初一数学下学期--坐标系

合集下载

七年级下册数学的坐标知识点

七年级下册数学的坐标知识点

七年级下册数学的坐标知识点坐标系是描述空间中点位置的一种工具,它由横轴和纵轴组成,横轴称为X轴,纵轴称为Y轴,二者相交于原点O。

点的位置可
以用坐标来表示,坐标是一对有序数,分别表示横轴和纵轴上的值。

一、直角坐标系
直角坐标系是指X轴和Y轴相互垂直,在坐标系内任意一点都能用一对有序数来表示。

在二维的平面直角坐标系中,任意一点
的位置都能用一个有序数对来表示,例如(3,5)、(0,0)等等,这个
有序数对称为坐标。

二、点与坐标
点可以用坐标来表示,坐标是一对数值,分别表示点在X轴和
Y轴上的位置。

例如,点A位于X轴上方三个单位,Y轴上方五
个单位,它的坐标为(3,5)。

三、二维图形的坐标表示
二维图形可以用坐标系来表示,如直线、线段、射线、圆、椭圆、抛物线、双曲线等图形都能用坐标系表示。

对于任意一个点,都可以用其坐标来描述其在坐标系中的位置。

四、坐标系的轴对称性
对于一个二维坐标系,X轴和Y轴具有轴对称性,即若将该图
形绕X轴或Y轴作对称变换,则坐标系本身不变。

因此,在图形
对称的研究中,轴对称性是一个重要的工具。

五、坐标系中的距离公式
在坐标系中,两点之间的距离可以用勾股定理来求解。

例如,
点A(2,3)和B(5,6)之间的距离为sqrt[(5-2)^2+(6-3)^2],即距离为
sqrt(3^2+3^2)=3sqrt(2)。

总之,在数学学习中,坐标系是一个非常重要的知识点,具有
广泛的应用场景。

通过学习相关的知识,我们能够深入理解问题,并且运用坐标系解决实际问题。

专题06 《平面直角坐标系》(解析版)七年级下学期数学(人教版)

专题06 《平面直角坐标系》(解析版)七年级下学期数学(人教版)

