高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及
答案
一、电磁感应现象的两类情况
1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
2.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。

当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:
(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;
(2)金属棒pq运动到时,金属棒gh的速度大小;
(3)金属棒gh产生的最大热量。

【答案】(1) (2) (3)
【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;
解:(1)金属棒pq下滑过程中,根据机械能守恒有:
在圆弧底端有
根据牛顿第三定律,对圆弧底端的压力有
联立解得
(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有
对于金属棒pq有
对于金属棒gh有
联立解得
(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速
运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为
该过程金属棒gh 产生的热量为
金属棒pq 到达cd 、
导轨后,金属棒pq 加速运动,金属棒gh 减速运动,回路电流逐渐
减小,当回路电流第二次减小为零时,金属棒pq 与gh 产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v ,此时两金属棒均做匀速运动,根据动量守恒定律有
金属棒pq 从到达cd 、
导轨道电流第二次减小为零的过程,回路产生的热量为
该过程金属棒gh 产生的热量为
联立解得
3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2 (竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:
(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】
解:(1)t=2s 内MN 杆上升的距离为
21 2
h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为
BLh ∆Φ=
产生的平均感应电动势为
E t
∆Φ
=
产生的平均电流为
E I R
=
流过MN 杆的电量
q It =
代入数据解得
25C 2BLat q R
==
(2)EF 杆刚要离开平台时有
BIL Mg =
此时回路中的电流为
E I R
=
MN 杆切割磁场产生的电动势为
E BLv =
MN 杆运动的时间为
v t a
=
代入数据解得
22
4s MgR
t B L a
==
4.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。

一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。

在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。

以U 型导轨bc 边初始位置为原点O 建立坐标x 轴。

t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。

经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。

已知2s 内外力F 做功W =14.4J 。

不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。

求:
(1)在2s 内外力F 随时间t 的变化规律; (2)在整个运动过程中,电路消耗的焦耳热Q ;
(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。

【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =0≤x ≤4m );
6.40.6v x =-324m m 3x ⎛
⎫≤<
⎪⎝
⎭;v =0(32m 3x ≥) 【解析】 【分析】 【详解】
(1)根据法拉第电磁感应定律可知:
U BLv kt t ===
得到:
2U
v t BL
=
= 根据速度与时间关系可知:
22m/s a =
对U 型金属导轨根据牛顿第二定律有:
F IBL IBL ma μ--=
带入数据整理可以得到:
2 1.2F t =+
(2)由功能关系,有
f W Q W =+
由于忽略导体棒MN 的重力,所以摩擦力为:
A f F μ=
则可以得到:
f
A Q W
W μμ==
则整理可以得到:
(1)f W Q W Q μ=+=+
得到:
Q=12J
(3)设从开始运动到撤去外力F 这段时间为
1
2s t
=,这段时间内做匀加速运动;
①1t t …时,根据位移与速度关系可知:
v ==1t t =时根据匀变速运动规律可知该时刻速度和位移为:
14m/s v = 14m x =
②1t t >时,物体做变速运动,由动量定理得到:
1(1)BL q mv mv μ-+∆=-
整理可以得到:
2211(1)(1)(4)
6.40.6BL q B L x v v v x m mR
μμ+∆+-=-==--
当32
3
x m =
时: 0v =
综合上述,故bc 边速度与位置坐标x 的函数关系如下:
v =0≤x≤4m )
6.40.6v x =-324m m 3x ⎛
⎫≤<
⎪⎝
⎭ 0v =(32
m 3
x ≥)
5.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。

在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。

已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。

将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。

导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;
(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;
(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。

【答案】(1)22
22
8Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22
mgR
b B L =
【解析】 【分析】 【详解】
(1)由牛顿第二定律得
3mg mg BIL -=
M 棒将要进入磁场上边界时回路的电功率
22
2
22
82Rm g P I R B L
== (2)N 棒产生的感应电动势
2E IR BLv ==
由动量守恒得
(3)4mg mg t BLIt mv --=
通过N 棒的电荷量
2BLh
It q R
==
根据能量守恒得
21
(3)422
mg mg h mv Q -=⨯+
联立得222222412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或22322
2244
448Rm g m g R Q t B L B L =
-) (3)对M 棒受力分析
2232B L v
mg mg R
-=
解得22
4mgR
a B L
= 由
2'
322BLv mg mg BL
R
-= 解得22
mgR
b B L
=
6.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。

