2019-2020上海上海理工大学附属初级中学数学中考试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y k 在 x
第一象限的图象经过点 D,交 BC 于 E,若点 E 是 BC 的中点,则 OD 的长为_____.
19.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处,如果 AB 2 ,那么 BC 3
的面积为
1 2
k2
,然后
两个三角形面积作差即可求出结果.
【详解】
解:根据反比例函数
k
的几何意义可知:
AOP
的面积为
1 2
k1

BOP
的面积为
1 2
k2

∴ AOB
的面积为
1 2
k1
1 2
k2 ,∴
1 2
k1
1 2
k2
4
,∴ k1
k2
8.
故答案为 8.
【点睛】
本题考查反比例函数 k 的几何意义,解题的关键是正确理解 k 的几何意义,本题属于基础
3.B
解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B. 【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
A.80 分
B.85 分
C.90 分
D.80 分和 90 分
3.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接
CD .若 B 34 ,则∠BDC 的度数是( )
(学以致用)
如图 3,在四边形 ABCD 中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E 是边
AB 上一点,当∠DCE=45°,BE=2 时,则 DE 的长为

22.甲乙两人做某种机械零件,已知甲每小时比乙多做 4 个,甲做 120 个所用的时间与乙 做 100 个所用的时间相等,求甲乙两人每小时各做几个零件? 23.如图,在 Rt△ACB 中,∠C=90°,AC=3cm,BC=4cm,以 BC 为直径作⊙O 交 AB 于点 D. (1)求线段 AD 的长度; (2)点 E 是线段 AC 上的一点,试问:当点 E 在什么位置时,直线 ED 与⊙O 相切?请说明 理由.
6.D
解析:D 【解析】 【分析】 运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】 解:∵关于 x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,
k 1≠0 ∴ =12 -4(k 1) 1 0 ,
解得:k≤ 5 且 k≠1. 4
故选:D. 【点睛】
此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键
交于点 B、C,点 C 坐标为(8,0),连接 AB、AC.
(1)请直接写出二次函数 y=ax2+ 3 x+c 的表达式; 2
(2)判断△ABC 的形状,并说明理由; (3)若点 N 在 x 轴上运动,当以点 A、N、C 为顶点的三角形是等腰三角形时,请写出此时 点 N 的坐标; (4)如图 2,若点 N 在线段 BC 上运动(不与点 B、C 重合),过点 N 作 NM∥AC,交 AB 于 点 M,当△AMN 面积最大时,求此时点 N 的坐标.
故选:B. 【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列
出不等式关系式即可求解.
10.D
解析:D 【解析】
【分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率) 可以反映水面升高的速度;因为 D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面 积小,所以在均匀注水的前提下是先快后慢; 故选 D. 【点睛】 此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
A. 68
B.112
C.124
D.146
4.已知平面内不同的两点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,则 a 的值为
() A.﹣3
B.﹣5
C.1 或﹣3
D.1 或﹣5
5.如图,直线 l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线 l1 上,两直 角边分别与直线 l1、l2 相交形成锐角∠1、∠2 且∠1=25°,则∠2 的度数为( )
24.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点 D,DE⊥BC 于点 E.
(1)试判断 DE 与⊙O 的位置关系,并说明理由;
(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3 ,DF=3,求图中阴影部分的面积.
25.如图 1,已知二次函数 y=ax2+ 3 x+c(a≠0)的图象与 y 轴交于点 A(0,4),与 x 轴 2
解得:n=5,
∴这个正多边形的每一个外角等于: 360 =72°. 5
故选 C. 【点睛】 此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2) •180°,外角和等于 360°.
2.D
解析:D 【解析】 【分析】 先通过加权平均数求出 x 的值,再根据众数的定义就可以求解. 【详解】 解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3 ∴该组数据的众数是 80 分或 90 分. 故选 D. 【点睛】 本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列 出方程.通过列方程求出 x 是解答问题的关键.

