中考数学专题复习 圆压轴八大模型题(2)-切割线互垂
中考数学压轴题:圆中的8个重要模型,有方法更有技巧
中考数学压轴题:圆中的8个重要模型,有⽅法更有技巧
其实在学”隐圆”之前,先要搞懂本⽂罗列的8个重要的圆模型,把握了这些⽅法与技
巧,就能台阶性地提⾼考⽣解决圆问题的能⼒!
关键词:#中考数学# #圆# #模型#
⽂末有获取资料⽅法
现在有很多资料是关于”隐圆”的⽅法归纳,其实在学”隐圆”之前,先要搞懂本⽂罗列的8个重要的
圆模型(共30页),学习都是有个循序渐进的过程。
与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第⼆题的位置上,是
试卷中综合性与难度都⽐较⼤的习题。
⼀般都会在固定习题模型的基础上变化与扩展,本⽂结合近年来各省市中考题,整理了这些习
题的常见的结论,破题的要点,常⽤技巧。
把握了这些⽅法与技巧,就能台阶性地帮助考⽣解决中考压轴题中有关圆的考题。
⽂末有获取资料⽅法
≡部分页⾯预览:
类型 1 弧中点的运⽤(部分页⾯)
类型 2 切割线互垂(部分页⾯)
类型 3 双切线组合(部分页⾯)
类型 4 圆内接等边三⾓形(部分页⾯)
类型 5 三切线组合(部分页⾯)
类型 6 圆外⼀点引圆的切线和直径的垂线(部分页⾯)
类型 7 直径在腰上(部分页⾯)
类型 8 阿⽒圆模型(以后专门有分类讨论,本⽂省略了)。
中考数学—圆的综合的综合压轴题专题复习及答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.3.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.4.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)求CE的长;(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)如图2,连接BF,∵AB为⊙O的直径,∴∠AFB=90°,∴BF∥DE,∵CD=BD,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD , ∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.5.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。
圆压轴八大模型题(2)-切割线互垂
圆压轴题八大模型题(二)泸州市七中佳德学校 易建洪引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型2 切割线互垂在Rt △ABC 中,点E 是斜边AB 上一点,以EB 为直径的⊙O 与AC 相切于点D ,与BC 相交于点F .【分析】(1)在Rt △ADO 中,(10+r)2=r 2+202,得r=15. (2)由DO ∥BC,得DO AO BC AB =,∴402440r r-=得:r=15. (3)在Rt △ADO中,DO=r ,AO=10+r ,由DO ∥BC ,AD AOAC AB=得,r=15. (4)连结DO,DO=BO,∠ODB=∠OBD;由DO ∥BC 得∠CBD=∠ODB,∴∠ABD=∠CBD. (5)由Rt △BCD ∽Rt △BDE 得BD 2=BC?BE. (6)由△ADE ∽△ABD 得AD 2=AE?AB.(1)AD=20,AE=10,求r; (2)AB=40,BC=24,求r. O F E D C B A (3)AC=32,AE=10,求r. (4)∠ABD=∠CBD. (5)DB 2=BC?BE; (6)AD 2=AE?AB. (7)△DCF ≌△DGE; (8)DF 2=CF?BE; (9)AG:AC=1:2,BD=10.求r. (10)DC=12,CF=6, 求r 和BF. O F E D C B A (11)DC=12,CF=6,求CO上任意线段的长. 图(1) 图(2) 图(3)图(4) 图(5) 图(6) A B C GE OF D【分析】(7)由∠EBD=∠FBD 得DE=DF,∴DE=DF,又∠DFC=∠DEG,∠C=∠DGE=90°得△DCF ≌△DGE. (8)由△CDF ∽△DBE 得CF DEDF BE=,且DE=DF,∴DF 2=CF?BE. (9)由△ADG ∽△ABC 得AG:AC=DG:BC=1:2,设DG=k,则DC=DG=k,BC=2k,DB=5k=10,∴k=25,∴BG=BC=2k=45,由Rt △DBG ∽Rt △EBD 得DB 2=GB?EB,∴102=45?EB, ∴EB=55,r=55. (10)∠C=∠CFG=∠CDG=90°得矩形DGFC,∴DG=CF=6,DC=GF=GE=12, ∴在Rt △GEO 中,GO 2+EG 2=EO 2,∴(r-6)2+122=r 2. ∴r=15.GO=15-6=9,由中位线定理得BF=2GO=18.(11)如图,在Rt △DCO 中,CO=221215+=341,GO=15-6=9,由D0∥CB 得,6293CF CP GO OP ===,∴PO=35CO=941. 同理可得图中CO 上其它线段的长度.【典例】(2018·四川成都)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可. 解:(1)证明:如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD , ∵OA =OD ,∴∠ODA =∠OAD , ∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODC =90°,∴OD ⊥BC ,(图2-1)A OGF EDCB图bPAB C G EO FD 图a∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为⊙O 的切线, ∴∠FDC =∠DAF ,∴∠CDA =∠CFD , ∴∠AFD =∠ADB ,∵∠BAD =∠DAF , ∴△ABD ∽△ADF ,∴AB ADAD AF=, 即,AD 2=AB ·AF =xy ,则AD(3)连接EF ,在Rt △BOD 中,sin B =513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r =5,∴AE =10,AB =18, ∵AE 是直径,∴∠AFE =∠C =90°, ∴EF ∥BC ,∴∠AEF =∠B ,∴sin ∠AEF =513AF AE =, ∴AF =AE ?sin ∠AEF =10×5501313=,∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG =1323AD ,∵AD==, 则DG=1323=【点拨】利用直角三角形、相似三角形的边与边之间的和差倍分关系,勾股定理的关系,比例线段的关系等设元建方程求线段的长度;因此善于分解图形,由线与角之间关系,构建基本图形模型,如母子型相似,共边角相似,8字型相似,A 字型相似等。
中考数学专题复习 圆压轴八大模型题学生用word文档良心出品
圆压轴题八大模型题(一)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型1弧中点的运用CD⌒F E.⊥是AD的中点,CEAB于点在⊙O中,点C PABEO中,你会发现这些结论吗?1)在图1(;CP=FP①AP=H=AD;②CH2. AB·CB=AE②AC·=AP·AD=CF ABC相似的三角形吗?2)在图2中,你能找出所有与△(1)(图【典例】,AB,CD,E在⊙O⊥上,=的直径,点(2018·湖南永州)如图,线段AB为⊙OC.CD与线段相交于点F垂足为点D,连接BE,弦BE=BF;CF(1)求证:.求证:的半径为6=4,⊙OABEcos∠BM=,在AB的延长线上取一点M,使2()若O的切线.直线CM是⊙【变式运用】是半圆的直径,AB如图,·四川宜宾)1.(2018EAB于点AC的中点,DE⊥是一条弦,ACD是,=,于点交,于点交且DEACFDBACG若)1-2(图则=.如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别·泸州)(.20182平分∠BAD和∠ADC。
(1)求证:AE⊥DE;(2)设以AD为直径的半圆交AB于F,连接FG值。
=8,求,已知CD=5,AEDF交AE于G AFAD G F CBE9图)(图1-3AD的中点,弦CE⊥ABO的直径,C是(2017·泸州)如图,△ABC内接于⊙O,AB是⊙3.于点H,连结AD,分别交CE、BC于点P、Q,连结BD。
(1)求证:P是线段AQ的中点;的长。
=CEO的半径为5,AQ,求弦若⊙(2),相交于点EBDOABCD内接于⊙,AB是⊙O的直径,AC和?4.(2016泸州)如图,四边形2?且DC=CECA.1)求证:CD;BC=(作APAB(2)分别延长,DC交于点,过点,OBPB的延长线于点F,若=CDCDAF⊥交的长.CD=DF,求5.(2015?泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;的长.,求OF6,CD=5(2)若AE=ACABABPABOC5. =是⊙=的直径,、13是弧,6.如图,上的两点,PAPAB是弧的长;的中点,求(1)如图①,若PAPBC. 是弧的长(2)如图②,若的中点,求ODDABABCOOACBO作⊙内接于⊙的平分线交⊙,且为⊙7.如图,△,过点的直径.∠于点FCDEBBFCDCAPDPAAE,过点于点于点的切线作交的延长线于点.,过点作⊥⊥ABDP;(1)求证:∥PDBCAC 8,求线段的长.(2)若=6,=圆压轴题八大模型题(二)往往位于许多省市中考题中的倒数第二题与圆有关的证明与计算的综合解答题,引言:一般都会在固定习题模型的基础上变化是试卷中综合性与难度都比较大的习题。