现从静止释放杆ab ,测得最大速度为v M ,改变电阻箱的阻值R ,得到v M 与R 之间的关系如图乙所示。

已知导轨间距为L =2m ,重力加速度g =10m/s 2,轨道足够长且电阻不计。

求: (1)当R =0时,杆ab 匀速下滑过程中产生感应电动势E 的大小及杆中的电流方向; (2)金属杆的质量m 及阻值r ;
(3)当R =4Ω时,回路瞬时电功率每增加1W 的过程中合外力对杆做的功W 。

【答案】(1)3V E =,杆中电流方向从b →a ;(2)0.2kg m =,3r =Ω;(3)0.7J W = 【解析】 【分析】 【详解】
(1)由图可知,当R =0时,杆最终以v =3m/s 匀速运动,产生电动势
E =BLv =0.5×2×3V=3V
电流方向为由b 到a
(2)设最大速度为v ,杆切割磁感线产生的感应电动势E =BLv ,由闭合电路的欧姆定律:
E
I R r
=
+
杆达到最大速度时满足
sin 0mg BIL θ-=
解得
22
()sin mg R r v B L θ
+=
由图像可知:斜率为
62
m /(s Ω)1m /(Ω)3
s k -=
⋅=⋅ 纵截距为
v 0=3m/s
得到:
022
sin mgr v B L θ
= 22
sin mg k B L
θ
= 解得
m =0.2kg ,r =3Ω
(3)由题意:E =B Lv ,2
E P R r
=+,得
222
P L v P R r
=
+ 则
222222
21P L v P L v P R r R r
∆=-
++ 由动能定理得
22211122W mv mv =
- 联立解得
22()
2m R r W P B L +=

W =0.7J 【点睛】
7.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。

以DG 中点O 为坐标原点,沿斜面向上平行于GH 方向建立x 轴,在DG 连线沿斜面向上的整个空间存在着垂直于斜面向上的磁场,且磁感应强度大小B 与坐标x 满足关系B =(0.6+0.2x )T ,一根长l =2m ,电阻r =2Ω,质量m =0.1kg 的粗
细均匀的金属棒MN 平行于DG 放置,在拉力F 作用下以恒定的速度v =1m/s 从x =0处沿x 轴正方向运动,金属棒与两导轨接触良好。

g 取10m/s 2,sin10°=0.18,不计其它电阻。

(提示:可以用F -x 图象下的“面积”代表力F 所做的功)求: (1)金属棒通过x =1m 处时的电流大小; (2)金属棒通过x =1m 处时两端的电势差U MN ; (3)金属棒从x =0到x =2m 过程中,外力F 做的功。

【答案】(1)0.2A ;(2)1.4V ;(3)0.68J 【解析】 【分析】 【详解】
(1)金属棒连入电路部分产生的感应电动势为
11(0.60.21)11V=0.8V E B dv ==+⨯⨯⨯
根据闭合电路欧姆定律可得电流大小
1
10
0.2A
2E I d R r xr l
=
=++ (2)解法一:根据欧姆定律可得金属棒通过1m x =处时两端的电势差
101(2)() 1.4V MN U I R xr B l d v =++-=
解法二:根据闭合电路欧姆定律可得金属棒通过1m x =处时两端的电势差
11
1
(0.60.21)210.22V 1.4V 2
MN d U B lv I r l =-=+⨯⨯⨯-⨯⨯= (3)金属棒做匀速直线运动,则有
sin F mg BdI θ=+
其中
0(0.60.2)11
A 0.2A
32Bdv x I d x R r xr l
+⨯⨯=
==+++ 可得
0.300.04F x =+
金属棒从x =0到x =2m 过程中,外力F 做的功
0.300.38
2J 0.68J 2
W Fx +==
⨯=
8.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。