专题06 平面直角坐标系考点一、平面直角坐标系例1、(2020·山东威海市·中考真题)如图①,某广场地面是用A.B.C三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:m n位置恰第一行的第一块(A型)地砖记作(1,1),第二块(B型)地时记作(2,1)…若(,)好为A型地砖,则正整数m,n须满足的条是__________.【答案】m、n同为奇数或m、n同为偶数【分析】几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.考点二、坐标方法的简单应用例2、(2020·甘肃金昌市·中考真题)如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0),把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为__________.【答案】(7,0)【分析】根据B 点横坐标与A 点横坐标之差和E 点横坐标与D 点横坐标之差相等即可求解.【详解】解:由题意知:A 、B 两点之间的横坐标差为:431-=,由平移性质可知:E 、D 两点横坐标之差与B 、A 两点横坐标之差相等,设E 点横坐标为a ,则a -6=1,∴a=7,∴E 点坐标为(7,0) .故答案为:(7,0) .【点睛】本题考查了图形的平移规律,平移前后对应点的线段长度不发生变化,熟练掌握平移的性质是解决此题的关键.达标检测1.点(﹣4,2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.已知点P 的坐标为(3,4)--,则点P 到y 的距离为( )A .3-B .3C .4D .4-【答案】B【分析】根据点到y 轴的距离等于横坐标的长度解答.【详解】解:∴点P 的坐标为(-3,-4),∴点P 到y 轴的距离为3.故选:B .【点睛】本题考查了点的坐标,熟记点到y 轴的距离等于横坐标的长度是解题的关键.3.在平面直角坐标系中,下列各点位于第三象限的是( )A .(0,3)B .(2,1)-C .(1,2)-D .(1,1)-- 【答案】D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(−2,1)在第二象限,故本选项不符合题意;C 、(1,−2)在第四象限,故本选项不符合题意;D 、(-1,-1)在第三象限,故本选项符合题意.故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.下列语句正确的是( )A .在平面直角坐标系中,(3,5)-与(5,3)-表示两个不同的点B .平行于x 轴的直线上所有点的横坐标都相同、C .若点(,)P a b 在y 轴上,则0b =D .点(3,4)P -到x 轴的距离为3【答案】A【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【详解】A.在平面直角坐标系中, (−3,5) 与 (5,−3) 表示两个不同的点,此选项正确;B.平行于 x 轴的直线上所有点的纵坐标都相同,此选项错误;C.若点 P (a ,b ) 在 y 轴上,则a =0 ,此选项错误;D.点 P (−3,4) 到 x 轴的距离为4,此选项错误;故选:A.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点.5.将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(0,1)B .(2,﹣1)C .(4,1)D .(2,3) 【答案】B【分析】让点A 的横坐标不变,纵坐标减2即可得到平移后点A ′的坐标.【详解】解:将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是(2,1-2),即(2,-1).故选:B.【点睛】本题考查坐标与图形变化-平移,关键是要熟记:上下平移只改变点的纵坐标,上加下减.6.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD∴AC,∴∴1=∴A=40°∴港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.7.在平面直角坐标系中,将点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(0,﹣3)C.(﹣2,5)D.(5,﹣3)【答案】B【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【详解】解:∴点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,∴x﹣3=﹣3,y+5=2,解得x=0,y=﹣3,所以,点A的坐标是(0,﹣3).故选:B.【点睛】本题考查了坐标平移变化规律;明白向左平移,横坐标减,向上平移纵坐标加是关键.8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【答案】B【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【详解】根据棋子“馬”和“車”的点的坐标可建立直角坐标系,如图所示:故棋子“炮”的点的坐标为:(0,2).故选:B .【点睛】本题主要考查了坐标确定位置,正确得出原点的位置建立直角坐标系是解题关键. 9.在直角坐标系中,点P (m ,2—2m )的横坐标与纵坐标互为相反数,则P 点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据m +2-2m =0计算m 的值,后判定横坐标,纵坐标的正负求解即可【详解】∴点P (m ,2—2m )的横坐标与纵坐标互为相反数,∴m +2-2m =0,∴m =2,∴2-2m =-2,∴点P 位于第四象限,故选D【点睛】本题考查了坐标与象限的关系,利用相反数的性质构造等式计算m 的值是解题的关键. 10.如图,在平面直角坐标系中,已知点()2,1M ,()1,1N -,平移线段MN ,使点M 落在点()1,2M '-处,则点N 对应的点N '的坐标为( )A .()2,0-B .()0,2-C .()1,1-D .()3,1--【答案】A【分析】 根据()2,1M 平移后得到()1,2M '-,确定其平移规律是向左平移3个单位,后向上平移1个单位,根据规律确定点N 的平移坐标即可.【详解】∴()2,1M 平移后得到()1,2M '-,∴其平移规律是向左平移3个单位,后向上平移1个单位,∴()1,1N -,∴平移后的坐标为(1-3,-1+1)即()2,0-,故选A .【点睛】本题考查了坐标系中点的坐标平移,准确确定平移方向和平移距离,并熟记左减右加,上加下减的计算法则是解题的关键.二、填空题11.己知(82,1)P m m -+点在x 轴上,则点P 的坐标为___.【答案】(10,0)【分析】根据x 轴上点的横坐标为0列方程求出m 的值,然后求解即可.【详解】解:点(82,1)P m m -+在x 轴上,10m ∴+=,解得1m =-,828210m ∴-=+=,∴点P 的坐标为(10,0).故答案为:(10,0).【点睛】本题考查了点的坐标,熟记x 轴上点的横坐标为0是解题的关键.12.如图,点A 在射线OX 上,2OA =.若将OA 绕点O 按逆时针方向旋转30到OB ,那么点B 的位置可以用()2,30︒表示.若将OB 延长到C ,使5OC =,再将OC 按逆时针方向继续旋转45︒到OD ,那么点D 的位置可以用____表示.【答案】(5,75°)【分析】直接利用已知点的意义,进而得出点D 的位置表示方法.【详解】解:如图所示:由题意可得:OD =OC =5,∴AOD =75°,故点D 的位置可以用:(5,75°)表示.故答案为:(5,75°).【点睛】此题主要考查了坐标确定位置,正确得出坐标的意义是解题关键.13.已知点()2,3A --,将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到A ',则A '的坐标为_________.【答案】()2,3【分析】根据平移规律左减右加,上加下减,进行平移计算即可;【详解】∴()2,3A --,向右平移4个单位长度,向上平移6个单位长度∴()24,36A '-+-+∴()2,3A '故答案为:()2,3【点睛】本题主要考查了平面直角坐标系坐标的平移变化,熟悉掌握坐标的变化规律是解题的关键.14.平面直角坐标系中,点(P 到x 轴的距离是_________.【答案】2【分析】根据点到x 轴的距离是纵坐标的绝对值,可得答案.【详解】解:点P (2)到x 轴的距离是|2|=2,故答案为:2.【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值是解题关键.15.把点(2,3)-的向上平移4个单位长度,再向左平移3个单位长度,得到的点的坐标为________.【答案】(-5,7)【分析】根据点的平移方法可得把点(-2,3)的横坐标减3,纵坐标加4,然后计算即可.【详解】解:点(-2,3)向上平移4个单位长度单位再向左平移3个单位长度所到达点的坐标为(-2-3,3+4),即(-5,7),故答案为:(-5,7).【点睛】此题主要考查了点的平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.16.全英羽毛球公开赛混双决赛,中国组合鲁恺/ 黄雅琼,对阵马来西亚里约奥运亚军陈炳顺/吴柳萤,鲁恺/黄雅琼两名小将的完美配合结果获胜.如图是羽毛球场地示意图,x轴平行场地的中线,y轴平行场地的球网线,设定鲁恺的坐标是(3,1),黄雅琼的坐标是(0,-1),则坐标原点为__________.【答案】O1【分析】根据黄雅琼的位置即可确定坐标原点的位置.【详解】∴鲁恺的坐标是(3,1),黄雅琼的坐标是(0,−1),∴坐标原点为O1,故答案为:O1.【点睛】本题考查了坐标确定位置的知识,解题的关键是能够了解(0,−1)在坐标原点的下面一个单位,17.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步沿x轴向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度:当n被3除,余数为1时,则向右走1个单位长度:当n被3除,余数为2时,则向右走2个单位长度,当走完第6步时,棋子所处位置的坐标是,当走完第7步时,棋子所处位置的坐标是 ,当走完第2021步时,棋子所处位置的坐标是 . 【答案】A 6(6,2),A 7(7,2),(2021,673) 【分析】设走完第n 步,棋子的坐标用A n 来表示.列出部分A 点坐标,发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”,根据该规律即可解决问题. 【详解】解:设走完第n 步,棋子的坐标用A n 来表示.观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A 5(6,1),A 6(6,2),A 7(7,2),…, …,∴A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n ). ∴2021=673×3+2, ∴A 2021(2021,673).故答案为:A 6(6,2),A 7(7,2),(2021,673). 【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A 点的坐标,根据坐标的变化发现规律是关键.18.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.【答案】()4044,0 【分析】由题意可知,正方形的边长为2,每旋转一次半径增加2,每次旋转的角度为90°,据此解【详解】解:由题意可知:正方形的边长为2,∴A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,P在x轴正半轴,2021÷4=505……1,故点2021OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).【点睛】本题考查了直角坐标系内点的坐标运动变化规律,解题的关键是理解A点的坐标除符合变化之外,还由旋转半径确定,而且每旋转一次半径增加2.三、解答题19.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(-5,0),(-4,3),(-3,0),(-2,3),(-1,0),(-5,0)【答案】见解析【分析】将坐标表示的点分别在坐标系中标出来,然后用线段依次连接起来即可.【详解】解:如图所示:本题考查了平面直角坐标系中的作图,正确地将点在坐标系中标出来是解题的关键.20.如图所示,在平面直角坐标系中点()30A -,,()5,0B ,()3,4C ,()2,3D -.(1)求四边形ABCD 的面积(2)点P 为y 轴上一点,且ABP △的面积等于四边形ABCD 的面积的一半,求点P 的坐标.【答案】(1)23;(2)90,4⎛⎫ ⎪⎝⎭或90,4⎛⎫- ⎪⎝⎭. 【分析】(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,分别计算AF 、DF 、BE 的长,根据三角形面积公式、梯形面积公式分别解得32ADF S =△,4BCE S =△,352CEFD S =梯形即可解题;(2)设()0,P b ,根据题意,结合三角形面积公式及绝对值的性质化简解题即可. 【详解】解:(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,因为()30A -,,()B 5,0,()34C ,,()23D -,, 所以1AF =,34DF CE ==,25BE EF ==,所以131322ADF S =⨯⨯=△, 所以12442BCE S =⨯⨯=△,所以()353452CEFD S =+⨯=梯形,所以33542322ABCD S ++==四边形.