中考数学专题复习 圆压轴八大模型题(学生用)(word文档良心出品)
圆压轴题八大模型题(一)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型1 弧中点的运用 在⊙O 中,点C 是⌒AD 的中点,CE ⊥AB 于点E .(1)在图1中,你会发现这些结论吗? ①AP =CP =FP ; ②CH =AD ;②AC 2=AP ·AD =CF ·CB =AE ·A B .(2)在图2中,你能找出所有与△ABC 相似的三角形吗?【典例】(2018·湖南永州)如图,线段AB 为⊙O 的直径,点C ,E 在⊙O 上,=,CD ⊥AB ,垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F . (1)求证:CF =BF ;(2)若cos ∠ABE =,在AB 的延长线上取一点M ,使BM =4,⊙O 的半径为6.求证:直线CM 是⊙O 的切线.【变式运用】1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若=,OHP F EDCBA(图1)(图1-2)则= .2.(2018·泸州)如图,在平行四边形ABCD 中,E 为BC 边上的一点,且AE 与DE 分别平分∠BAD 和∠ADC 。
(1)求证:AE ⊥DE ;(2)设以AD 为直径的半圆交AB 于F ,连接DF 交AE 于G ,已知CD =5,AE =8,求FGAF值。
3. (2017·泸州)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是AD 的中点,弦CE ⊥AB 于点H ,连结AD ,分别交CE 、BC 于点P 、Q ,连结BD 。
2020年中考数学提优专题:《圆:切割线定理》(含答案)
《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABC C.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A. B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。
2024数学中考压轴题-圆(九大题型和解题方法)
专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF =EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若AD =3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF , 在AF 上取一点O , 以OA 为半径作圆, 恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2, 将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1 图2 备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为 °;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为 ;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =,D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
中考数学——圆的综合的综合压轴题专题复习附详细答案
中考数学——圆的综合的综合压轴题专题复习附详细答案一、圆的综合1.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
(2)解:作MG⊥y轴于G,MC⊥x轴于C,∵AM=BM∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5∴在点P运动的过程中,点M到x轴的距离始终为4.5则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,HB=9-3=6,设OP=HQ=x由△BOP∽△QHB,得x2=3×6=8,x=2∴点Q的坐标为(2,9)(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)∴M1M2=92-3=32, Q1Q2=6-4=2线段QM扫过的图形为梯形M1M2Q2Q1其面积为:12×(32+2)×4.5=638.【解析】【分析】根据已知可得出三角形APQ和三角形BPQ都是直角三角形,再根据这个条件结合题意直接解答此题.【详解】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
中考数学——圆的综合的综合压轴题专题复习附答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。
(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M 的位置关系,并说明理由;(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)【答案】(1)OB与⊙M相切;(2)M(-247,247);(3)M(-2,2)【解析】分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=34x+6,设M(a,﹣a),把x=a,y=﹣a代入y=34x+6得出关于a的方程,求出即可.(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据S△ABC=12AO•ME+12BO•MF+12AB•MG=12AO•BO求得r=2,据此可得答案.详解:(1)直线OB与⊙M相切.理由如下:设线段OB的中点为D,如图1,连结MD,∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴806k bb-+=⎧⎨=⎩,解得:k=34,b=6,即直线AB的函数关系式是y=34x+6.∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=34x+6,得:﹣a=34a+6,得:a=﹣24 7,∴点M的坐标为(﹣242477,).(3)如图3,连接ME、MF、MG、MA、MB、MO,∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设ME=MF=MG=r,则S△ABC=12AO•ME+12BO•MF+12AB•MG=12AO•BO.∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB=22AO BO=10,∴12r•8+12r•6+12r•10=12×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,2).点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O 相切.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(2)2【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.4.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可. 详解:(1)证明:连接O 、D 与B 、D 两点, ∵△BDC 是Rt △,且E 为BC 中点, ∴∠EDB=∠EBD .(2分) 又∵OD=OB 且∠EBD+∠DBO=90°, ∴∠EDB+∠ODB=90°. ∴DE 是⊙O 的切线. (2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点, 又∵BD ⊥AC ,∴△ABC 为等腰直角三角形. ∴∠C AB=45°. 过E 作EH ⊥AC 于H , 设BC=2k ,则EH=2k ,AE=5k , ∴sin ∠CAE=10EH AE.点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.5.如图,A 是以BC 为直径的⊙O 上一点,AD ⊥BC 于点D ,过点B 作⊙O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF =EF :(2)求证:PA 是⊙O 的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)22【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴DG=AG,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO =∠BAO , ∵BE 是圆O 的切线, ∴∠EBO =90°, ∴∠FBA +∠ABO =90°, ∴∠FAB +∠BAO =90°, 即∠FAO =90°, ∴PA ⊥OA , ∴PA 是圆O 的切线;(3)过点F 作FH ⊥AD 于点H ,∵BD ⊥AD ,FH ⊥AD , ∴FH ∥BC ,由(2),知∠FBA =∠BAF , ∴BF =AF . ∵BF =FG , ∴AF =FG ,∴△AFG 是等腰三角形. ∵FH ⊥AD , ∴AH =GH , ∵DG =AG , ∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°, ∴四边形BDHF 是矩形, ∴BD =FH , ∵FH ∥BC ∴△HFG ∽△DCG , ∴12FH HG CD DG ==, 即12BD CD =,∴23 2.15,3∵O的半径长为32,∴BC=62,∴BD=1BC=22.3点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.6.