接通电路,导体棒PQ 在安培力作用下从静止开始向左运动,最终以速度v 匀速运动,此过程中通过导体棒PQ 的电量为q ,A 上升的高度为h 。

已知电源的电动势为E ,重力加速度为g 。

不计一切摩擦和导轨电阻,求:
(1)当导体棒PQ 匀速运动时,产生的感应电动势的大小E ’; (2)当导体棒PQ 匀速运动时,棒中电流大小I 及方向; (3)A 上升h 高度的过程中,回路中产生的焦耳热Q 。

【答案】(1) E Blv =;(2) mg I Bl =,方向为P 到Q ;(3)2
1()2
qE mgh m M v --+ 【解析】 【分析】 【详解】
(1)当导体棒PQ 最终以速度v 匀速运动,产生的感应电动势的大小
E Blv =
(2)当导体棒PQ 匀速运动时,安培力方向向左,对导体棒有
T mg F ==安
又因为
F BIl =安
联立得
mg
I Bl
=
根据左手定则判断I 的方向为P 到Q 。

(3) 根据能量守恒可知,A 上升h 高度的过程中,电源将其它形式的能量转化为电能,再将电能转化为其他形式能量,则有
()21
2
qE Q m M v mgh =+
++ 则回路中的电热为
()21
2
Q qE mgh m M v =--
+
9.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)
(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】
(1)由右手定则判断金属棒中的感应电流方向为由a 到b .
(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯=
感应电流为1E
I A R
=
=,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =.
(3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡
mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',
0.820.41
F I A A BL ''=
==⨯ 电阻R 消耗的功率:28P I R W ='=. 【点睛】
该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.
10.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:
(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)
22mg fR B a - (2)()
2
21
22
R
v mg f B a =-(3)()()()22
24432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】
(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】
(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222
B a v mg f R
=+
解得:222
()mg f R
v B a -=
(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02
mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2
mg f h mv -= 联立解得:221222()mg f R
v v mg f mg f B a
+=
=-- (3)线框在向上通过磁场过程中,由能量守恒定律有:
22
0111()()22
Q mg f a b mv mv +++=
- 而012v v =
解得:
2
22 44
3
[()]()()
2
mR
Q mg f mg f a b
B a
=--++
即线框在上升阶段通过磁场过程中产生的焦耳热为
2
22
44
3
[()]()()
2
mR
Q mg f mg f a b
B a
=--++
【点睛】
此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.
11.如图所示(俯视图),两根光滑且足够长的平行金属导轨固定在同一水平面上,两导轨间距L=1m。

导轨单位长度的电阻r=1Ω/m,左端处于x 轴原点,并连接有固定电阻
R1=1Ω(与电阻R1相连的导线电阻可不计)。

导轨上放置一根质量m=1kg、电阻R2=1Ω的金属杆ab,整个装置处于磁感应强度B= B0+kx(B0=1T,k=1T/m)的磁场中,磁场方向竖直向下。

用一外力F沿水平方向拉金属杆ab,使其从原点处开始以速度v=1m/s 沿x 轴正方向做匀速运动,则:
(1)当t=1s 时,电阻R1上的发热功率。

(2)求 0-2s 内外力F所做的功。

(3)如果t=2s调整F的大小及方向,使杆以1m/s2 的加速度做匀减速运动,定性讨论F 的大小及方向的变化情况。

【答案】(1)0.25W (2) 2J (3) 见解析
【解析】
【详解】
(1)当t=1s时,x=vt=1m,B=B0+kx=2T,所以R1上的电流为
12
0.5
2
BLv
I
R R xr
==
++
A,得
2
1
P I R
==0.25W
(2)电流与导体棒位置的关系为0
12
()
0.5
2
B kx Lv
I
R R xr
+
==
++
A,得回路中的电流与导体棒位置无关,由F ILB
=得0
F ILB ILkx
=+,画出F-x图象,求0-2s内图象下面的“面积”,即是导体棒在运动过程中克服安培力所做的功
当t=0,B=1T,所以0.5N
F ILB
==,当t=2s,B=3T,所以 1.5N
F ILB
==,x=2m,所以做功的“面积”为2J。