(2)设()0P b ,则有123=22ABP ABCD S S =△四边形 即11238222AB OP b ⨯⨯=⨯⨯=解得:23||8b = 所以238b =± 所以点P 的坐标为904⎛⎫ ⎪⎝⎭,或904⎛⎫- ⎪⎝⎭,. 【点睛】本题考查坐标与图形的性质、三角形面积、绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.在平面直角坐标系中,完成以下问题:(1)请在坐标系中标出点(3,2)A 、(2,3)B -;(2)若直线l 经过点B 且//l y 轴.点C 是直线l 上的一个动点,请画出当线段AC 最短时的简单图形,此时点C 的坐标为 ;(3)线段AC 最短时的依据为 .【答案】(1)见详解;(2)画图见详解,C (﹣2,2);(3)点到直线的距离垂线段最短 【分析】(1)根据点坐标的定义直接在坐标系中标出点即可;(2)根据点到直线的距离垂线段最短即可判断点C 的坐标; (3)依据点到直线的距离垂线段最短. 【详解】(1)A,B 两点如下图;(2)AC 最短时的图形如下图所示,此时C 点坐标为:(﹣2,2); (3)点到直线的距离垂线段最短.【点睛】本题考查了平面直角坐标系中点的坐标问题,及对点到直线的距离垂线段最短的理解与应用,解题关键在于理解应用点到直线的距离垂线段最短.22.如图,在直角坐标系中,已知A (﹣1,4),B (﹣2,1),C (﹣4,1),将ABC 向右平移3个单位再向下平移2个单位得到111A B C △,点A 、B 、C 的对应点分别是点A 1、B 1、C 1.(1)画出111A B C △;(2)直接写出点A 1、B 1、C 1的坐标; (3)直接写出111A B C △的面积.【答案】(1)见解析;(2)A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1);(3)3. 【分析】(1)直接利用平移的性质得出对应点位置,画出图形即可; (2)利用(1)中图形,利用平移的性质得出对应点坐标; (3)利用三角形面积公式可得出答案. 【详解】解:(1)如图所示:111A B C △,即为所求;(2)由平移的性质结合图形可得:A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1); (3)111A B C △的面积为:12×2×3=3.【点睛】本题考查的是平移的性质,图形与坐标,三角形面积的计算,掌握以上知识是解题的关键. 23.在边长为的方格纸中有一个ABC .(1)作出ABC 的高CD ,并求出ABC 面积;(2)将ABC 向上平移3个单位,再向左平移2个单位,得到111A B C △,请画出111A B C △; (3)请任意写出一组平移前后两个三角形中平行且相等的线段.【答案】(1)8,画图见解析;(2)画图见解析;(3)11//A B AB ,11A B AB =. 【分析】(1)直接作高,得到高的长度,利用三角形面积公式计算即可.(2)图形的平移关键是点的平移.按平移的法则确定了A 、B 、C 平移后的对应点A 1、B 1、C 1位置,连接即可得到111A B C △;(3)根据平移前后,对应线段(不在同一直线上的)互相平行且相等,举例即可. 【详解】 (1)1144822ABC S AB CD =⨯⨯=⨯⨯=△. 如图所示:(2)先将点A ,B ,C 分别向上平移3个单位,再向左平移2个单位确定点1A ,1B ,1C ,再连接11A B ,11B C ,11AC ,此时111A B C △即为所求.(3)11//A B AB ,11//AC AC ,11//B C BC .三组线段任写一组. 【点睛】本题主要考查了图形的平移,图形的平移实质是点的平移,正确的确定对应点的位置是正确作图的关键,同时平移前后,对应线段(不在同一直线上的)互相平行且相等这一平移性质的运用.24.综合与探究.如图1,在平面直角坐标系中,点O ,A 的坐标分别为()0,0,()02,,将线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点C 的坐标为3,0,连接AB .点P 是y 轴上一动点.(1)请你直接写出点B 的坐标____________.(2)如图1,当点P 在线段OA 上时(不与点O 、A 重合),分别连接BP ,CP .猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.(3)①如图2,当点P 在点A 上方时,猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.②如图3,当点P 在y 轴的负半轴上时,请你直接写出BPC ∠,ABP ∠,OCP ∠之间的数量关系.【答案】(1)()3,2;(2)BPC ABP OCP ∠=∠+∠,理由见解析;(3)(3)①BPC OCP ABP ∠=∠-∠,理由见解析;②BPC ABP OCP ∠=∠-∠.【分析】(1)根据平移的规律即可求解;(2)过点P 作//PD AB ,得到BPD ABP ∠=∠,再证明//PD OC ,得到CPD PCO ∠=∠,即可得到BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;(3)①过点P 作//PE AB ,得到BPE ABP ∠=∠,再证明//PE OC ,得到EPC OCP ∠=∠,即可证明BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;②过点P 作//PF AB ,得到BPF ABP ∠=∠,再证明//PF OC ,得到FPC OCP ∠=∠,即可证明BPC FPB FPC ABP OCP ∠=∠-∠=∠-∠. 【详解】解:(1)∴线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点为C 坐标为(3,0), ∴点A (0,2)的对应点B 的坐标为(3,2), 故答案为:()3,2;(2)BPC ABP OCP ∠=∠+∠,理由如下: 如图1,过点P 作//PD AB , ∴BPD ABP ∠=∠, 由平移可知,//AB OC , 又//PD AB , ∴//PD OC , ∴CPD PCO ∠=∠,∴BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;∠=∠-∠,理由如下:(3)①BPC OCP ABPPE AB,如图2,过点P作//∠=∠,∴BPE ABPAB OC,又∴//PE OC,∴//∠=∠,∴EPC OCP∠=∠-∠=∠-∠.∴BPC EPC EPB OCP ABP∠=∠-∠,理由如下:②BPC ABP OCPPF AB,如图3,过点P作//∠=∠,∴BPF ABPAB OC,又∴//PF OC,∴//∠=∠,∴FPC OCP∠=∠-∠=∠-∠.∴BPC FPB FPC ABP OCP 【点睛】本题考查了平面直角坐标系中平移的规律、平行线的性质与判定等知识,熟知相关知识点并根据题意灵活应用是解题关键.25.在平面直角坐标系xOy 中描出下列两组点,分别将每组里的点用线段依次连接起来. 第一组:()3,3A -、()4,3C ;第二组:()2,1D --、()2,1E -.(1)直接写出线段AC 与线段DE 的位置关系;(2)在(1)的条件下,线段AC ,DE 分别与y 轴交于点B ,F .若点M 为射线OB 上一动点(不与点O ,B 重合).①当点M 在线段OB 上运动时,连接AM 、DM ,补全图形,用等式表示CAM ∠、AMD ∠、MDE ∠之间的数量关系,并证明.②当ACM △与DEM △面积相等时,求点M 的坐标.【答案】(1)线段AC 与线段DE 的位置关系;AC∥DE ,证明见详解;(2)AMD ∠=CAM∠+MDE ∠,证明见详解;(3)M (0,1711). 【分析】(1)AC∥DE ,由()3,3A -、()4,3C 两点纵坐标相同,-3≠4,可得AC∥x 轴,由()2,1D --、()2,1E -两点纵坐标相同,-2≠2,可得DE∥x 轴,利用平行同一直线两直线平行可得AC∥DE ; (2)AMD ∠=CAM ∠+MDE ∠,过M 作MN∥AC ,内错角相等得∴CAM =∴AMN ,由AC∥DE ,可得MN∥DE ,内错角相等∴NMD =∴MDE ,可证AMD ∠=CAM ∠+MDE ∠;(3)由AC ∴y 轴于B ,DE ∴y 轴于F ,求出B (0,3),F (0,-1),,可确BF =4,设OM =m ,MB =3-m ,MF =4-(3-m )=m +1,AC =7,DE =4,用含m 的式子表示S ∴ACM =()1732m ⨯⨯-,S ∴DEM =()1412m ⨯⨯+,当ACM △与DEM △面积相等时,可列方程()()1173=4122m m ⨯⨯-⨯⨯+,解之即可. 【详解】解:(1)直接写出线段AC 与线段DE 的位置关系;AC∥DE∴()3,3A -、()4,3C 两点纵坐标相同,-3≠4∴AC∥x 轴,∴()2,1D --、()2,1E -两点纵坐标相同,-2≠2∴DE∥x 轴,∴AC∥DE ,(2)AMD ∠=CAM ∠+MDE ∠过M 作MN∥AC ,∴∴CAM =∴AMN ,∴AC∥DE ,∴MN∥DE ,∴∴NMD =∴MDE ,∴∴AMD =∴AMN +∴NMD =∴CAM +∴MDE ,∴AMD ∠=CAM ∠+MDE ∠,(3)∴AC ∴y 轴于B ,DE ∴y 轴于F ,∴B (0,3),F (0,-1),,∴BF =OB +OF =3+1=4,设OM =m ,∴MB =3-m ,MF =4-(3-m )=m +1,∴AC =4-(-3)=7,DE =2-(-2)=4,S ∴ACM =()117322AC MB m ⨯⋅=⨯⨯-,S ∴DEM =()114122DE MF m ⨯⋅=⨯⨯+, 当ACM △与DEM △面积相等时,即()()1173=4122m m ⨯⨯-⨯⨯+, 整理得21744m m -=+, 解得1711m =, ∴M (0,1711).【点睛】本题考查画图,平行线的判定与性质,角的互相关系,三角形面积,一元一次方程,掌握画图技巧,平行线的判定与性质,角的和差关系,三角形面积求法,一元一次方程的解法是解题关键.26.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,点A (a ,b )+|b ﹣3|=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .(1)a = ,b = ,点C 坐标为 ;(2)如图1,点D (m ,n )是射线CB 上一个动点.①连接OD ,利用OBC ,OBD ,OCD 的面积关系,可以得到m 、n 满足一个固定的关系式,请写出这个关系式: ;②过点A 作直线1⊥x 轴,在l 上取点M ,使得MA =2,若CDM 的面积为4,请直接写出点D 的坐标 .(3)如图2,以OB 为边作⊥BOG =⊥AOB ,交线段BC 于点G ,E 是线段OB 上一动点,连接CE 交OG 于点F ,当点E 在线段OB 上运动过程中,OFC FCG OEC∠+∠∠的值是否发生变化?若变化请说明理由,若不变,求出其值.【答案】(1)6,3,(0,-3);(2)①m -2n =6;②(2,-2)或(4,-1);(3)不变,理由见解析【分析】(1)利用非负数的性质求解即可.(2)①如图1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD ,利用面积法求解即可.②如图11-中,设直线AM 交y 轴于T ,连接DT ,CM ,CM '.分两种情形:当点M 在点A 的左侧时,设(,3)2m D m -,根据4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=,构建方程求解,当点M '在点A 的右侧时,同法可得.(3)OFC FCG OEC∠+∠∠的值不变,值为2.利用平行线的性质,三角形的外角的性质证明即可.【详解】解:(1)|3|0b -=,60a ∴-=,30b -=,6a ∴=,3b =,3AB OC ==,且C 在y 轴负半轴上,(0,3)C ∴-,故答案为:6,3,(0,3)-.(2)①如图1-1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD .AB x ⊥轴于点B ,且点A ,D ,C 三点的坐标分别为:(6,3),(,)m n ,(0,3)-, 6OB ∴=,3OC =,MD n =-,ND m =,192BOC S OB OC ∆∴=⨯=, 又BOC BOD COD S S S ∆∆∆=+1122OB MD OC ND =⨯+⨯ 116()322n m =⨯⨯-+⨯⨯ 332m n =-, ∴3392m n -=,26m n ∴-=, m ∴、n 满足的关系式为26m n -=.故答案为:26m n -=.②如图12-中,设直线AM 交y 轴于T ,连接DT ,DM ,CM '.当点M 在点A 的左侧时,设(,3)2m D m -,4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=, ∴11164(33)4642222m m ⨯⨯+⨯⨯-+-⨯⨯=, 解得2m =,(2,2)D ∴-, 当点M '在点A 的右侧时,同法可得(4,1)D -,综上所述,满足条件的点D 的坐标为(2,2)-或(4,)1-.故答案为:(2,2)-或(4,)1-.(3)OFC FCG OEC∠+∠∠的值不变,值为2.理由如下: 线段OC 是由线段AB 平移得到,//BC OA ∴,AOB OBC ∴∠=∠,又BOG AOB ∠=∠,BOG OBC ∴∠=∠,根据三角形外角性质,可得2OGC OBC ∠=∠,OFC FCG OGC ∠=∠+∠,22OFC FCG FCG OBC ∴∠+∠=∠+∠2()FCG OBC =∠+∠2OEC =∠, ∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠. 【点睛】本题属于几何变换综合题,主要考查了非负数,坐标与图形,平行线的性质以及平移的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解.。

