金坛区一中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金坛区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若变量x ,y 满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
2. 设集合M={1,2},N={a 2},则“a=1”是“N ⊆M ”的( ) A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分又不必要条件
3. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )
A .6
B .0
C .2
D .2
4. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,
设(0)a f =,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b <<
5. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )
A .(﹣2,﹣1)∪(1,2)
B .(﹣2,﹣1)∪(0,1)∪(2,+∞)
C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
6. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )
A .{x|x ≥1}
B .{x|1≤x <2}
C .{x|0<x ≤1}
D .{x|x ≤1}
7. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
8. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1
的中心,若
+,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,
y= C .
x=,
y=
D .
x=,y=1
9. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
10.已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212
111
n n
a a a a a a ++
+≤
+++
成立的自然数的最大值为( ) A .9 B .8 C.7
D .5 1110y -+=的倾斜角为( )
A .150
B .120
C .60
D .30 12.已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1}
C .{-
D . 二、填空题
13.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且1
90ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6-
D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
14.已知一个算法,其流程图如图,则输出结果是 .
15.
= .
16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 17.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.
三、解答题
18.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?
19.已知条件4
:11
p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数 的取值范围.
20.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)
(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
21.(本小题满分12分)已知函数1
()ln (42)()f x m x m x m x
=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的
取值范围.
【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.
22.如图,A 地到火车站共有两条路径
和,据统计,通过两条路径所用的时间互不影响,所
用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望。
23.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.
(1)若M是AB的中点,求证:与共线;
(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;
(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.
24.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.
(1)求椭圆的方程;
(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.
金坛区一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t≤﹣,
即实数t的取值范围为是[﹣2,﹣],
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
2.【答案】A
【解析】解:当a=1时,M={1,2},N={1}有N⊆M
当N⊆M时,a2=1或a2=2有
所以“a=1”是“N⊆M”的充分不必要条件.
故选A.
3.【答案】A
解析:解:由作出可行域如图,
由图可得A (a ,﹣a ),B (a ,a ),
由
,得a=2.
∴A (2,﹣2),
化目标函数z=2x ﹣y 为y=2x ﹣z ,
∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 4. 【答案】C 【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不
可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:
()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,
则其图象关于点(,)m n 对称. 5. 【答案】D
【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图
则不等式xf (x )<0的解为:
或
解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .
6.【答案】B
【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},
则∁U B={x|x≥1},
则A∩(∁U B)={x|1≤x<2}.
故选:B.
【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.
7.【答案】A
【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,
∴α=,即f(x)=,
故f(2)==,
故选:A.
8.【答案】C
【解析】解:如图,
++().
故选C.
9.【答案】B
【解析】解:方程(x2﹣4)2+(y2﹣4)2=0
则x2﹣4=0并且y2﹣4=0,
即,
解得:
,
,
,
,
得到4个点. 故选:B .
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
10.【答案】C 【解析】
试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2
115,3a a a a +=-+∴=,倒数重新排列后恰
好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭
是以为首项,1
2为公比的等比数列,则不等式1212
11
1n n a a a a a a ++
+≤
+++等价为()1181122811212
n n ⎛⎫-- ⎪⎝⎭≤
--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选
C. 1
考点:1、等比数列的性质;2、等比数列前项和公式. 11.【答案】C 【解析】
10
y -+=,可得直线的斜率为k =
tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 12.【答案】D 【解析】
考点:1.复数的相关概念;2.集合的运算
二、填空题
13.【答案】B 【
解
析
】
14.【答案】5.
【解析】解:模拟执行程序框图,可得
a=1,a=2
不满足条件a2>4a+1,a=3
不满足条件a2>4a+1,a=4
不满足条件a2>4a+1,a=5
满足条件a2>4a+1,退出循环,输出a的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.
15.【答案】2.
【解析】解:=2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
16.【答案】12
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的
结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键. 17.【答案】()2245f x x x =-+ 【解析】
试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+. 考点:函数的解析式.
三、解答题
18.【答案】
【解析】解:设至少需要同时开x 个窗口,则根据题意有,.
由①②得,c=2b ,a=75b ,代入③得,75b+10b ≤20bx ,
∴x ≥
,
即至少同时开5个窗口才能满足要求.
19.【答案】[]1,2-. 【解析】
试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.
试题解析:由
4
11
x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当1
2a >时,():,1q a a --
由题意得,p 是的一个必要不充分条件,
当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,
当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤
∈ ⎥⎝⎦
综上,[]1,2a ∈-.
考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.
【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.
20.【答案】
【解析】(1)解:赞成率为
,
被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43 (2)解:由题意知ξ的可能取值为0,1,2,3,
,
,
,
,
∴ξ的分布列为:
∴
.
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
21.【答案】
【解析】(1)函数定义域为(0,)+∞
令()0f x '=,得112x =
2分 当4m =时,()0f x '≤单调递减; …………3分
当24m <<时,由()0f x '>,得
所以函数()f x 当4m >时,由()0f x '>,得所以函数()f x
单调递减;当24m <<时,函数()f x 的单调递增区间为
;当4m >时,函数()f x 2m -2
请
考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.【答案】
【解析】(1)A i 表示事件“甲选择路径L i 时,40分钟内赶到火车站”,B i 表示事件“乙选择路径L i 时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得
P (A 1)=0。
1+0。
2+0。
3=0。
6,P (A 2)=0。
1+0。
4=0。
5,
P (A 1) >P (A 2), 甲应选择L i P (B 1)=0。
1+0。
2+0。
3+0。
2=0。
8,P (B 2)=0。
1+0。
4+0。
4=0。
9,
P (B 2) >P (B 1),
乙应选择L 2。
(2)A,B 分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知
,又由题意知,A,B 独立,
23.【答案】
【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,
当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),
,
由,可得与共线;
(2)解:假设线段AB上是否存在点M,使得与垂直,
设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),
,
由=﹣2(t﹣2)﹣1=0,解得t=,
∴线段AB上存在点,使得与垂直;
(3)解:由图看出,当P在线段BC上时,在上的投影最大,
则有最大值为4.
【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.
24.【答案】
【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,
解得a=,b=c=1
故椭圆的方程为x2+=1;
(2)设A(x1,y1),B(x2,y2),
线段AB的中点为M(x0,y0).
联立直线y=x+m与椭圆的方程得,
即3x2+2mx+m2﹣2=0,
△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,
x1+x2=﹣,
所以x0==﹣,y0=x0+m=,
即M(﹣,).又因为M点在圆x2+y2=5上,
可得(﹣)2+()2=5,
解得m=±3与m2<3矛盾.
故实数m不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.。