因导体棒是匀速运动,合力做功为0,所以外力克服安培力做功为2 J
(3)当t =2s 时 1.5N F ILB ==安,方向向左,此时合外力1N F ma ==合,方向向左,所以此时F 应向右,大小为0.5N 。

随着速度的减小,安培力将减小,F 先减小。

当安培力等于1N 时,F 减至0。

当速度更小是,安培力也更小,此时F 应反向增大,当速度接近为0时,安培力也接近为0, F 接近1N 。

12.如图所示,间距为
L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,
左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.
【答案】(1)12B Lv r ;2122B B L v
r
-mgsin β(2)22222
1sin m g r B L α 【解析】 【分析】 【详解】
(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv①
导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r
=
② 联立①②式解得流过导体棒cd 的电流大小为:12B Lv
I r
=③
导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:
21212sin ?sin 2B B L v
f m
g F mg r
ββ=-=-
⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L v
f F m
g mg r
ββ=-=-⑥
(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦
流过导体棒ab 的电流大小为:0
02E I r
=
⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨
导体棒ab匀速运动,满足:mgsin α-F1=0⑩联立⑦⑧⑨⑩式解得:0
22
1
2sin
mgr
v
B L
α
=
此时cd棒消耗的电功率为:
222
2
022
1
sin
m g r
P I R
B L
α
==
【点睛】
本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd杆的受力情况.
13.如图所示,两根间距为L的光滑金属导轨CMM′P′P、DNN′Q′Q固定放置,导轨MN左侧部分向上弯曲,右侧水平。

在导轨水平部分的左右两端分布着两个匀强磁场区域
MM′N′N、P′PQQ′,区域长度均为d,磁感应强度大小均为B,Ⅰ区方向竖直向上,Ⅱ区方向竖直向下,金属棒b静止在区域Ⅱ的中央,b棒所在的轨道贴一较小的粘性纸片(其余部分没有),它对b棒的粘滞力为b棒重力的k倍,现将a棒从高度为h0处静止释放,a 棒刚一进入区域Ⅰ时b棒恰好可以开始运动,已知a棒质量为m,b棒质量为2m,a、b 棒均与导轨垂直,电阻均为R,导轨电阻不计,重力加速度为g,则
(1)h0应为多少?
(2)将a棒从高度小于h0的某处静止释放,使其以速度v1(v1为已知量)进入区域Ⅰ,且能够与b棒发生碰撞。

求从开始释放a棒到a、b两棒刚要发生碰撞的过程中,a棒产生的焦耳热。

(3)调整两磁场区域间的距离使其足够远(区域大小不变),将a棒从高度大于h0的某处静止释放,使其以速度v2(v2为已知量)进入区域Ⅰ,经时间t0后从区域Ⅰ穿出,穿出时的速度为
1
2
v2,请在同一直角坐标系中画出“从a棒进入磁场开始,到a、b两棒相碰前”的过程中,两棒的速度—时间图象(必须标出t0时刻b棒的速度,规定向右为正方向)。