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

第7章平面直角坐标系期末考好题精选训练一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2) C.2,(3,0) D.1,(4,2)3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为() A.(3,3)B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.37.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.D.(99,34)10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.511.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.第12题图第13题图13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a ﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足+|b﹣3|=0.(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.22.在平面直角坐标系xOy中,对于点P(x,y),我们把P'(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b ),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底"a=5,“铅垂高"h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积"为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.【解答】解:∵点P(2a﹣5,a+2)在第二象限,∴解得:符合条件的a的所有整数为﹣1,0,1,2,∴﹣1+0+1+2=2,∴2的立方根为:,故选:D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0) D.1,(4,2)【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为()A.(3,3) B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)【解答】解:∵点P(2﹣a,3a+6)到两坐标轴距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,当a=﹣1时,2﹣a=2﹣(﹣1)=3,3a+6=3×(﹣1)+6=3,当a=﹣4时,2﹣a=2﹣(﹣4)=6,3a+6=3×(﹣4)+6=﹣6,∴点P的坐标为(3,3)或(6,﹣6).故选C.4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合.故选:D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.7.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.D.(99,34)【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是.故选:C.10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.11.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米【解答】解:根据题意建立平面直角坐标系如图所示,小文能从M超市走到游乐园门口的路线是:向北直走700米,再向西直走300米.故选A.二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.【解答】解:∵点A的坐标是(2,2),BC∥x轴,且AB=1,∴点B坐标为(2,1),又BC=1,∴点C的坐标为(3,1),故答案为:(3,1).13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB +S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点"时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离".已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.【解答】解:(1)如图所示:(2)如图所示:市场(4,3)、超市(2,﹣3);(3)如图所示,△A1B1C1的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a ,b 满足|a ﹣2|+(b ﹣3)2=0, ∴a ﹣2=0,b ﹣3=0,解得a=2,b=3.故a 的值是2,b 的值是3;(2)过点M 作MN 丄y 轴于点N .四边形AMOB 面积=S △AMO +S △AOB =MN•OA +OA•OB =×(﹣m )×2+×2×3=﹣m +3;(3)当m=﹣时,四边形ABOM 的面积=4。

人教版初一数学下册:2坐标方法的简单应用(基础)知识讲解

人教版初一数学下册:2坐标方法的简单应用(基础)知识讲解

坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】【高清课堂:第二讲平面直角坐标系2 369935用坐标系绘制地点分布图】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是1 5,2⎛⎫--⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫--⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫--⎪⎝⎭,动物园(0,0).类型二、用坐标表示平移3.(2016•徐州模拟)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.【思路点拨】首先设点A的坐标是(x,y),根据平移方法可得A的对应点坐标为(x﹣1,y﹣4),进而可得x﹣1=2,y﹣4=﹣2,然后可得x、y的值,从而可得答案.【答案】(3,2).【解析】解:设点A的坐标是(x,y),∵将点A向左平移1个单位长度,再向下平移4个单位长度得点B,可得B的对应点坐标为(x﹣1,y﹣4),∵得到点B的坐标是(2,﹣2),∴x﹣1=2,y﹣4=﹣2,∴x=3,y=2,∴A的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:437611 4376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。

数学人教版七年级下册§6.1.2 平面直角坐标系 -象限

数学人教版七年级下册§6.1.2 平面直角坐标系 -象限
建立平面直角坐标系后坐标平面被两条坐标轴分成了四个部分每个部分称为象限分别叫做第一象限第二象限第三象限第四象43212413坐标轴上的点不属于任何象限
7.1.2平面直角坐标系
象限
建立平面直角坐标系后,坐标平面 被两条坐标轴分成了四个部分,每 个部分称为象限,分别叫做第一象 限、第二象限、第三象限、第四象 限.
x
(- , - )
(+,-)
坐标轴上的点的坐标有何特征?
在y轴上的点,
C
在x轴上的点, 纵坐标等于0.
( 0, 5)
横坐标等于0.
B
(-3,0)
A (4,0)
( 0 , 0)
D (0,-5)
平面直角坐标系中各区域的点的坐标特征
思考:
(1)点P(x,y)的坐标满足xy>0,则点P在________ 象限; (2)点P(x,y)的坐标满足xy<0,则点P在________ 象限; (3) 点P(x,y)在第一、二、三、四象限时,x、y是 什么数?
练习:
1、作业本第23页第1、2、3、4、5题. 2、导学案:第57页. 3、新课程新练习第59页.
象限
y
5 4
3 2
1 -4
-3
-2
-1
-1 -2 -3 -4
0
1
2
3
x
4
坐标轴上的点不属于任何象限.
说出下图中各点的坐标
讨论各象限内的点的坐标有何特征?
(-,+)
C F(-7,2)
y
5 (-4,4) 4 3 2 1
(+,+)
B A(3,2)
(7,4)
-9 -8 -7 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 7 8 9 -1 E (6,-2) -2 -3 G(-5,-4) -4 H (3,-5) D (-7,-5) -5