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC、CB、BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出AC的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.7.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小. 【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC,由OA=OC,即可求得∠A的度数,然后由圆周角定理,求得∠POC的度数,继而求得答案;(2)因为D为弧AC的中点,OD为半径,所以OD⊥AC,继而求得答案.【详解】(1)连接OC,∵OA=OC,∴∠A=∠OCA=28°,∴∠POC=56°,∵CP是⊙O的切线,∴∠OCP=90°,∴∠P=34°;(2)∵D为弧AC的中点,OD为半径,∴OD⊥AC,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求BD的长.(3)若tan C=2,AE=8,求BF的长.【答案】(1)见解析;(2) 2π;(3)103. 【解析】 分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AE ADE DE ∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C∵OD=OB ∴∠ABC=∠ODB∴∠C=∠ODB ∴OD ∥AC又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF∴EF 是⊙O 的切线(2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600∴△OBD 是等边三角形 ∴∠BOD=600∴BD =6062180ππ⨯= 即BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900 ∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900∴∠C=∠ADE 在Rt △ADE 中, tan 2AE ADE DE ∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5∵OD//AE ∴△ODF ∽△AEF∴ OF OD AF AE = 即:55108BF BF +=+ 解得:BF=103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB =10,sin ∠ABD =35,求BC 的长.【答案】(1)证明见解析;(2)当∠ABC =60°时,△DFG 是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】(1)首先连接AD ,由DE ⊥AB ,AB 是O 的直径,根据垂径定理,即可得到AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ; (2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145.∴BC的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.10.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=123ON=33DN=1;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME ,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到;(3)连AP 、AQ ,DP ⊥AB ,得AC ∥DP ,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值.【详解】解:(1)∵∠BAC =90°,点D 是BC 中点,BC =∴AD =12BC = (2)连DE 、ME ,如图,∵DM >DE ,当ED 和EM 为等腰三角形EDM 的两腰,∴OE ⊥DM ,又∵AD =AC ,∴△ADC 为等边三角形,∴∠CAD =60°,∴∠DAO =30°,∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON =3DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,∵AD =∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形,∴OE =DE =2,OH =1,∵∠M =∠DAE =30°,而MD =ME ,∴∠MDE =75°,∴∠ADM =90°﹣75°=15°,∴∠DNO =45°,∴△NDH 为等腰直角三角形,∴NH=DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.。
中考数学压轴题专题复习——圆的综合的综合及答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)(性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号)A:平行四边形:B:菱形:C:矩形;D:正方形②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.【答案】见解析.【解析】【分析】(1)根据切线长定理即可得出结论;(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;②根据圆外切四边形的对边和相等,即可求出结论;③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【详解】性质探讨:圆外切四边形的对边和相等,理由:如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.求证:AD+BC=AB+CD.证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.故答案为:B,D;②∵圆外切四边形ABCD,∴AB+CD=AD+BC.∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.故答案为:40;③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为4x=8cm,5x=10cm,7x=14cm,8x=16cm.【点睛】本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.2.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,753或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB=3×34×52=34.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC=CD,∴∠BOC=∠COD,∴∠BCO=∠DCO=12∠BCD=75°,∴∠BOC=∠DOC=30°,∴∠OBA=45°,∴∠AOB=90°.连接AC,∴∠DAC=12∠BAD=15°.∵∠ADO=∠OAB﹣∠BAD=15°,∴∠DAC=∠ADO,∴OD∥AC,∴S△OAD=S△OCD.过点C作CH⊥OB于H.在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c ba b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.3.如图,在△ABP 中,C 是BP 边上一点,∠PAC =∠PBA ,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且交BP 于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)23【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC34.四边形ABCD 的对角线交于点E,且AE=EC,BE=ED,以AD 为直径的半圆过点E,圆心为O.(1)如图①,求证:四边形ABCD 为菱形;(2)如图②,若BC 的延长线与半圆相切于点F,且直径AD=6,求弧AE 的长.【答案】(1)见解析;(2)π2【解析】试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且132OF AD ==,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =CG CD =12,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802AE ππ⋅⨯==.