄岁131415161718
频数人数268321
则这些队员年龄的平均数和中位数分别是
A. 16岁、15岁
B. 15岁、14岁
C. 14岁、15岁
D. 15岁、15岁
6.
x012
y8300
则抛物线的顶点坐标是
A. B. C. D.
7.如图,长方形纸片的宽为1,沿直线BC折叠,得到重合部分,,则的
面积为
A. 1
B. 2
C.
D.
8.如图,已知,相邻两条平行直线间的距离相等,若等
腰直角的直角顶点C在上,另两个顶点A、B分别在、
上,则的值是
A. B. C.
D.
二、填空题
9.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数
法表示为______.
10.在元旦晚会的投飞镖游戏环节中,5名同学的投掷成绩单位:环分别是:7、9、9、6、8,则
这组数据的众数是______.
11.某暗箱中放有10个形状大小一样的球,其中有三个红球、若干个白球和蓝球,若从中任取一
个是白球的概率为,则蓝球的个数是______.
12.分解因式:______.
13.如图,,点B在直线b上,且,若,则的
大小为______.
14.如图,在中,,,,将绕点A按
顺时针旋转一定角度得到,当点B的对应点D恰好落在BC边上
时,则CD的长为______.
15.如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为
______.
16.如图,在平面直角坐标系中,的边轴,点A在双曲线上,点B在双
曲线上,边AC中点D在x轴上,的面积为8,则______.
三、解答题
17.化简:
18.解方程:.
19.计算:.
20.某校为了了解九年级学生体育测试成绩情况,以九年级班学生的体育测试成绩为样本,按A,
B,C,D四个等级进行统计,并将结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:说明:A级:~分;B级:~分;C级:~分;D级:60分以下写出D级学生的人数占全班总人数的百分比为______,C级学生所在的扇形圆心角的度数为______;
补全条形图;
若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
21.某商场为了吸引顾客,设计了一种促销活动:在四等分的转盘上依次标有“0元”、“10元”、
“30元”、“50元”字样,购物每满300元可以转动转盘2次,每次转盘停下后,顾客可以获得指针所指区域相应金额的购物券指针落在分界线上不计次数,可重新转动一次,一个顾客刚好消费300元,并参加促销活动,转了2次转盘.
求出该顾客可能落得购物券的最高金额和最低金额;
请用列表法或画树状图法求出该顾客获购物金额不低于50元的概率.
22.如图,将▱ABCD的边AB延长至点E,使,连接DE、EC,DE交BC于点O.
求证: ≌ ;
连接BD,若,试判断四边形DBEC的形状,并说明理由.
23.近年来,共享单车服务的推出如图,极大的方便了城市公民绿色出行,图2是某品牌某型
号单车的车架新投放时的示意图车轮半径约为,其中直线l,,.
求单车车座E到地面的高度;结果精确到
根据经验,当车座E到CB的距离调整至等于人体胯高腿长的时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置,求的长结果精确到
参考数据:,,
24.如图,D为上一点,点C在直径BA的延长线上,且.
判断直线CD与的位置关系,并说明理由.
过点B作的切线交CD的延长线于点E,若,,求的半径长.
25.100
商品名称甲乙
进价元件4090
售价元件60120
设其中甲种商品购进件,商场售完这件商品的总利润为元.
写出y关于x的函数关系式:
该商品计划最多投入8000元用于购买者两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?
实际进货时,生产厂家对甲种商品的出厂价下调a元出售且限定商场最多购购进甲种商品60件,若商场保持同种商品的售价不变,请你根据以上信息及中条件,设计出使该商场获得最大利润的进货方案.
26.如图,已知抛物线经过点和点,
点C为抛物线与y轴的交点.
求抛物线的解析式;
若点E为直线BC上方抛物线上的一点,请求出面积的
最大值.
在条件下,是否存在这样的点,使得为等腰三角形?如果有,请直接写出点D的坐标;如果没有,请说明理由.
27.如图,正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的
结果______;
将图中的正方形AEGH绕点A旋转一定角度,如图,求HD:GC:EB;
把图中的正方形都换成矩形,如图,且已知DA::,求此时HD:GC:EB的值简要写出过程.
答案和解析
【答案】
1. B
2. D
3. A
4. A
5. D
6. C
7. A
8. D
9.
10. 9
11. 2
12.
13.
14. 5
15.
16.
17. 解:原式.
18. 解:
经检验:是原方程的解,
所以原方程的解是.
19. 解:原式
.
20. ;
21. 解:该顾客可能落得购物券的最高金额为100元和最低金额0元;
树状图如图所示:
该顾客获购物金额不低于50元的概率.
22. 解:在平行四边形ABCD中,,,,则.又,
,
四边形BECD为平行四边形,
.
在与中,
,
≌ ;
四边形DBEC为菱形.
证明:由可得,四边形BECD为平行四边形,
又,
四边形DBEC的形状为菱形.