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。

【知识解读+练习】初一下数学第三章:平面直角坐标系

【知识解读+练习】初一下数学第三章:平面直角坐标系

第三节 平面直角坐标系知识解读一、 有序数对1.概念:用含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作:(),a b .注:有序数对是强调顺序的,a 与b 表示不同的含义.因此(),a b 与(),b a 顺序不同,含义也不同.二、 平面直角坐标系1.概念:在平面内画两条互相垂直,原点重合的数轴,就组成了平面直角坐标系.(1)水平的数轴称为x 轴或横轴,习惯取向右为正方向;(2)竖直的数轴称为y 轴或纵轴,取向上为正方向;(3)两坐标轴的交点称为平面直角坐标系的原点.2.坐标系中的点及点的坐标:有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.确定坐标系中点的坐标只需从这点分别向x 轴和y 轴作垂线,垂足在坐标轴上对应的数就是这一点的横坐标和纵坐标,我们把横坐标和纵坐标写成有序数对的形式就是这一点的坐标.如图:P 点的坐标为()3,2,Q 点坐标为()2,3.注:书写坐标的时候一定要把横坐标写在前面,纵坐标写在后面.3.平面内点与有序数对的关系:对于平面内任意一点M ,都有惟一的一对有序数对(),x y 和它对应对于任意一对有序数对(),x y ,在坐标平面内都有注:考察到坐标轴距离问题要注意多解,例如:横坐标3,到x 轴距离为4的点为(3,4)或(3,-4)5.象限:在直角坐标系中,两条坐标轴把平面分成四个区域,按照逆时针顺序分别称第一、二、三、四象限.注:坐标轴上的点不属于任何一个象限.原点属于两条坐标轴.6.点的位置与坐标特征(1)第一象限(),++、第二象限(),−+、第三象限(),−−、第四象限(),+−;(2)x 轴(),0x 、y 轴()0,y ;(3)一三象限角平分线(),x x 、二四象限角平分线(),x x −.巩固练习一.选择题1.在平面直角坐标系中,点(2,3)P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.点(4,2)−所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)4.将某图形的各点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位B .横向向左平移2个单位C .纵向向上平移2个单位D .纵向向下平移2个单位5.若点(1,1)P a b +−在第二象限,则点(,1)Q a b −在第( )象限.A .一B .二C .三D .四6.在平面直角坐标系xOy 中,点P 在第二象限,且点P 到x 轴的距离是4,到y 轴的距离是5,则点P 坐标是( )A .(5,4)−B .(4,5)−C .(4,5)D .(5,4)−7.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y ,则点P 的坐标为( )A.1)−B .( C.(1, D.(−8.在平面直角坐标系xOy 中,(2,4)A ,(2,3)B −,(4,1)C −,将线段AB 平移得到线段CD ,其中点A 的对应点是C ,则点B 的对应点D 的坐标为()A .(4,8)−B .(4,8)−C .(0,2)D .(0,2)−9.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .(1.9,0.7)−C .(0.7, 1.9)−D .(3.8, 2.6)−10.如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为(,)m n ,那么平移后在图②中的对应点P '的坐标为( )A .(2,1)m n ++B .(2,1)m n −−C .(2,1)m n −+D .(2,1)m n +− 二.填空题11.平面直角坐标系中,已知点(2,1)A −,线段//AB x 轴,且3AB =,则点B 的坐标为 .12.在平面直角坐标系中,点(3,1)A −−关于y 轴的对称点的坐标为 .13.点A 到x 轴的距离是3,到y 轴的距离是1,且点A 在x 轴下方,则点A 的坐标为 .14.在平面直角坐标系中,点(3,42)P m m −−不可能在第 象限.15.如图,直线12l l ⊥,在某平面直角坐标系中,x 轴1//l ,y 轴2//l ,点A 的坐标为(2,4)−,点B 的坐标为(4,2)−,那么点C 在第 象限.16.将点(2,3)P −先向右平移2个单位,再向上平移3个单位后,则平移后点P的坐标是.17.已知点(3,0)A ,点B 在y 轴上,6ABO S ∆=,则B 点坐标为 .18.若点(2,31)P m m −+在y 轴上,则点P 的坐标是 .19.若点(4,26)P a a −−在x 轴上,则点P 的坐标为 .20.在平面直角坐标系xOy 中,(4,0)A ,(0,3)B ,(,7)C m ,三角形ABC 的面积为14,则m 的值为21.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 .22.今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(6,1)−,表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为 .23.在平面直角坐标系中,我们定义,点P 沿着水平或竖直方向运动到达点Q 的最短路径的长度为P ,Q 两点之间的“横纵距离”.如图所示,点A 的坐标为(2,3),则A ,O 两点之间的“横纵距离”为5.(1)若点B 的坐标为(3,1)−−,则A ,B 两点之间的“横纵距离”为 ;(2)已知点C 的坐标为(0,2),D ,O 两点之间的“横纵距离”为5,D ,C 两点之间的“横纵距离”为3.请写出两个满足条件的点D 的坐标: ,.三.解答题24.如图,在平面直角坐标系中,三角形ABC 的三个顶点分别是(1,6)A −,(4,3)B −,(1,4)C .将三角形ABC 先向右平移4个单位,再向下平移3个单位,得到三角形A B C '''.(1)请在图中画出平移后的三角形A B C ''';(2)三角形A B C '''的面积是 .25.在平面直角坐标系xOy 中,ABC ∆的三个顶点分别是(2,0)A −,(0,4)B ,(3,0)C .(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为(3,3)D −,将ABC ∆作同样的平移得到DEF ∆,点B 、C 分别与点E 、F 对应,画出平移后的DEF ∆;(3)在(2)的条件下,在坐标轴上找到点Q ,使得DFQ ∆的面积与ABC ∆的面积相等,则ABC ∆的面积为 ,点Q 的坐标为 .26.已知点(36,1)A a a −+,试分别根据下列条件,求出点A 的坐标,(1)点A 在x 轴上;(2)点A 在过点(3,2)P −,且与y 轴平行的直线上.27.如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A 、B 、C 、O 均在格点上,其中O 为坐标原点,(3,3)A −.(1)点C 的坐标为 ;(2)将ABC ∆向右平移6个单位,向下平移1个单位,对应得到△111A B C ,请在图中画出平移后的△111A B C ,并求△111A B C 的面积;(3)在x 轴上有一点P ,使得△11PA B 的面积等于△111A B C 的面积,直接写出点P 坐标.28.如图,这是某市部分建筑分布简图,若火车站的坐标为(1,2)−,市场的坐标为(3,5),请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .29.在平面直角坐标系xOy 中,点(0,4)A ,(6,4)B ,将点A 向右平移两个单位得到点C ,将点A 向下平移3个单位得到点D .(1)依题意在下图中补全图形并直接写出三角形ABD 的面积.(2)点E 是y 轴上的点A 下方的一个动点,连接EC ,直线EC 交线段BD 于点F ,若DEF ∆的面积等于三角形ACF 面积的2倍.请画出示意图并求出E 点的坐标.30.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单−.位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;−−,请在坐标系中标出中国人民大学的位(2)若中国人民大学的坐标为(3,4)置.。