点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =33,求FC 的长.【答案】(1)见解析 【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠OCB +∠ACO =90°. ∵OB =OC ,∴∠B =∠OCB. 又∵∠FCA =∠B ,∴∠FCA =∠OCB , ∴∠FCA +∠ACO =90°,即∠FCO =90°, ∴FC ⊥OC , ∴FC 是⊙O 切线.(2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE tan ACE ∠== 设OA =OC =r ,则OE =OA -AE =r -4. 在Rt △OEC 中,OC 2=OE 2+CE 2,即r 2=(r -4)2+2,解得r =8. ∴OE =r -4=4=AE. ∵CE ⊥OA ,∴CA =CO =8, ∴△AOC 是等边三角形, ∴∠FOC =60°,∴∠F =30°. 在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°, ∴OF =2OC =16,∴FC=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC 的长是解题关键.6.如图,已知AB 为⊙O 直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.7.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴2AP=QB+BP=PC+PB,∴2.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB ⊥AC,∴∠BAC=90°,由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;(3)如图③中,作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2, ∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.8.已知:如图,在四边形ABCD 中,AD ∥BC .点E 为CD 边上一点,AE 与BE 分别为∠DAB 和∠CBA 的平分线.(1)请你添加一个适当的条件 ,使得四边形ABCD 是平行四边形,并证明你的结论;(2)作线段AB 的垂直平分线交AB 于点O ,并以AB 为直径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin ∠ABE=sin ∠AGF=45AE AB=, ∵AE=4,∴AB=5, 则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.9.如图①,已知Rt ABC ∆中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O ,过C 作CE 切O 于E ,交AB 于F .(1)若O 的半径为2,求线段CE 的长;(2)若AF BF =,求O 的半径; (3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离. 【答案】(1)42CE =(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6. 【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O 于E ,∴90OEC ∠=︒.∵8AC =,O 半径为2,∴6OC =,2OE =. ∴2242CE OC OE =-=;(2)设O 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =,∴226BC AB AC =-=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.10.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为O 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.①求证:CD CB =;②若030A ∠=,且O 的半径为33+,I 为BCD ∆内心,求OI 的长.【答案】①证明见解析;②23【解析】【分析】①先求出BC CEAC BC=,然后求出△BCE和△ACB相似,根据相似三角形对应角相等可得∠A=∠CBE,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠D,然后求出∠D=∠CBE,然后根据等角对等边即可得证;②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC﹣CI计算即可得解.【详解】①∵BC2=AC•CE,∴BC CE AC BC=.∵∠BCE=∠ECB,∴△BCE∽△ACB,∴∠CBE=∠A.∵∠A=∠D,∴∠D=∠CBE,∴CD=CB;②连接OB、OC.∵∠A=30°,∴∠BOC=2∠A=2×30°=60°.∵OB=OC,∴△OBC是等边三角形.∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则CF=BC×sin30°12=BC,BF=BC•cos30°3=BC,所以,BD=2BF=23⨯BC3=BC,设△BCD内切圆的半径为r,则S△BCD12=BD•CF12=(BD+CD+BC)•r,即12•3BC•12BC12=(3BC+BC+BC)•r,解得:r3223=+()BC233-=BC,即IF233-=BC,所以,CI=CF﹣IF12=BC2332--BC=(23-)BC,OI=OC﹣CI=BC﹣(23-)BC=(3-1)BC.∵⊙O的半径为33+,∴BC=33+,∴OI=(3-1)(33+)=33+3﹣3323-=.【点睛】本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.。
中考圆的综合题八大模型
中考圆的综合题八大模型1、弦长模型弦长模型是圆中常用的一种模型,用于计算弦的长度。
如果已知圆的半径和圆心到弦的距离,可以通过该模型计算弦的长度。
弦长模型公式:d^2+(1/2)^2=r^2+(弦长/2)^2其中,d是圆心到弦的距离,r是圆的半径,弦长是要求的结果。
例题:已知圆的半径为3厘米,圆心到弦的距离为2厘米,求弦的长度。
解:根据弦长模型公式,可得到弦的长度为:√(3^2+2^2)=√13(厘米)2、直径模型直径模型是利用圆的直径求解问题的一种模型。
如果已知圆的直径和圆上任意一点到直径两端点的距离,可以运用直径模型求出圆上任意一点的坐标。
直径模型公式:(x-a)^2+(y-b)^2=r^2其中,(ab)是直径两端点的坐标,r是圆的半径,(xy)是圆上任意一点的坐标。
例题:已知圆的直径两端点的坐标为(-30)和(30),圆的半径为2厘米,求圆上任意一点的坐标。
解:设圆上任意一点的坐标为(xy),根据直径模型公式,可得到:(x+3)^2+y^2=4或(x-3)^2+y^2=43、半径模型半径模型是利用圆的半径求解问题的一种模型。
如果已知圆心和半径,可以运用该模型求出圆上任意一点的坐标。
半径模型公式:x^2+y^2=r^2其中,(xy)是圆上任意一点的坐标,r是圆的半径。
例题:已知圆心为(00),半径为3厘米,求圆上任意一点的坐标。
解:设圆上任意一点的坐标为(xy),根据半径模型公式,可得到:x^2+y^2=94、切线模型切线模型是用于求解圆的切线长度的一种模型。
如果已知圆的半径和圆心到切线的距离,可以运用该模型求出切线的长度。
切线模型公式:d^2+(1/2)^2=r^2+(切线长/2)^2其中,d是圆心到切线的距离,r是圆的半径,切线长是要求的结果。
例题:已知圆的半径为4厘米,圆心到切线的距离为3厘米,求切线的长度。
2024年中考数学压轴题重难点知识剖析及训练—圆与母子型相似:切割线定理反A模型压轴题专题(含解析)
2024年中考数学压轴题重难点知识剖析及训练—圆与母子型相似:切割线定理反A模型压轴题专题(含解析)切割线定理:反A模型1.(北雅)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC =6,tan ∠CDA=,求BE的长.【解答】(1)证明:连OD ,OE ,如图,∵AB 为直径,∴∠ADB =90°,即∠ADO +∠1=90°,又∵∠CDA =∠CBD ,而∠CBD =∠1,∴∠1=∠CDA ,∴∠CDA +∠ADO =90°,即∠CDO =90°,∴CD 是⊙O 的切线;(2)解:∵EB 为⊙O 的切线,∴ED =EB ,OE ⊥DB ,∴∠ABD +∠DBE =90°,∠OEB +∠DBE =90°,图形相似的证明结论因为⎩⎨⎧∠=∠∠=∠DACDCB D D ∴DCB ∆∽DAC ∆①DA DB DC ⋅=2;②相似比=∠=∠DCB A tan tan∴∠ABD=∠OEB,∴∠CDA=∠OEB.而tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.2.(南雅)如图,D为⊙O上一点,点C在直径BA的延长线上,且CD2=CA•CB.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=10,,求BE的长.