【答案】(1)
222
44
8R k m g
B L
(2)
2222
1
33
88
B L d B L d
v
R mR
⎛⎫
-

⎝⎭
(3)
【解析】
【详解】
(1)设a棒刚进入区域Ⅰ时的速度为0v,由机械能守恒得:
2
00
1
2
mgh mv
=
由b 棒恰好开始运动时受力平衡得
220
22B L v mgk BLI R
==
解得:
222044
8R k m g
h B L =
(2)设a 棒穿出区域Ⅰ时的速度为1v ',与b 棒相碰前的速度为v ,则有:
11111mv mv BL t BLq I -='= 1222mv mv BLI t BLq ='-=
12q BLd
R = 24q BLd
R
=
联立可得:
22134B L d
mv mv R
-=
a 棒产生的焦耳热:
2211
2(1)4
a Q Q m v v -==
可得:
2222133()88a B L d B L d v R
Q R =-
(3)①判断0t 时刻b 棒能否穿出区域Ⅱ,假定b 不能穿出区域Ⅱ,并设0t 时的速度大小为
b v ,00t :阶段a 、b 棒受到的冲量相等,有:
221
()22
b m v v mv -=
解得:
214
b v v =
因22
21
a b v v v >
=,故有: 12
b a v v <
12
b x d <
所以假设成立,即在a 棒穿出Ⅰ区时b 棒尚在Ⅱ区; ②判断0t 后,b 棒能否穿出区域Ⅱ,假定b 棒不能穿出区域Ⅱ
因10222b BLI t mv BLI t ==,则有:
1022I t I t =
即:
12q q =
所以:
22(2)a b b BL v v t v t R
R
-=
设在0t 前后b 棒在区域Ⅱ中走过的距离分别为1x 、2x ,则有:
10b x v t = 220()b a b x v t v v t =-=
解得:
12000(12
)b a b a x x v t v v t v t d d ==+=+->
所以假设不成立,即b 棒能穿出区域Ⅱ且速度不为零; 两棒的速度-时间图象如图所示:
14.如图所示,两根相距L 1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d 、间距为2d 的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R 的电阻,导轨的左端距离第一个磁场区域L 2的位置放有一根质量为m ,长为L 1,阻值为r 的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向右的已知恒力F 作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g .
(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v 2的大小;
(2)在满足第(1)小题条件时,求第n 个匀强磁场区域的磁感应强度B n 的大小;
(3)现保持恒力F 不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区
域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.
【答案】(1)(2)(3)
【解析】
试题分析:(1)金属棒匀加速运动有
解得:
(2)金属棒匀加速运动的总位移为
金属棒进入第n个匀强磁场的速度满足
金属棒在第n个磁场中匀速运动有
解得:
(3)金属棒进入每个磁场时的速度v和离开每个磁场时的速度均相同,由题意可得
金属棒从开始运动到通过第n个磁场区域的过程中,有
解得:
考点:法拉第电磁感应定律;牛顿第二定律;能量守恒定律的应用
【名师点睛】本题分析受力是基础,关键从能量转化和守恒角度来求解,解题时要注意抓住使棒进入各磁场的速度都相同,以及通过每段磁场时电路中发热量均相同的条件.
15.如图所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一特殊的电子元件,如果将其作用等效成一个电阻,则其阻值与其两端所加的电压成正比,即等效电 ,式中k为恒量.框架上有一质量为m的金属棒水平放置,金属棒与光滑框架阻R kU
接触良好,离地高度为h,磁感应强度为B的匀强磁场与框架平面垂直.将金属棒由静止释放,棒沿框架向下运动.其它电阻不计,问:
(1)金属棒运动过程中,流过棒的电流多大?方向如何? (2)金属棒经过多长时间落到地面?
(3)金属棒从释放到落地过程中在电子元件上消耗的电能多大?
【答案】(1)1k ;方向由a 流向b (22hkm mgk BL
-(3)hBL k 【解析】 【分析】 【详解】
(1)金属棒向下运动,利用右手定则可得,流过金属棒的电流方法为:由a 流向b . 根据题意,流过金属棒的电流:
1U U I R kU k
=
== (2)金属棒下落过程中金属棒受到的安培力为:
BL F BIL k
==
根据牛顿第二定律mg F ma -=得
BL
a g km
=-
故加速度恒定,金属棒做匀加速直线运动. 设金属经过时间t 落地,则满足:
212
h at =
解得:
22h hkm t a mgk BL
=
=-(3)金属棒落地时速度满足:
222mgkh BLh
v ah mk
-=
根据功能关系,消耗电能为E ,有
212
G W E mv -= 得金属棒从释放到落地过程中在电子元件上消耗的电能:
212hBL E mgh mv k
=-= 【点睛】。

相关文档
最新文档