七年级下册数学《平面直角坐标系》坐标系应用 知识点整理

七年级下册数学《平面直角坐标系》坐标系应用 知识点整理

七年级下册数学《平面直角坐标系》坐标
系应用知识点整理
一、坐标系简介
坐标系是一种数学工具,用于表示点在平面中的位置。

平面直角坐标系是最常用的一种坐标系,也称为笛卡尔坐标系。

二、坐标的表示方法
在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。

三、坐标系应用
平面直角坐标系的应用非常广泛,它可以用来描述和解决各种实际问题。

1. 点的位置判断
通过在坐标系中绘制点的位置,可以判断点在第一、第二、第三还是第四象限,进而判断其位置关系。

2. 点的坐标计算
通过已知点的位置,在坐标系中可以计算出其坐标。

例如,已
知点P在第一象限且横坐标为3,纵坐标为4,则P的坐标为(3, 4)。

3. 点的对称性
坐标系还可以用来判断点的对称性。

如果点P关于x轴对称,
则其纵坐标相等但横坐标的符号相反。

4. 线段的长度计算
在坐标系中,可以计算两点之间的距离,从而求得线段的长度。

根据勾股定理,线段AB的长度可以通过计算两点的坐标差来得到。

5. 线段的中点
通过坐标系,可以找到线段的中点。

线段AB的中点为坐标(x,y)满足x坐标为两点x坐标之和的一半,y坐标为两点y坐标之
和的一半。

四、总结
平面直角坐标系的应用非常广泛,通过对坐标进行计算和判断,可以解决各种与位置和长度有关的实际问题。

以上是关于七年级下册数学《平面直角坐标系》坐标系应用的知识点整理,希望对你有帮助!。

新人教版七年级数学下册《平面直角坐标系》知识点概述及实例

新人教版七年级数学下册《平面直角坐标系》知识点概述及实例

新人教版七年级数学下册《平面直角坐标系》知识点概述及实例1. 平面直角坐标系概述平面直角坐标系是解决平面上点的位置关系问题的一种工具。

它由横轴(x轴)和纵轴(y轴)组成,两条轴相互垂直,且通过原点。

在平面直角坐标系中,每个点可以用一个有序数对表示,即(x, y),其中x代表横坐标,y代表纵坐标。

平面直角坐标系有助于求解图形的性质和方程的解等问题。

2. 平面直角坐标系的基本概念- 原点:平面直角坐标系的交点,用O表示。

- 横轴:平行于x轴的直线。

- 纵轴:平行于y轴的直线。

- 横坐标:表示点在横轴上的位置,用x表示。

- 纵坐标:表示点在纵轴上的位置,用y表示。

3. 平面直角坐标系的象限平面直角坐标系将平面分为四个象限,以原点为中心,顺时针分别为第一象限、第二象限、第三象限和第四象限。

每个象限有其特点和性质。

4. 平面直角坐标系中的图形平面直角坐标系可以用来描述和研究各种图形,如直线、圆、抛物线等。

通过确定图形上的点的坐标,可以进一步研究图形的性质和方程的解等问题。

5. 平面直角坐标系举例以下是一些示例,帮助理解和应用平面直角坐标系:- 示例1:图形A的两个顶点分别为(-2, 3)和(4, -1),求图形A 的边长和对角线长度。

- 示例2:有一条直线L过点(-3, 2)和(1, 6),求直线L的斜率和方程。

- 示例3:给定圆心坐标为(1, -2)且半径为3的圆C,求圆C上一点的坐标。

- 示例4:已知抛物线的顶点为(0, 4)且对称轴为y轴,求抛物线的方程。

以上是对新人教版七年级数学下册《平面直角坐标系》知识点的概述及实例介绍。

通过深入理解和应用平面直角坐标系,可以更好地解决与图形和方程有关的问题。

七年级数学下册《平面直角坐标系》教学反思范文

七年级数学下册《平面直角坐标系》教学反思范文

七年级数学下册《平面直角坐标系》教学反思七年级数学下册《平面直角坐标系》教学反思范文篇1:课后有几点感受:一、要上好一节课,首先在透彻理解新课程标准的前提下,吃透教材和深挖教材,结合实际,确定出重点与难点。

为突破重点和难点来确定教法,大致思路是:1、精心创设问题情景:回顾数轴的应用,学习数轴坐标的概念,引出新问题。

2、找准重点,突破难点:通过找点A相对于点O的位置,体验平面直角坐标系的建立过程。

同时介绍平面直角坐标系的有关概念。

讲解点坐标的确定方法。

3、已知点坐标在平面直角坐标系找对应点。

4、练一练:由点写坐标和由坐标找点。

5、解决前面提出的引入问题:6、介绍平面直角坐标系的由来。

本节主要完成了三个目标:1、知识目标:了解平面直角坐标系及有关概念。

2、能力目标:能由点写坐标和由坐标找点。

3、体会数形结合的思想。

新课程下教学法的主要宗旨是让学生体会数学是有血有肉的;是有用的。

正是目标铺就道路,细节成就完美。

二、由点写坐标,由坐标找点这两个重点、与体验平面直角坐标系的建立过程这一难点处理是比较到位的。

不足之处:一是数轴上点的坐标特征强化的不是很到位,二是课容量大了一点,有点前紧后松。

三、要上好课就要备好课,精心准备才会提高质量。

篇2:平面直角坐标系是今后学习函数的基础,是数形结合的真正体现。

尽管课本上只有很少的一部分介绍,但真的弄懂学会还是要下点功夫的。

我们对这部分内容由两课时改为三课时:第一课时了解平面直角坐标系,会由点写出点的坐标,或由坐标确定点的位置;第二课时掌握点在不同位置时的坐标特征,如各象限内、坐标轴上的点的坐标特征,各象限角平分线上的点的'坐标特征,关于坐标轴、原点对称点的坐标的关系,与坐标轴平行的直线上的点的坐标特征,以及它们的应用;第三课时点到坐标轴的距离,平面直角坐标系中一些图形的面积的计算等。

从安排可以看出内容比较丰富,但凭记忆肯定是不行的。

因此需要学生紧紧抓住平面直角坐标系这个工具,在图形中理解,即数形结合思想的渗透。

人教版初一数学下册平面直角坐标系复习课教学设计

人教版初一数学下册平面直角坐标系复习课教学设计

教学设计平面直角坐标系单位:富区罕伯岱学校年级:九年级姓名:时奎龙平面直角坐标系复习课一.教学设计说明本节课根据学生的认知规律,合理选用教学素材,优化教学内容。

在教学中通过多媒体观看、归纳总结等方法,让学生发现问题,给学生充分的时间让他们探究,以使学生养成良好的主动探究的习惯,培养学生以后能独立去探索,使学生终身受益。

力求体现以“教师为主导、学生为主体”的教学思想。

努力使学生真正成为课堂的主人,变被动接受为主动探究,让课堂充满生机与活力。

本节课为复习课,让学生来归纳出知识重点,有益于在学生脑中形成知识链。

二.教材分析和处理1.教材的地位与作用本节课为复习课是对前面学习了平面直角坐标系的的一个总结和归纳。

本节课既是对前面所学知识的巩固又是对所学知识的拓展和延伸。

通过本节课的学习学生能进一步体会转化思想,培养学生良好的思维能力,为后续学习在平面直接坐标系中对称、平移、旋转坐标变化打下一个基础。

根据学生已有的知识基础和认知能力,结合新课改理念,针对新教材特点,结合学生对前面学习的知识的理解和掌握,我确定了本节课的教学目标,教学的重点和难点。

2.教学目标:知识与技能:认识有序实数对,认识平面直角坐标系,了解点与坐标的对应关系;能根据坐标描出点的位置,能由点的位置写出点的坐标,能建立适当的平面直角坐标系描述物体位置;能用坐标表示平移变换数学思考:通过描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识。