【解答】(1)证明:如图,连接OD,∵CD2=CA•CB,∴,∵∠C=∠C,∴△DCA∽△BCD,∴∠ADC=∠DBC,∵OB=OD,∴∠BDO=∠DBO,∵AB为⊙O的直径,∴∠BDA=90°,∴∠BDO+∠ODA=∠CDA+∠ODA=90°,∴OD⊥CD,∴CD为O0的切线;(2)∵BE、CE是⊙O的切线,∴ED=EB,∵△DCA∽△BCD,∴∠DBA=∠CDA,∴=tan∠DBA=tan∠CDA=,∴CD=BC=6,设BE=x,则DE=x,CE=x+6.在Rt△CBE中,(x+6)2=x2+102,解得:x=,∴BE=.3.(长郡)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:2PD PB PA=⋅.(3)若4PD=,1tan2CDB∠=,求直径AB的长.【解答】(1)证明:连接OD,OC,∵PC是⊙O的切线,∴∠PCO=90°,∵AB⊥CD,AB是直径,∴弧BD=弧BC,∴∠DOP=∠COP,在△DOP和△COP中,,∴△DOP≌△COP(SAS),∴∠PDO=∠PCO=90°,∵D在⊙O上,∴PD是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵∠PDO=90°,∴∠ADO=∠PDB=90°﹣∠BDO,∵OA=OD,∴∠A=∠ADO,∴∠A=∠PDB,∵∠BPD=∠BPD,∴△PDB∽△PAD,∴,∴PD2=PA•PB;(3)解:∵DC⊥AB,∴∠ADB=∠DMB=90°,∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,∴∠A=∠CDB,∵tan∠CDB=,∴tan A==,∵△PDB∽△PAD,∴===∵PD=4,∴PB=2,PA=8,∴AB=8﹣2=6.4.(明德)如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB,延长AB交DC于点E,CF⊥AB于点F.(1)求证:直线DE与⊙O相切;(2)若EB=2,EC=4,求⊙O的半径及AC、AD的长;(3)在(2)的条件下,求阴影部分的面积.【解答】解:(1)连接OC;∵AD⊥DC,∴∠DAC+∠ACD=90°;又∵AC平分∠DAB,OA=OC,∴∠DAC=∠CAO,∠CAO=∠ACO,∴∠DAC=∠ACO,∴∠ACD+∠ACO=90°,即OC⊥DC,∴直线DE与⊙O相切.(2)∵EC是⊙O的切线,∴EC2=EB•EA,而EC=4,EB=2,∴EA=8,AB=8﹣2=6;∴⊙O的半径为3.∵AC平分∠DAE,∴,∴,∴AD=2DC(设为x);∵AC平分∠DAB,CD⊥AD,CF⊥AB,∴CD=CF;在△ADC与△AFC中,,∴△ADC≌△AFC(HL),∴AF=AD=2x,BF=6﹣2x;∵AB为⊙O的直径,∴∠ACB=90°;由射影定理得:CF2=AF•BF,即x2=2x(6﹣2x),解得:x=,∴AD=;由勾股定理得:,∴AC=,即⊙O的半径及AC、AD的长分别为3,,.(3)∵,,∴.5.(雅礼)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有一点E,且EF=ED.(1)求证:DE是⊙O的切线(2)若tan A=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求⊙O的半径和CD的长.【解答】(1)证明:连接OD,如图,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)解;线段AB、BE之间的数量关系为:AB=3BE.证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE,∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴,∵Rt△ABD中,tan A==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)解:设BE=x,则DE=EF=2x,AB=3x,半径OD=x,∵OF=1,∴OE=1+2x,在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴AB=3x=6,∴圆O的半径为3.过点O作OH⊥CD,∵OC=OD,∴CD=2CH,在Rt△OCF中,CF==,OH==,在Rt△OCH中,tan∠OCH===,∴CH=3OH=,∴CD=2CH=.6.(青竹湖)如图,已知AB是⊙O的直径,直线AC与⊙O相切于点A,过点B作BD∥OC交⊙O于点D,连接CD并延长交AB的延长线于点E.(1)求证:CD是⊙O的切线.(2)求证:DE2=EB•EA;(3)若BE=1,,求线段AD的长度.【解答】解:(1)∵BD∥OC,∴∠DBO=∠COA,∠ODB=∠COD,∵OB=OD,∴∠DBO=∠ODB,∴∠COA=∠COD,在△COA和△COD中,,∴△COA≌△COD(SAS),∴∠CAO=∠CDO,∵AC是⊙O的切线,∴∠CAO=90°=∠CDO,即OD⊥EC,∵OD是⊙O的半径,∴EC是⊙O的切线;(2)∵EC是⊙O的切线,∴∠ODE=90°,即∠EDB+∠ODB=90°,又∴AB是⊙O的直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,又∵∠ODB=∠OBD,∴∠EDB=∠EAD,又∵∠E=∠E,∴△EBD∽△EDA,∴=,即DE2=AE•BE;(3)∵∠ACO+∠COA=90°,∠BAD+∠OBD=90°,而∠OBD=∠ODB=∠COD=∠COA,∴∠ABD+∠BAD=90°,∴∠BAD=∠ACO,由△EBD∽△EDA,∴==tan∠BAD=,∵BE=1,∴DE=2,由DE2=AE•BE得,22=1×AE,∴AE=4,∴AB=4﹣1=3,设BD=a,则AD=2a,由勾股定理得,BD2+AD2=AB2,即a2+(2a)2=32,解得a=,∴AD=2a=.7.(北雅)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.【解答】(1)证明:连接BE,∵点P是△ABC的内心,∴∠BAD=∠CAD.又∵FG切⊙O于E,∴∠BEF=∠BAD.又∵∠DBE=∠CAD,∴∠BEF=∠DBE.∴BC∥FG.(2)解:连接BP,则∠ABP=∠CBP.∵∠BPE=∠BAP+∠ABP=∠PBC+∠EBD,∴∠BPE=∠PBE.∴BE=PE.在△ABE和△BDE中,∠BAE=∠EBD,∠BED=∠AEB,∴△ABE∽△BDE.∴=.∴BE2=AE•DE.∴PE2=AE•DE.(3)解:∵FE2=FB•FA=FB(FB+AB),而FE=AB,∴AB2=3(3+AB).设AB=x,则x2﹣3x﹣9=0,解之得x=.∴AB=(取正值).由(1)在△AFG中,BC∥FG,∴.∴AC==×=1+.∴AG=AC+CG=3+.8.(青竹湖)如图,⊙O经过△ABC的顶点A、C,并与AB边相交于点D,过点D作DF∥BC,交AC于点E,交⊙O于点F,连接DC,点C为弧DF的中点.(1)求证:BC为⊙O的切线;(2)若⊙O的半径为3,DF=4,求CE•CA的值;(3)在(2)的条件下,连接AF,若BD=AF,求AD的长.【解答】(1)证明:连接CO并延长交⊙O于G,连接DG,如图:∵CG为直径,∴∠GDC=90°,∴∠DCG+∠DGC=90°,∵∠DGC=∠BAC,点C为弧DF的中点,∴∠CDF=∠BAC,∴∠DGC=∠CDF,∴∠DCG+∠CDF=90°,∵DF∥BC,∴∠CDF=∠DCB,∴∠DCG+∠DCB=90°,∴OC⊥BC,又∵OC是⊙O的半径,∴BC为⊙O的切线;(2)解:连接OC交DF于M,∵C为弧DF的中,∴OC⊥DF,∴DM=MF=DF=2,∵⊙O的半径为3,∴OM===1,∴CM=OC﹣OM=3﹣1=2,∴DC2=DM2+CM2==12,∵,∴∠DAC=∠CAF,∵∠CDF=∠CAF,∴∠CDF=∠DAC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴,∴CD2=CE•CA,∴CE•CA=12;(3)解:连接CF,∵四边形ADCF内接于⊙O,∴∠ADC+∠AFC=180°,又∵∠BDC+∠CDA=180°,∴∠AFC=∠BDC,∵,∴CD=CF=2,又∵BD=AF,∴△BDC≌△AFC(SAS),∴BC=AC,∠BCD=∠ACF,∵∠ACF=∠ADF,∴∠BCD=∠ADF,∵DF∥BC,∴∠CDF=∠BCD,∴∠CDF=∠ADF,∴AF=CF,∴,BD=CF=2,∴,∴AC=DF=4=BC,∵∠BCD=∠CDF=∠CAF=∠DAC,∠DBC=∠ABC,∴△DBC∽△CBA,∴,∴BC2=BD•AB,∴•AB,∴AB=,∴AD=AB﹣BD==.9.(麓山国际)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.【解答】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴=.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合题意,舍去).∴PC=4k=4×6=24.10.(青竹湖)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为5,sin B=,求CD和AD的长;(3)在(2)的条件下,线段DF分别交AC,BC于点E,F且∠CEF=45°,求CF的长.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,又∵OC是半径,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sin B==,∴AC=6,∴BC==8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,则OD=5+3x,Rt△OCD中,OC2+CD2=OD2,∴52+(4x)2=(5+3x)2,∴x=0(舍)或x=,∴AD=,CD=;(3)解:∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴=,∴a=,∴CF=.。