23. 解:如图1,过点E作于点M,
由题意知、,
,
则单车车座E到地面的高度为;
如图2所示,过点作于点H,
由题意知,
则,
.
24. 解:直线CD和的位置关系是相切,
理由是:连接OD,
是的直径,
,
,
,
,
,
,
,
即,
已知D为的一点,
直线CD是的切线,
即直线CD和的位置关系是相切;
,,过点B作的切线交CD的延长线于点E,
,
根据切线长定理可得:,
,
设的半径是x,
,,
∽ ,
,
即,
解得:,
即的半径长为.
25. 解:已知可得:.
由已知得:,
解得:,
,
随x的增大而减小,
当时,y有最大值,最大值为.
故该商场获得的最大利润为2800元.
,
即,其中.
当时,,y随x的增大而减小,
当时,y有最大值,
即商场应购进甲20件、乙商品80件,获利最大.
当时,,,
即商场应购进甲种商品的数量满足的整数件时,获利都一样.当时,,y随x的增大而增大,
当时,y有最大值,
即商场应购进甲种商品60件,乙种商品40件获利最大.
26. 解:将、代入,
得:,解得:,
抛物线的解析式为.
过点E作轴,交BC于点F,如图1所示.
当时,,
点C的坐标为.
设直线BC的解析式为,
将、代入,得:
,解得:,
直线BC的解析式为.
设点E的坐标为,则点F的坐标为,
,
,
当时,面积取最大值,最大值为.
由可知点E的坐标为
为等腰三角形分三种情况如图:
当时,有,
解得:,,
点D的坐标为或;
当时,有,
解得:,
点D的坐标为;
当时,有,
解得:,,
点D的坐标为或
综上所述:当点D的坐标为、、、或时,为等腰三角形.
27. 1::1
【解析】
1. 解:根据题意知,
所以比2小1的数是1,
故选:B.
根据“比2小1”列出算式“”计算可得.
本题主要考查有理数的减法,解题的关键是根据题意列出算式.
2. 解:A、,无法计算,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,故此选项正确;
故选:D.
直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.
此题主要考查了合并同类项以及同底数幂的乘除运算,正确掌握运算法则是解题关键.
3. 解:因为式子有意义,
可得:,
解得:,
故选:A.
根据二次根式的性质,即可求解.
主要考查了二次根式的意义二次根式中的被开方数必须是非负数,否则二次根式无意义当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.
4. 解:主视图和左视图都是长方形,
此几何体为柱体,
俯视图是一个圆,
此几何体为圆柱,
故选:A.
由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.
本题考查了由三视图判断几何体的知识,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.
5. 解:这些队员年龄的平均数是岁,
中位数为第11、12个数据的平均数,即中位数为岁,
故选:D.
根据平均数和中位数的定义求解可得.
本题考查了确定一组数据的平均数,中位数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.
6. 解:
当或时,,当时,,
,解得,
二次函数解析式为,
抛物线的顶点坐标为,
故选:C.
由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
7. 解:如图,作于点D,
纸条为长方形,
,
又长方形纸条折叠,折痕为AC,重叠部分为,
,
,
是等腰三角形,
,,
,
,
的面积,
故选:A.
作于点D,由矩形的性质知,由折叠性质得,据此知,得到,再根据三角形的面积公式可得答案.
本题考查了折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等也考查了等腰三角形的判定定理以及含的直角三角形三边的关系.
8. 解:如图,过点A作于D,过点B作于E,设,
,间的距离为1,
,
,
,
在等腰直角中,,
在和中,
,
≌ ,
,
,
,
,
,
故选:D.
过点A作于D,过点B作于E,根据同角的余角相等求出,然后利用“角角边”证明和全等,根据全等三角形对应边相等可得,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.
9. 解:将4400000用科学记数法表示为:.
故答案为:.
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
10. 解:数据7、9、9、6、8中,9出现的次数最多,
这组数据的众数是:9.
故答案为:9.
根据众数的定义即可求解.
本题考查了众数的概念关键是根据众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
11. 解:某暗箱中放有10个球,从中任取一白球的概率为,
白球的数目为个,
蓝球有:个.
故答案为:2.
根据总球的个数和白球的概率先算出白球的个数,让球的总数减去白球和红球的个数即为蓝球的个数.
此题考查了概率公式,用到的知识点为:部分数目总体数目乘以相应概率.
12. 解:.
直接用平方差公式进行分解平方差公式:.
本题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.
13. 解:,
,
又,
,
故答案为:.
先根据平行线的性质,得出,再根据,即可得到.
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
14. 解:由旋转的性质可得:,
,
是等边三角形,
,
,
.
故答案为:5.
由将绕点A按顺时针旋转一定角度得到,当点B的对应点D恰好落在BC边上,可得,又由,可证得是等边三角形,继而可得,则可求得答案.此题考查了旋转的性质以及等边三角形的判定与性质此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
15. 解:作于H.