解决问题:通过这节课的学习使学生能用平面直角坐标系知识解决数学问题情感与态度:培养学生合作交流意识和探索精神,有利于激发学生的学习兴趣,有利于学生养成关注身边的事例,关心他人,培养一种社会的责任感,渗透德育教育3.重点与难点教学重点:平面直角坐标系的有关概念教学难点:平面直角坐标系中对有序实数对的理解及应用三.教学方法设计教学中既重视结果又重视过程,因此在课堂上更重要的是教会学生如何归纳与总结、如何发现问题和解决问题。

七年级下册数学坐标知识点

七年级下册数学坐标知识点

七年级下册数学坐标知识点数学是一门概念性极强的科学,坐标系是数学中非常基础和重要的知识点之一。

在七年级下册学习中,我们需要详细学习并掌握坐标系的相关知识点,下面将就坐标系的定义、平面直角坐标系、坐标系的象限、坐标系上的距离、坐标系上的点等方面进行详细的讲解。

一、坐标系的定义坐标系,就是平面直角坐标系的简称,是一种表示平面上任何一个点的位置的方法。

我们通过平面直角坐标系的两条互相垂直的直线分别称为$x$轴和$y$轴,并且在$x$轴和$y$轴上分别规定了一个点为原点$O$,则在平面直角坐标系中,任何一个点都可以由该点在$x$轴、$y$轴上的投影(即$x$坐标和$y$坐标)唯一确定。

二、平面直角坐标系平面直角坐标系是坐标系的一种,它是指在平面上任取两个垂直的直线作为坐标轴,在它们的交点$O$处建立原点,并规定单位长度,称为坐标轴上的单位长度。

那么,在这样的坐标系中,平面上的任一个点$P$可以用一组有序数来表示,即以有序数组$(x,y)$来表示,分别称$x$和$y$为点$P$的横坐标和纵坐标。

另外,$x$轴的正半轴称为$x$正半轴,$y$轴的正半轴称为$y$正半轴。

三、坐标系的象限我们沿着$x$轴正半轴和$y$轴正半轴,将平面直角坐标系分成4个区域,这四个区域分别称为第一象限、第二象限、第三象限和第四象限。

第一象限:坐标轴上的数值均为正数。

第二象限:$x$轴上的数值为负数,$y$轴上的数值为正数。

第三象限:坐标轴上的数值均为负数。

第四象限:$x$轴上的数值为正数,$y$轴上的数值为负数。

四、坐标系上的距离在平面中,两个点A和B之间的距离可以用勾股定理求得。

设两个点的坐标分别为$(x_1,y_1)$和$(x_2,y_2)$,则它们之间的距离为:$$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$五、坐标系上的点在坐标系上,每个点都有一个唯一的坐标。

根据坐标值的不同,一个点可以位于不同的区域中,也就是不同的象限中,而且坐标轴上的点也可以看作是特殊的坐标点。

人教版数学七年级下册--第七章 平面直角坐标系(1)含答案解析

人教版数学七年级下册--第七章 平面直角坐标系(1)含答案解析

平面直角坐标系1一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014D.3×()20135.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若0<m<2,则点p(m﹣2,m)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第_________象限.11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是_________.12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为_________.13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为_________.14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为_________.15点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为_________.(填一个即可)16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是_________.17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是_________.三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C 为顶点的三角形与△AOB相似,求点D的坐标.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.平面直角坐标系1参考答案与试题解析一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四考点:点的坐标.分析:由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.解答:解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选D.点评:本题考查了点的坐标,观察图形,判断出a、b的取值范围是解题的关键.2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限 B.第二象限或第四象限C.第一象限或第二象限 D.不能确定考点:点的坐标;完全平方公式.分析:利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答.解答:解:∵(x+y)2=x2+2xy+y2,∴原式可化为xy=﹣1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选:B.点评:本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即从点B 向下沿BC2个单位所在的点的坐标即为所求,也就是点(﹣1,﹣1).故选:D.点评:本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014 D.3×()2013考点:规律型:点的坐标.专题:压轴题;规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为:3×()2013.故选:D.点评:本题考查了规律型,点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个考点:坐标与图形性质;三角形的面积.分析:根据点A、B的坐标判断出AB∥x轴,然后根据三角形的面积求出点C到AB的距离,再判断出点C的位置即可.解答:解:由图可知,AB∥x轴,且AB=3,设点C到AB的距离为h,则△ABC的面积=×3h=3,解得h=2,∵点C在第四象限,∴点C的位置如图所示,共有3个.故选:B.点评:本题考查了坐标与图形性质,三角形面积,判断出AB∥x轴是解题的关键.6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:计算题.分析:由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.解答:解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选B.点评:本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.若0<m<2,则点p(m﹣2,m)在()A.第一象限B.第二象限 C 第三象限D.第四象限考点:点的坐标.分析:根据m的取值范围求出(m﹣2)的正负情况,然后根据各象限内点的坐标特征解答.解答:解:∵0<m<2,∴m﹣2<0,∴点p(m﹣2,m)在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a、b的正负情况,再确定出点Q的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:解:∵点P(a,b)在第四象限,∴a>0,b<0,∴﹣a<0,b﹣4<0,∴点Q(﹣a,b﹣4)在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:判断出m<0时,1﹣2m>0,再根据各象限内点的坐标特征解答.解答:解:∵m<0时,1﹣2m>0,∴点P(m,1﹣2m)一定不在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第二象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(﹣4,4)在第二象限.故答案为:二.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为(﹣22014,0).考点:规律型:点的坐标.专题:规律型.分析:根据题意得出A点坐标变化规律,进而得出点A2014的坐标位置,进而得出答案.解答:解:∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,A1(0,﹣2),A2(﹣4,0),A3(0,8),A4(16,0),∵2014÷4=503…2,∴点A2014与A2同在x轴负半轴,∵﹣4=﹣22,8=23,16=24,∴点A2014(﹣22014,0).故答案为:(﹣22014,0).点评:此题主要考查了点的坐标变化规律,得出A点坐标变化规律是解题关键.13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为10070.考点:规律型:点的坐标;坐标与图形变化-旋转.专题:压轴题;规律型.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解答:解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为﹣3<m<1.考点:点的坐标.分析:点在第四象限的条件是:横坐标是正数,纵坐标是负数.解答:解:∵点P(m+3,m﹣1)在第四象限,∴可得,解得:﹣3<m<1.故填:﹣3<m<1.点评:本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.15.点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为(﹣2,2).(填一个即可)考点:点的坐标.专题:开放型.分析:根据四个象限内点的坐标符合,可得P点坐标横纵标为负,纵坐标为正,再根据到两坐标轴的距离相等可得答案.解答:解:∵点P在第二象限内,∴则P点坐标横纵标为负,纵坐标为正,∵到两坐标轴的距离相等,∴P(﹣2,2),故答案为:(﹣2,2).点评:此题主要考查了点的坐标,关键是掌握点的坐标符号.16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是(5,﹣2).考点:点的坐标.分析:根据第四象限点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:∵第四象限内一点P到x轴的距离为2,到y轴的距离为5,∴点P的横坐标是5,纵坐标是﹣2,∴点P(5,﹣2).故答案为:(5,﹣2).点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是m>3.考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.解答:解:∵点A(m﹣1,3﹣m)在第四象限,∴,解不等式①得,m>1,解不等式②得,m>3,∴m>3.故答案为:m>3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C 为顶点的三角形与△AOB相似,求点D的坐标.考点:坐标与图形性质;相似三角形的判定.分析:过C点作AB的平行线,交x轴于D1点,由平行得相似可知D1点符合题意,根据对称得D2点;改变相似三角形的对应关系得D3点,利用对称得D4点,都满足题意.解答:解:过C点作AB的平行线,交x轴于D1点,则△DOC∽△AOB,,即,解得OD=,∴D1(﹣,0),根据对称得D2(,0);由△COD∽△AOB,得D3(﹣6,0),根据对称得D4(6,0).点评:本题考查了利用相似比求线段的长,根据线段长确定点的坐标的方法.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.考点:坐标确定位置.分析:方法1:用有序实数对(a,b)表示;方法2:用方向和距离表示.解答:解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.点评:本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.考点:坐标与图形性质;等腰三角形的性质.专题:网格型.分析:(1)根据A点坐标为(0,2),B点坐标为(﹣2,0),则点A所在的纵线一定是y轴,B所在的横线一定是x轴.(2)分AB时底边或腰两种情况进行讨论.解答:解:(1)在网格中建立平面直角坐标系如图所示:(2)满足条件的点有4个:C1:(2,0);C2:(,0);C3:(0,0);C4:(,0).点评:本题考查了等腰三角形的性质及坐标与图形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.考点:坐标与图形性质;待定系数法求一次函数解析式;正方形的性质.专题:代数几何综合题.分析:根据正方形的定义得到正方形的边长是4,C,D的坐标容易求出;把C点坐标代入一次函数y=kx﹣2(k≠0)的解析式,就可以求出k的值;根据△OMN的面积等于2,就可以求出k的值.解答:解:(1)∵ABCD为正方形,又A(1,2),B(5,2)则AB=4,∴C(5,6),D(1,6)(2分)(2)∵y=kx﹣2经过C点,∴6=5k﹣2,∴k==1.6 (4分)(3)y=kx﹣2与x轴的交点为My=0时,kx﹣2=0,x=,M(,0),N(0,﹣2)又S△OMA=|OM|•|ON|=×|﹣2|•||=2∴|K|=1,k=±1故k=±1时,△OMN的面积为2个单位(少一个k值扣1分)(6分).点评:本题结合坐标考查了函数的性质,注意结合图形是解决本题的关键.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.考点:两点间的距离公式.分析:根据已知条件“点A在x轴上”可以设点A的坐标为(x,0);然后利用两点间的距离公式列出关于x的一元二次方程(x﹣1)2=42,通过解方程即可求得x的值,即点A的坐标.解答:解:设点A的坐标为(x,0).根据题意,得∴(x﹣1)2=42∴x1=5,x2=﹣3,经检验:x1=5,x2=﹣3都是原方程的根,∴点A的坐标为(5,0)或(﹣3,0).点评:本题考查了两点间的距离公式.属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.考点:坐标与图形性质;等腰三角形的性质.分析:(1)由题意可得,AB的中垂线是y轴,则在y轴上任取一点即可;(2)根据所画情况而定,如(0,3)解答:解:(1)如图;(2)C(0,3)或(0,5)都可以(答案不唯一).点评:本题综合考查了图形的性质和坐标的性质及等腰三角形的性质;发现并利用AB的中垂线是y轴是正确解答本题的关键.。