备战中考数学—圆的综合的综合压轴题专题复习及答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,OP=5k=5,解得:k=5,OE=OC=5,在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴EF=2HE=32.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s,即可求出DP;(2)由正方形PQMN与△ABC重叠部分图形为五边形,可知点P在DE上,求出DP=t﹣1,PQ=3,根据MN∥BC,求出FN的长,从而得到FM的长,再根据S=S梯形FMHD+S矩形DHQP,列出S与t的函数关系式即可;(3)当圆与边PQ相切时,可求得r=PE=5﹣t,然后由r以0.2c m/s的速度不断增大,r=1+0.2t,然后列方程求解即可;当圆与MN相切时,r=CM=8﹣t=1+0.2t,从而可求得t的值.详解:(1)由勾股定理可知:AB22AC BC.∵D、E分别为AB和BC的中点,∴DE=12AC=4,AD=12AB=5,∴点P在AD上的运动时间=55=1s,当点P在线段DE上运动时,DP段的运动时间为(t﹣1)s.∵DE段运动速度为1c m/s,∴DP=(t﹣1)cm.故答案为t﹣1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ 相切时,r =PE ,由(1)可知,PD =(t ﹣1)cm ,∴PE =DE ﹣DP =4﹣(t ﹣1)=(5﹣t )cm .∵r 以0.2c m/s 的速度不断增大,∴r =1+0.2t ,∴1+0.2t =5﹣t ,解得:t =103s . ②当圆与MN 相切时,r =CM .由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.3.如图,△ABC内接于⊙O,弦AD⊥BC,垂足为H,连接OB.(1)如图1,求证:∠DAC=∠ABO;(2)如图2,在弧AC上取点F,使∠CAF=∠BAD,在弧AB取点G,使AG∥OB,若∠BAC=600,求证:GF=GD;(3)如图3,在(2)的条件下,AF、BC的延长线相交于点E,若AF:FE=1:9,求sin∠ADG的值。
人教备战中考数学—圆的综合的综合压轴题专题复习含详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35 422 -=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.2.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC.(1)判断直线BE与⊙O的位置关系,并证明你的结论;(2)若sin∠ABE=33,CD=2,求⊙O的半径.【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3.【解析】分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下:连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC.∵OD=OE,∴∠OED=∠ODE.又∵∠ABE=∠DBC,∴∠ABE=∠OED,∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°,∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;(2)连接EF,方法1:∵四边形ABCD是矩形,CD=2,∴∠A=∠C=90°,AB=CD=2.∵∠ABE=∠DBC,∴sin∠CBD=33 sin ABE∠=∴23DCBD sin CBD∠==,在Rt △AEB 中,∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, 由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为3.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.4.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD . (1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233π【解析】 【分析】(1)根据EF =BD 可得EF =BD ,进而得到BE DF ,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF ,根据切线的性质及垂径定理求出GF 、GE 的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴EF=BD∴BE DF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=3BE所对圆心角=60°.∴弧BE=163π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.5.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.6..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析363 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:r=3;(3)①当点F在线段AC上时,如图3所示,连接DE、DG,=-==-333,3933FC r GC FC r②当点F在线段AC的延长线上时,如图4所示,连接DE、DG,===-333,3339FC r GC FC r两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r -+-<整理得:25113180r r -+<解得:6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图,△ABC 中,AC =BC =10,cosC =35,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E .(1)当⊙P 与边BC 相切时,求⊙P 的半径. (2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409R =;(2)25880320x y x x x =-++(3)505- 【解析】【分析】 (1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC =35,则sinC =45,sinC =HP CP =10R R -=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x x x -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=50﹣105,相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.8.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.9.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD =,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN,在Rt△AHP中,tanA=12PHAH =,设PH=y,AH=2y,y2+(2y)2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt△MPH中,()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题;(2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。
中考数学——圆的综合的综合压轴题专题复习及答案解析