四边形ABCD是矩形,
,
,
在和中,
,
≌ ,
,,,设,则,
在中,,
,
,
,
故答案为
作于由 ≌ ,推出,,,设,则,在中,根据,构建方程求出x即可;
本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
16. 解:设A点坐标为,B点的坐标为,
轴,边AC中点D在x轴上,
边AB上的高为,
的面积为8,
,
即
解得,
,
,
,
.
故答案为:.
运用双曲线设出点A及点B的坐标,确定三角形的底与高,利用的面积为8列出式子求解再运用A,B点的纵坐标相等求出k.
本题主要考查了反比例函数系数k的几何意义,解题的关键是运用双曲线设出点A及点B的坐标,利用的面积为8列出式子求解.
17. 先根据完全平方公式和多项式乘多项式法则计算,再合并同类项即可得.
本题主要考查整式的混合运算,解题的关键是熟练掌握完全平方公式和多项式乘多项式法则.18. 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
19. 直接利用二次根式的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.
此题主要考查了实数运算,正确化简各数是解题关键.
20. 解:被调查的学生总人数为人,
级学生的人数占全班总人数的百分比为,
C级学生所在的扇形圆心角的度数为,
故答案为:、;
等级人数为人,
补全图形如下:
估计这次考试中A级和B级的学生共有人.
根据A等级人数及其百分比求得总人数,用D等级人数除以总人数可得其百分比,再用乘以C等级人数所占比例可得答案;
总人数乘以B等级百分比求得其人数,据此补全图形;
总人数乘以样本中A、B等级百分比之和可得.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21. 该顾客可能落得购物券的最高金额为100元和最低金额0元;
画出树状图,利用概率公式计算即可;
本题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比.
22. 根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;
依据四边形BECD为平行四边形,,即可得到四边形DBEC的形状为菱形.
本题考查了平行四边形的性质和判定,菱形的判定,平行线的性质,全等三角形的性质和判定等知识点的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
23. 作于点M,由可得答案;
作于点H,先根据求得的长度,再根据可得答案.
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
24. 连接OD,根据圆周角定理求出,求出,根据切线的判定推出即可;
根据勾股定理求出CE,根据切线长定理求出,根据相似三角形得出方程,求出方程的解即可.
本题考查了切线的性质和判定,切线长定理,圆周角定理,相似三角形的性质和判定的应用,题目比较典型,综合性比较强,难度适中.
25. 根据利润甲商品的单件利润数量乙商品的单件利润数量,即可得出y关于x的函数解析式;
根据总价甲的单价购进甲种商品的数量乙的单价购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再利用一次函数的性质即可解决最值问题;
根据利润甲商品的单件利润数量乙商品的单件利润数量,可得出y关于x的函数解析式,
分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.
本题考查了一次函数的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:
根据数量关系列出关于x的一元一次方程;根据数量关系找出y关于x的函数关系式;根据一次函数的系数分类讨论本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
26. 根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;
过点E作轴,交BC于点F,利用二次函数图象上点的坐标特征可找出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点E的坐标为,
则点F的坐标为,进而可得出EF的长度,利用三角形的面积公式可得出
,配方后利用二次函数的性质即可求出面积的最大值;
分、、三种情况考虑,根据等腰三角形的性质结合两点间的距离公式,即可得出关于m的一元二次或一元一次方程,解之即可得出结论.
本题考查了待定系数法求一次二次函数解析式、二次函数的性质、三角形的面积、等腰三角形的性质、两点间的距离公式以及解一元二次方程,解题的关键是:根据点的坐标,利用待定系数法求出抛物线的解析式;利用三角形的面积找出关于n的函数关系式;分、、三种情况考虑.
27. 解:如图,延长HG交BC于F,
四边形AEGH和ABCD都是正方形,
,,,
,
即,
,
四边形GEBF是矩形,
,
同理可得,
,
是等腰直角三角形,
:GC:::1;
故答案为:1::1;
连接AG、AC,
和都是等腰直角三角形,
:::,,
,
∽ ,
:::,
,
,
在和中,,
≌ ,
,
:GC:::1;
有变化,
连接AG、AC,DA::,
,
∽ ,
:::,,
,
∽ ,
:::,
,
,
::,
∽ ,
::,
:GC:::1.
延长HG交BC于F,由正方形AEGH和正方形ABCD,易证得,可得是等腰直角三角形,即可求得HD:GC:EB的值;
连接AG、AC,由和都是等腰直角三角形,易证得 ∽ 与 ≌ ,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值;
由DA:::1,易证得 ∽ , ∽ , ∽ ,利用相似三角形的对应边成比例与勾股定理即可求得HD:GC:EB的值.
本题是四边形的综合题,考查了相似三角形的判定与性质、正方形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。