数学九年级上册 期末试卷综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学九年级上册 期末试卷综合测试卷(word 含答案)
一、选择题
1.抛物线2(1)2y x =-+的顶点坐标是( )
A .(﹣1,2)
B .(﹣1,﹣2)
C .(1,﹣2)
D .(1,2)
2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )
A .40
B .50
C .60
D .70
3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .
15
B .
25
C .
35
D .
45
4.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④
B .①③
C .②③④
D .①③④
5.二次函数2
y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:
x
2- 1-
0 1 2
y
5 0
3-
4-
3-
以下结论:
①二次函数2
y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;
③二次函数2
y ax bx c =++的图象与x 轴只有一个交点;
④当13x 时,0y <.
其中正确的结论有( )个 A .1
B .2
C .3
D .4
6.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )
A .y =(x+1)2+3
B .y =(x+1)2﹣3
C .y =(x ﹣1)2﹣3
D .y =(x ﹣1)2+3 7.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )
A .4
B .4.5
C .5
D .6 8.已知关于x 的一元二次方程 (x - a )(x - b ) -1
2
= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2
B .a < x 1< x 2 < b
C .x 1< a < x 2 < b
D .x 1< a < b < x 2
9.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=x
B .2x +3y =5
C .2x ﹣x 2=1
D .1
7x x
+
= 10.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A .2
B .3
C .
32
D .2
11.如图,在平面直角坐标系xOy 中,二次函数2
1y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )
A .0,0a b >>
B .0,0a b <<
C .0,0a b ><
D .0,0a b <>
12.如图,AB 为
O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,
6AB =,5AD =,则AE 的长为( )
A .2.5
B .2.8
C .3
D .3.2
二、填空题
13.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.
14.某同学想要计算一组数据105,103,94,92,109,85的方差2
0S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为2
1S ,则2
0S ______2
1S (填“>”、“=”或“<”).
15.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
16.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 17.如图,已知
O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则
AB =__________.
18.关于x 的方程2
()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,
0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.
19.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线
2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.
20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+这个正方形的边长为_____________
21.已知⊙O半径为4,点,A B在⊙O上,
213
90,sin
13
BAC B
∠=∠=,则线段OC
的最大值为_____.
22.如图,在△ABC中,AD是BC上的高,tan B=cos∠DAC,若sin C=12
13
,BC=12,则AD
的长_____.
23.如图,已知PA,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点.且不与A,B重合.若∠PAC=α,∠ABC=β,则α与β的关系是_______.
24.如图,一次函数y=x与反比例函数y=k
x
(k>0)的图像在第一象限交于点A,点
C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.
三、解答题
25.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.
26.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33
(1)求证:F是DC的中点.
(2)求证:AE=4CE.
(3)求图中阴影部分的面积.
27.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)
甲:301,300,305,302,303,302,300,300,298,299
乙:305,302,300,300,300,300,298,299,301,305
(1)分别计算甲、乙这两个样本的平均数和方差;
(2)比较这两台包装机包装质量的稳定性.
28.已知关于x的方程x2-(m+3)x+m+1=0.
(1)求证:不论m为何值,方程都有两个不相等的实数根;
(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.29.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.
30.如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.
(1)求证:△DPF为等腰直角三角形;
(2)若点P的运动时间t秒.
①当t为何值时,点E恰好为AC的一个三等分点;