中考数学——圆的综合的综合压轴题专题复习及答案解析一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,∴∠=∠,EDB DCB∴V∽DBECDBV,CD DB∴=,BD BE2BD CD BE∴=⋅,2∴=⋅.AC CD BE【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)3【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC=23.5.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD 平分∠ABC(2)提示:延长BC 与AD 相交于点F,证明△BCE ≌△ACF,BE=AF=2AD(3)连接OD,交AC 于H.简要思路如下:设OH 为1,则BC 为2,OB=OD=2 , DH=21-, DE BE =DH BCDE BE =212-6.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD ,可求出∠BAD 的度数,再根据AD=BD ,可证得△ABD 是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD ,得出ID=BD ,再根据AB=BD ,即可证得结论;(3)连接DO ,延长DO 根据题意可知点I 随之运动形成的图形式以D 为圆心,DI 1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.7.四边形ABCD 的对角线交于点E,且AE=EC,BE=ED,以AD 为直径的半圆过点E,圆心为O.(1)如图①,求证:四边形ABCD 为菱形;(2)如图②,若BC 的延长线与半圆相切于点F,且直径AD=6,求弧AE 的长.【答案】(1)见解析;(2)π2【解析】试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且132OF AD ==,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =CG CD =12,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴¶3031802AE ππ⋅⨯==.点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.8.如图AB 是△ABC 的外接圆⊙O 的直径,过点C 作⊙O 的切线CM ,延长BC 到点D ,使CD=BC ,连接AD 交CM 于点E ,若⊙OD 半径为3,AE=5, (1)求证:CM ⊥AD ; (2)求线段CE 的长.【答案】(1)见解析;(2)5【解析】分析:(1)连接OC,根据切线的性质和圆周角定理证得AC垂直平分BD,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可.详解:证明:(1)连接OC∵CM切⊙O于点C,∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=1AD2∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE 2=AE×DE ∴CE=5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.9.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为3. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =.∵tan ∠CBD =tan ∠ABE ,∴22222DC AE AEAE BC AB ,,=∴=∴=, 由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =32, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴22222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为32.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.10.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积; (2)若3tan 2AED ∠=,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】 【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF ADEF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值. 【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH , (2+a )2=(6+a )(2﹣a ),解得a =222±-, ∴a =222-, EH=22,S △ADE =1622AD EH =n n ;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x ∵DF ∥BE ∴AF ADEF BD=∴622AF x ==3 ∴AF =6x在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x =255 AE =8x =1655(3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH , ∴∠DFO=∠EDH ∴△ODF ≌△HED ∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH (2)2=(6+a )•(2﹣a ) 解得a =±232- m =23当点E 为等腰直角三角形直角顶点时,如图同理得△EFG ≌△DEH设DH =a ,则GE =a ,EH =FG =2+a 在Rt △ABE 中,EH 2=AH•BH (2+a )2=(6+a )(2﹣a ) 解得a =222± ∴m =2当点F 为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)-解得a=±71m=71-【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.11.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∆中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求»BD的长.(3)若tan C=2,AE=8,求BF的长.【答案】(1)见解析;(2) 2π;(3)10 3.【解析】分析:(1)连接OD,根据等腰三角形的性质:等边对等角,得∠ABC=∠C,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可;(3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AEADE DE∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C ∵OD=OB ∴∠ABC=∠ODB ∴∠C=∠ODB ∴OD ∥AC又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF ∴EF 是⊙O 的切线 (2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600 ∴△OBD 是等边三角形 ∴∠BOD=600∴»BD=6062180ππ⨯= 即»BD的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900在Rt △DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900 ∴∠C=∠ADE 在Rt △ADE 中, tan 2AEADE DE∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5 ∵OD//AE ∴△ODF ∽△AEF ∴OF OD AF AE = 即:55108BF BF +=+解得:BF=103即BF的长为103.点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或1223+【解析】【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF=.②当△CDH∽△MFB时,DH CDFB MF=,分别构建方程即可解决问题;【详解】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=12∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=3DM=3,∴OD=OC﹣CD=4﹣3,∴AD=OA+OD=8+4﹣3=12﹣3,在Rt△ADP中,DP=AD•tan30°=(12﹣3)×33=43﹣1,∴PM=PD﹣DM=4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 3432=- ,∴DH =63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE 的长为32; (2)阴影部分的面积为32π 【解析】(1)OE=32 (2)S=32π15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=34[x2+(m+n)x+mn]=34×(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。
圆综合的八大模型
• (2) 若DC+DA=6,⊙O的直径为10,求AB的长度.
精选版课件ppt
17
• 【练习2】直角梯形ABCD中,∠BCD=90°, AB=AD+BC,AB为直径的圆交BC于E,连OC、BD交 于F.
• ⑴求证:CD为⊙O的切线
• ⑵若BE 3 ,求 BF 的值
为 O上一点,点C在直径BA的延长线上,且
∠CDA=∠CBD.
• (1)求证:CD是⊙O的切线;
• (2)过点B作 O的切线交CD的延长线于点E,若
BC=6,tan∠CDA= 2 ,求BE的长 3
精选版课件ppt
7
• 【练习2】如图,AB为⊙O的直径,C、D为 ⊙O上的两点,D是弧AC的中点,,过D作直 线BC的垂线交直线AB于点E,F为垂足.
