人教版高中数学选修(2-2)-3.2《复数代数形式的乘除运算—除法》参考教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.2复数代数形式的乘除运算——除法
教学目标:
掌握复数的除法的运算
教学重点:
掌握复数的除法的运算
教学过程
一、复习:复数的加减法及其几何意义,复数的乘法
二、引入新课:
1.复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的商,记为:(a+bi)÷(c+di)或者
di
c bi a ++ 2.除法运算规则:
①设复数a +bi (a ,b ∈R ),除以c +di (c ,d ∈R ),其商为x +yi (x ,y ∈R ), 即(a +bi )÷(c +di )=x +yi
∵(x +yi )(c +di )=(cx -dy )+(dx +cy )i .
∴(cx -dy )+(dx +cy )i =a +bi . 由复数相等定义可知⎩⎨⎧=+=-.
,b cy dx a dy cx 解这个方程组,得⎪⎪⎩
⎪⎪⎨⎧+-=++=.,2222d c ad bc y d c bd ac x
于是有:(a +bi )÷(c +di )=2222d
c a
d bc d c bd ac +-+++ i . ②利用(c +di )(c -di )=c 2+d 2.于是将di
c bi a ++的分母有理化得: 原式=22
()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+⋅-+-==++-+ 222222
()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++.
∴(a +bi )÷(c +di )=i d c ad bc d c bd ac 2222+-+++.。

相关文档
最新文档