②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.
31.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若BE=4,DE=8,求AC的长.
32.如图,O的半径为23,AB是O的直径,F是O上一点,连接FO、
,垂足为D,CD交FB于点E,
FB.C为劣弧BF的中点,过点C作CD AB
CG FB,交AB的延长线于点G.
//
(1)求证:CG是O的切线;
BC OF,如图2.
(2)连接BC,若//
①求CE的长;
②图中阴影部分的面积等于_________.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据顶点式2
()y a x h k =-+,顶点坐标是(h ,k ),即可求解.
【详解】
∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .
2.D
解析:D 【解析】 【分析】
根据角的度数推出弧的度数,再利用外角∠AOC 的性质即可解题. 【详解】
解:∵∠ADC=110°,即优弧ABC 的度数是220°, ∴劣弧ADC 的度数是140°, ∴∠AOC=140°, ∵OC=OB, ∴∠OCB=1
2
∠AOC=70°, 故选D. 【点睛】
本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
3.B
解析:B 【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25
. 故选B. 考点:概率.
4.A
解析:A 【解析】 【分析】
根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.
解:如图,连接OB 、OD 、OA ,
∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,
∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】
本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.
5.B
解析:B 【解析】 【分析】
根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】
①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为
20
2
+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;
③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2
y ax bx c =++的图象
与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2
y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;
综上:①④两项正确, 故选:B . 【点睛】
本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.
解析:D 【解析】 【分析】
按“左加右减,上加下减”的规律平移即可得出所求函数的解析式. 【详解】
抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)
2
+3.
故选D. 【点睛】
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.
7.C
解析:C 【解析】 【分析】
首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】
由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =
这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】
此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.
8.D
解析:D 【解析】 【分析】
根据二次函数的图象与性质即可求出答案. 【详解】
如图,设函数y =(x−a )(x−b ), 当y =0时, x =a 或x =b , 当y =
1
2
时,
由题意可知:(x−a)(x−b)−1
2
=0(a<b)的两个根为x1、x2,
由于抛物线开口向上,
由抛物线的图象可知:x1<a<b<x2
故选:D.
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.
9.C
解析:C
【解析】
【分析】
利用一元二次方程的定义判断即可.
【详解】
A、方程2x﹣3=x为一元一次方程,不符合题意;
B、方程2x+3y=5是二元一次方程,不符合题意;
C、方程2x﹣x2=1是一元二次方程,符合题意;
D、方程x+1
x
=7是分式方程,不符合题意,
故选:C.
【点睛】
本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.
10.D
解析:D
【解析】
【分析】
先证明△ABD为等腰直角三角形得到∠ABD=45°,BD2AB,再证明△CBD为等边三角形得到BC=BD2AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.
【详解】
∵∠A=90°,AB=AD,
∴△ABD为等腰直角三角形,
∴∠ABD=45°,BD2AB,
∵∠ABC =105°,
∴∠CBD =60°,
而CB =CD ,
∴△CBD 为等边三角形,
∴BC =BD =2AB ,
∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,
∴下面圆锥的侧面积=2×1=2.
故选D .
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.
11.D
解析:D
【解析】
【分析】
根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.
【详解】
解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),
∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,
则函数图象如图所示,
抛物线开口向下,
∴a <0,,
又对称轴在y 轴右侧,即02b a
-
> , ∴b >0,
故选D 12.B
解析:B
【解析】
【分析】
连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DB
DB AD
=,从而
求出DE的长,最后利用AE AD DE
=-即可得出答案.【详解】
连接BD,CD
∵AB为O的直径
90
ADB
∴∠=︒
2222
6511
BD AB AD
∴=-=-
∵弦AD平分BAC