• 【解决问题的思维方法是】
A
精选版课件ppt
E F B
O
D
C
12
• 【练习1】(2011贵州安顺,26,12分)已知:
如图,在△ABC中,BC=AC,以BC为直径的⊙O与 边AB相交于点D,DE⊥AC,垂足为点E.
• ⑴求证:点D是AB的中点;
• ⑵判断DE与⊙O的位置关系,并证明你的结论;
• ⑶若⊙O的直径为18,cosB = 1 ,求DE的长. 3
精选版课件ppt
13
• 【练习2】(2012•肇庆)如图,在△ABC中, AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D, 连接BE、AD交于点P.求证:
• (1)D是BC的中点;
• (2)△BEC∽△ADC;
• (3)AB•CE=2DP•AD.
精选版课件ppt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆压轴题八大模型题(二)引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题的位置上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型2 切割线互垂在Rt △ABC 中,点E 是斜边AB 上一点,以EB 为直径的⊙O 与AC 相切于点D ,与BC 相交于点F .【分析】(1)在Rt △ADO 中,(10+r)2=r 2+202,得r=15. (2)由DO ∥BC,得DO AO BC AB =,∴402440rr-=得:r=15. (3)在Rt △ADO 中,DO=r ,AO=10+r ,由DO ∥BC ,AD AOAC AB=得,r=15. (4)连结DO,DO=BO,∠ODB=∠OBD;由DO ∥BC得∠CBD=∠ODB,∴∠ABD=∠CBD.(5)由Rt △BCD ∽Rt △BDE 得BD 2=BC ⋅BE.(6)由△ADE ∽△ABD 得AD 2=AE ⋅AB.【分析】(7)由∠EBD=∠FBD 得DE=DF,∴DE=DF,又∠DFC=∠DEG,∠C=∠DGE=90°得△DCF ≌△DGE.(1)AD=20,AE=10,求r; (2)AB=40,BC=24,求r. O F E D C B A (3)AC=32,AE=10,求r. (4)∠ABD=∠CBD. (5)DB 2=BC ⋅BE; (6)AD 2=AE ⋅AB. (7)△DCF ≌△DGE; (8)DF 2=CF ⋅BE; (9)AG:AC=1:2,BD=10.求r. (10)DC=12,CF=6, 求r 和BF. O F E D C B A (11)DC=12,CF=6,求CO 上任意线段的长. 图(1) 图(2) 图(3)图(4) 图(5) 图(6) A B C GE OF D(8)由△CDF ∽△DBE 得CF DE DF BE=,且DE=DF,∴DF 2=CF ⋅BE. (9)由△ADG ∽△ABC 得AG:AC=DG:BC=1:2,设DG=k,则DC=DG=k,BC=2k,DB=5k=10,∴k=25,∴BG=BC=2k=45,由Rt △DBG ∽Rt △EBD 得DB 2=GB ⋅EB,∴102=45⋅EB, ∴EB=55,r=55. (10)∠C=∠CFG=∠CDG=90°得矩形DGFC,∴DG=CF=6,DC=GF=GE=12,∴在Rt △GEO 中,GO 2+EG 2=EO 2,∴(r-6)2+122=r 2. ∴r=15.GO=15-6=9,由中位线定理得BF=2GO=18.(11)如图,在Rt △DCO 中,CO=221215+=341,GO=15-6=9,由D0∥CB 得,6293CF CP GO OP ===,∴PO=35CO=941. 同理可得图中CO 上其它线段的长度.【典例】(2018·四川成都)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可. 解:(1)证明:如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD , ∵OA =OD ,∴∠ODA =∠OAD , ∴∠ODA =∠CAD ,∴OD ∥AC ,∵∠C =90°,∴∠ODC =90°,∴OD ⊥BC , ∴BC 为圆O 的切线;(图2-1)A OGF EDCB图bPAB C G EO FD 图a(2)连接DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB AD AD AF=,即,AD2=AB·AF=xy,则AD =xy(3)连接EF,在Rt△BOD中,sin B=513 ODOB=,设圆的半径为r,可得5813rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×550 1313=,∵AF∥OD,∴501013513 AG AFDG OD===,即DG=1323AD,∵AD=5030131813AB AF=⨯=g,则DG=1330133013 23⨯=.【点拨】利用直角三角形、相似三角形的边与边之间的和差倍分关系,勾股定理的关系,比例线段的关系等设元建方程求线段的长度;因此善于分解图形,由线与角之间关系,构建基本图形模型,如母子型相似,共边角相似,8字型相似,A字型相似等。
当出现求线段的一部分,还要考虑用局部占总体的比例来求解。
【变式运用】1.(2018⋅泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.解:(1)证明:∵PC 是⊙O 的切线, ∴OC ⊥PC ,∴∠PCO =90°, ∵AB 是直径,EF =FD ,∴AB ⊥ED ,∴∠OFD =∠OCP =90°, ∵∠FOD =∠COP ,∴△OFD ∽△OCP , ∴=,∵OD =OC ,∴OC 2=OF •OP .(2)解:如图作CM ⊥OP 于M ,连接EC 、EO .设OC =OB =r . 在Rt △POC 中,∵PC 2+OC 2=PO 2, ∴(4)2+r 2=(r +4)2,∴r =2,∵CM ==,∵DC 是直径,∴∠CEF =∠EFM =∠CMF =90°, ∴四边形EFMC 是矩形, ∴EF =CM =,在Rt △OEF 中,OF ==, ∴EC =2OF =,∵EC ∥OB ,∴==,∵GH ∥CM ,∴==, ∴GH =.2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.解:(1)证明:连接OC ,如图,∵AC 平分∠BAD , ∴∠1=∠2,∵OA =OC ,∴∠1=∠3, ∴∠2=∠3,∴OC ∥AD , ∵ED 切⊙O 于点C ,∴OC ⊥DE , ∴AD ⊥ED ;图 c(图2-2)(图2-3)(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB ===2,∴⊙O 的半径为.3.(2018·江苏苏州)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接O C.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,(图2-4)图e图d∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.。