x
0)
的图象分别交于 A 、 B 两点,连接 OA 、 OB ,已知 OAB 的面积为 4,则
k﹣1 k2 ________.
14.如图,在 Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点 C 顺时针旋转至
△A′B′C,使得点 A′恰好落在 AB 上,则旋转角度为_____.
5.C
解析:C 【解析】 【分析】 依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2= ∠3=65°. 【详解】 如图,∵∠1=25°,∠BAC=90°, ∴∠3=180°-90°-25°=65°, ∵l1∥l2, ∴∠2=∠3=65°,
故选 C. 【点睛】 本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.
tan∠DCF 的值是____.
20.如图,矩形 ABCD 中,AB=3,BC=4,点 E 是 BC 边上一点,连接 AE,把∠B 沿 AE 折 叠,使点 B 落在点 处,当△ 为直角三角形时,BE 的长为 .
三、解答题
21.(问题背景)
如图 1,在四边形 ABCD 中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点 E、F 分别是边 BC、CD 上的点,且∠EAF=60°,试探究图中线段 BE、EF、FD 之间的数量关
11.D
解析:D 【解析】 ∵方程 2x+a﹣9=0 的解是 x=2,∴2×2+a﹣9=0, 解得 a=5.故选 D.
12.D
解析:D 【解析】 【分析】 将特殊角的三角函数值代入求解. 【详解】
解:cos45°= 2 . 2
故选 D. 【点睛】 本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.
C. x 1
8.下列各曲线中表示 y 是 x 的函数的是( )
D.无解
A.
B.
C.
D.
9.甲种蔬菜保鲜适宜的温度是 1℃~5℃,乙种蔬菜保鲜适宜的温度是 3℃~8℃,将这两种
蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
10.均匀的向一个容器内注水,在注水过程中,水面高度 h 与时间 t 的函数关系如图所
解析:D 【解析】
根据函数的意义可知:对于自变量 x 的任何值,y 都有唯一的值与之相对应,故 D 正确. 故选 D.
9.B
解析:B 【解析】
【分析】
根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】
解:设温度为 x℃,
x 1
根据题意可知
x x
5 3
x 8
解得 3 x 5.
题型.
14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-
7.D
解析:D 【解析】
分析:分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到 分式方程的解.
详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验 x=1 是增根,分式方程无解. 故选 D.
点睛:本题考查了分式方程的解,始终注意分母不为 0 这个条件.
8.D
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 首先设此多边形为 n 边形,根据题意得:180(n-2)=540,即可求得 n=5,再由多边形的 外角和等于 360°,即可求得答案. 【详解】 解:设此多边形为 n 边形, 根据题意得:180(n-2)=540,
系.
小王同学探究此问题的方法是:延长 FD 到点 G,使 GD=BE,连结 AG,先证明
△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是

(探索延伸)
如图 2,若在四边形 ABCD 中,AB=AD,∠B+∠D=180°,点 E、F 分别是边 BC、CD
上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由.
4.A
解析:A
【解析】 分析:根据点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,得到 4=|2a+2|,即可 解答. 详解:∵点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等, ∴4=|2a+2|,a+2≠3, 解得:a=−3, 故选 A. 点睛:考查点的坐标的相关知识;用到的知识点为:到 x 轴和 y 轴的距离相等的点的横纵 坐标相等或互为相反数.
2019-2020 上海上海理工大学附属初级中学数学中考试题含答案
一、选择题
1.一个正多边形的内角和为 540°,则这个正多边形的每一个外角等于( )
A.108°
B.90°
C.72°
D.60°
2.下表是某学习小组一次数学测验的成绩统计表:
分数/分
70
80
90
100
人数/人
1
3
x
1
已知该小组本次数学测验的平均分是 85 分,则测验成绩的众数是( )
A.25°
B.75°
C.65°
D.55°
6.若关于 x 的一元二次方程 k 1 x2 x 1 0 有两个实数根,则 k 的取值范围是()
A. k 5 4
B. k> 5 4
C. k< 5 且k 1 4
D. k 5 且k 1 4
7.分式方程
x
x 1
1
x
3
1
x
2
的解为(

A. x 1
B. x 2
示,则该容器是下列中的( )
A.
B.
C.
D.
11.已知关于 x 的方程 2x+a-9=0 的解是 x=2,则 a 的值为
A.2
B.3
C.4
12.cos45°的值等于( )
D.5
A. 2
B.1
二、填空题
C. 3 2
D. 2 2
13.如图,直线 l
x
轴于点
P
,且与反比例函数
y1
k1 x

x
0Hale Waihona Puke )及y2k2 x15.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
16.如图,在 Rt△AOB 中,OA=OB= 3 2 ,⊙O 的半径为 1,点 P 是 AB 边上的动点,过点
P 作⊙O 的一条切线 PQ(点 Q 为切点),则切线 PQ 的最小值为

17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的 概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是 .
二、填空题
13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然
后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义
可知:的面积为的面积为∴的面积为∴∴故答案为 8【点睛】本题考查反比
解析:【解析】
【分析】
根据反比例函数
k
的几何意义可知:
AOP
的面积为
1 2
k1

BOP
相关文档
最新文档