11
CD BD
∴==
CBD DAB
∴∠=∠
ADB BDE
∠=∠
ABD BED

DE DB
DB AD
∴=
11
5
11
=
解得
11
5
DE=
11
5 2.8
5
AE AD DE
∴=-=-=
故选:B.
【点睛】
本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.
二、填空题
13.3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x ,
故阴
解析:3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB =2∠ACB =2×40°=80°,
设扇形半径为x ,
故阴影部分的面积为πx 2×80360
=29×πx 2=2π, 故解得:x 1=3,x 2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
14.=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵一组数据中的每一个数据都加上或减去同一个非零常数
解析:=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,
∴2201S S
故答案为:=.
本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.
15.y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.15
【解析】
【分析】
先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.
【详解】
∵圆锥的底面半径为3cm,高为4cm
∴圆锥的母线长
∴圆锥的侧面展开图的面积
故填:.
【点睛】
解析:15
【解析】
【分析】
先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.
∵圆锥的底面半径为3cm ,高为4cm
∴圆锥的母线长22345()cm =+=
∴圆锥的侧面展开图的面积()23515cm
ππ=⨯⨯=
故填:15π.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17.【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.
详解:连接AD 、AE 、OA 、OB ,
∵⊙O 的半径为2,△AB
解析:22
【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.
详解:连接AD 、AE 、OA 、OB ,
∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴2,
故答案为:2
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18.x1=-12,x2=8
【解析】
【分析】
把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.
【详解】
解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),
∴方程变形为,即
解析:x 1=-12,x 2=8
【解析】
【分析】
把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.
【详解】
解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,
a≠0),
∴方程2(3)0a x m b +++=变形为2
[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,
解得x 1=-12,x 2=8,
故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.
故答案为x 1=-12,x 2=8.
【点睛】
此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 19.【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵,,
∴点(-1,0)与(3,0)在抛物线上,
∴抛物线的对称轴是直线:x=1,
∴点关于直线x=
解析:(4,4)
【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵0a b c -+=,930a b c ++=,
∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,
∴抛物线的对称轴是直线:x =1,
∴点(2,4)-关于直线x =1对称的点为:(4,4).
故答案为:(4,4).
【点睛】
本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判
断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.
20.【解析】
【分析】
将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 解析:2
【解析】
【分析】
将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.
【详解】
解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,
∵四边形ABCD 为正方形,
∴AB=BC=2m,∠ABC=∠ABM=90°,
∵△ABE 绕点A 旋转60°至△AGF ,
∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=, ∴△AEF 和△ABG 为等边三角形,
∴AE=EF,∠ABG=60°,
∴EA+EB+EC=GF+EF+EC≥GC ,
∴GC=13
∵∠GBM=90°-∠ABG =30°,
∴在Rt △BGM 中,GM=m ,3m ,
Rt △GMC 中,勾股可得222GC GM CM =+,
即:222(32)(13)m m m ++=+,
解得:2m =,
∴边长为22m =
.
故答案为:2.
【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.
21.【解析】
【分析】
过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.
解析:413833
+ 【解析】
【分析】
过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23
OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.
【详解】
解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,
∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩
, ∴ABC AEO ∆∆,
∴tan AC AO B AB AE ∠=
=, ∵13sin 13
B ∠=,
∴cos 13B ∠==,
∴sin 2tan cos 3
B B n B ∠∠===∠, ∴
23
AO AE =, 又∵4AO =,
∴6AE =,
∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵
AC AO AB AE
=, ∴AEB AOC ∆∆, ∴
23
OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,
∵OE ===,
∴4OE OB +=,
∴BE
的最大值为:4,
∴OC
的最大值为:
(
)
28433=. 【点睛】
本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.8
【解析】
【分析】
在Rt △ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sinC 得到tanB =,接着在Rt △A 解析:8
【解析】
【分析】
在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213
,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =
1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =
23,然后利用AD =12x 进行计算. 【详解】
在Rt △ADC 中,sin C =AD AC =1213
, 设AD =12x ,则AC =13x ,
∴DC =5x ,
∵cos ∠DAC =sin C =
1213, ∴tan B =1213
, 在Rt △ABD 中,∵tan B =
AD BD =1213, 而AD =12x ,
∴BD =13x ,
∴13x +5x =12,解得x =
23
, ∴AD =12x =8.
故答案为8.
【点睛】 本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.
23.或
【解析】
【分析】
分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.
【详解】
解:当点
解析:αβ=或180αβ+︒=
【解析】
【分析】
分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.
【详解】
解:当点C 在优弧AB 上时,如图,
连接OA 、OB 、OC ,
∵PA 是⊙O 的切线,
∴∠PAO=90°,
∴∠OAC=α-90°=∠OCA ,
∵∠AOC=2∠ABC=2β,
∴2(α-90°)+2β=180°,
∴180αβ+︒=

当点C 在劣弧AB 上时,如图,
∵PA 是⊙O 的切线,
∴∠PAO=90°,
∴∠OAC= 90°-α=∠OCA ,
∵∠AOC=2∠ABC=2β,
∴2(90°-α)+2β=180°,
∴αβ=.
综上:α与β的关系是180αβ+︒=
或αβ=. 故答案为:αβ=或180αβ+︒=
. 【点睛】
本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.
24.或
【解析】
【分析】
过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得
m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=
解析:
9
y
x
=或
16
y
x
=
【解析】
【分析】
过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,
AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.
【详解】
过A作AD垂直于x轴,设A点坐标为(m,n),
∵A在直线y=x上,
∴m=n,
∵AC长的最大值为7,
∴AC过圆心B交⊙B于C,
∴AB=7-2=5,
在Rt△ADB中,AD=m,BD=7-m,AB=5,
∴m2+(7-m)2=52,
解得:m=3或m=4,
∵A点在反比例函数y=k
x
(k>0)的图像上,
∴当m=3时,k=9;当m=4时,k=16,
∴该反比例函数的表达式为:
9
y
x
=或
16
y
x
=,
故答案为
9
y
x
=或
16
y
x
=
【点睛】
本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.
三、解答题
25.路灯杆AB 的高度是6m . 【解析】
【分析】
在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.
【详解】
解:∵CD ∥EF ∥AB ,
∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,

,CD DF FE FG AB BF AB BG
==, 又∵CD =EF , ∴DF FG BF BG
=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,

3437
DB BD =++, ∴BD =9,BF =9+3=12,
∴1.5312
AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .
【点睛】
考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.
26.(1)见解析;(2)见解析;(33【解析】
【分析】
(1)易求DF 长度即可判断;
(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;
(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.
【详解】
(1)∵AF=AB=6,AD=BC=33
∴DF=3,
∴CF=DF=3,
∴F是CD的中点
(2)∵AF=6, DF=3,
∴∠DAF=30°,
∴∠EAF=30◦ ,
∴AE=2EF;
∴∠EFC=30◦ ,EF=2CE,
∴AE=4CE
(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,
∴△OFG为等边三角形,
同理△OPG为等边三角形,
∴∠POG=∠FOG=60°,OH=3
3 OG ,
∴S扇形OPG=S扇形OGF,
∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-3
2
S△OFG
=
313 2323
222
,
即图中阴影部分的面积3 .
【点睛】
本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.
27.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析
【解析】
【分析】
(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;
(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.
【详解】
解:(1)x 甲=
110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110
(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2
s 甲=110
[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2; 2
s 乙=110
[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2; (2)∵2
s 甲<2
s 乙,
∴甲包装机包装质量的稳定性好.
【点睛】
本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.
28.(1)见解析;(2)26
3
【解析】
【分析】
(1)根据判别式即可求出答案.
(2)将x =4代入原方程可求出m 的值,求出m 的值后代入原方程即可求出x 的值.
【详解】
解:(1)由题意可知:△=(m+3)2﹣4(m+1)
=m 2+2m+5
=m 2+2m+1+4
=(m+1)2+4,
∵(m+1)2+4>0,
∴△>0,
∴不论m 为何值,方程都有两个不相等的实数根.
(2)当x =4代入x 2﹣(m+3)x+m+1=0得164(3)10m m -+++=
解得m =5
3,
将m =5
3代入x 2﹣(m+3)x+m+1=0得214
8
033x x -+=
∴原方程化为:3x 2﹣14x+8=0,
解得x =4或x =2
3 腰长为2
3时,2
2
4
4333+=<,构不成三角形;
腰长为4时,该等腰三角形的周长为4+4+2
3

26
3
所以此三角形的周长为26 3
.
【点睛】
本题考查了一元二次方程,熟练的掌握一元二次方程的解法是解题的关键.
29.a<2且a≠1
【解析】
【分析】
根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.
【详解】
∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,
∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,
解得:a<2且a≠1.
【点睛】
本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.
30.(1)详见解析;(2)①1;1.
【解析】
【分析】
(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,
∠DPF=∠PDF=45°,从而可以证明结论成立;
(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;
②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.
【详解】
证明:(1)∵四边形ABCD是正方形,AC是对角线,
∴∠DAC=45°,
∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,
∴∠DAF=∠DPF,
∴∠DPF=45°,
又∵DP是⊙O的直径,
∴∠DFP=90°,
∴∠FDP=∠DPF=45°,
∴△DFP是等腰直角三角形;
(2)①当AE:EC=1:2时,
∵AB∥CD,
∴∠DCE=∠PAE,∠CDE=∠APE,
∴△DCE∽△PAE,
∴DC CE
PA AE
=,
∴42
21
t
=,
解得,t=1;
当AE:EC=2:1时,
∵AB∥CD,
∴∠DCE=∠PAE,∠CDE=∠APE,
∴△DCE∽△PAE,
∴DC CE
PA AE
=,
∴41
22
t
=,
解得,t=4,
∵点P从点A到B,t的最大值是4÷2=2,
∴当t=4时不合题意,舍去;
由上可得,当t为1时,点E恰好为AC的一个三等分点;
②如右图所示,
∵∠DPF=90°,∠DPF=∠OPF,
∴∠OPF=90°,
∴∠DPA+∠QPB=90°,
∵∠DPA+∠PDA=90°,
∴∠PDA=∠QPB,
∵点Q落在BC上,
∴∠DAP=∠B=90°,
∴△DAP∽△PBQ,
∴DA DP PB PQ
=,
∵DA=AB=4,AP=2t,∠DAP=90°,
∴DP=PB=4﹣2t,
设PQ=a,则PE=a,DE=DP﹣a=a,∵△AEP∽△CED,
∴AP PE
CD DE
=,

2
2
424
t a
t
a
=
+-

解得,a=
2
24
2
t t
t
+
+

∴PQ=2
24
2
t t
t
+
+


2
2
424
4224
2
t
t t t
t
+
=
-+
+

解得,t1=﹣5﹣1(舍去),t2=5﹣1,
即t的值是5﹣1.
【点睛】
此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.
31.(1)相切,证明见解析;(2)62.
【解析】
【分析】
(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;
(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=
OB CD
EB DE
=,推出
3
48
CD
=,可得CD=BC=6,再利用勾股定理即可解决问题.
【详解】
解:(1)相切,理由如下,
如图,连接OC,
∵CB=CD,CO=CO,OB=OD,
∴△OCB≌△OCD,
∴∠ODC=∠OBC=90°,
∴OD ⊥DC ,
∴DC 是⊙O 的切线;
(2)设⊙O 的半径为r ,
在Rt △OBE 中,∵OE 2=EB 2+OB 2,
∴(8﹣r )2=r 2+42,
∴r=3,AB=2r=6,
∵tan ∠E=
OB CD EB DE
=, ∴348
CD =, ∴CD=BC=6,
在Rt △ABC 中,=
【点睛】
本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.
32.(1)见解析;(2)①2CE =,②2S π=阴.
【解析】
【分析】
(1)连接OC ,利用等腰三角形三线合一的性质证得OC ⊥BF ,再根据CG ∥FB 即可证得结论; (2)①根据已知条件易证得OBC 是等边三角形,利用三角函数可求得CD 的长,根据
三角形重心的性质即可求得答案;
②易证得OBC FBC S S =,利用扇形的面积公式即可求得答案. 【详解】
(1)连接CO . C 是BF 的中点,
BOC FOC ∴∠=∠.
又OF OB =,
OC BF ∴⊥.
//CG FB ,
OC CG ∴⊥.
CG ∴是O 的切线.。

相关文档
最新文档