人教版七年级数学下册教案 7-1-2 平面直角坐标系

人教版七年级数学下册教案 7-1-2 平面直角坐标系

7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。

2020春人教版七年级数学下册-第7章 平面直角坐标系-单元说课稿

2020春人教版七年级数学下册-第7章 平面直角坐标系-单元说课稿

平面直角坐标系一、说教材(一)教学内容与地位《平面直角坐标系》是人教版九年义务教育七年级数学下册第七章第一节内容,它是在学习了数轴和有序数对后安排的一次概念性教学。

《数学课程标准》7~9年级的学段内容标准中对平面直角坐标系的要求是:(1)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

(2)在实际问题中,能建立适当的直角坐标系,描述物体的位置。

平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。

这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系。

因此,本节课的学习是今后学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。

(二)教学三维目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

遵循这一理念,结合课程标准中对该部分的要求与本节课在这一章节中的作用,结合学生实际我制订了以下教学目标:1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。

2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。

3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。

(三)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。

教学难点:知道点的坐标描点,认识点与坐标的对应。

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题

2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。

考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。

考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。

注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。

例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。

2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。

七年级下册坐标系知识点

七年级下册坐标系知识点

七年级下册坐标系知识点在初中数学中,坐标系是一个重要的概念,主要用于描述点在平面中的位置。

本文将介绍七年级下册中涉及到的坐标系知识点。

一、直角坐标系的概念直角坐标系是以两条相互垂直的坐标轴作为基准,通过坐标来描述平面内点的位置,其中,水平方向被称为x轴,竖直方向被称为y轴。

在坐标系中,点的位置用一组有序数对(x,y)表示,其中,x表示点在x轴上的位置,y表示点在y轴上的位置。

二、平面直角坐标系中点的坐标计算在平面直角坐标系中,点的坐标可以通过坐标轴上面的刻度标尺直接读出。

对于两个有坐标的点A(x1,y1)和B(x2,y2),AB的长度可以通过勾股定理计算得出:AB=√[(x2-x1)^2+(y2-y1)^2]。

三、中点的概念中点是指线段上距离两端点相等的点,即将线段等分成两段的点。

对于线段AB,它的中点为M,可以通过计算坐标求解得出:M((x1+x2)/2,(y1+y2)/2)。

四、平移变换的概念平移变换是指将图形按照一定的方向和距离移动到一个新的位置,但其形状、大小、方向等均不发生变化。

对于图形的平移变换,可以通过平移向量来进行描述,平移向量的坐标表示为(x,y),其中x表示水平方向上的移动距离,y表示竖直方向上的移动距离。

五、坐标轴的对称在坐标系中,可以通过x轴、y轴或原点进行对称,得到图形的相应对称图形。

对于(x,y)点关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。

总结:七年级下册坐标系知识点主要包括直角坐标系的概念、平面直角坐标系中点的坐标计算、中点的概念、平移变换的概念以及坐标轴的对称等内容。

掌握这些知识点有助于初中数学的学习和掌握,同时也是数学学习中的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标系
知识梳理 1. 有序数对
我们把有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b ).利用有序数对可以很准确地表示出一个位置. 2. 平面直角坐标系
(1)平面直角坐标系的结构 平面内两条互相垂直、原点重合的数轴,组成平面直角坐标
系.水平的数轴称为x 轴或横轴,习惯上取向右的方向为正方向;竖直的数轴称为y 轴或纵轴,取向上的方向为正方向;两坐标轴的
交点为平面直角坐标系的原点. 坐标平面被两条坐标轴分成四个部分,分别叫做第一象限、第
二象限、第三象限和第四象限,坐标轴上的点不属于任一象限. (2)坐标平面内点的坐标的特点
第一象限x >0,y >0;第二象限x <0,y >0;第三象限x <0,y <0;第四象限x >0,y <0.
坐标轴上的点的坐标的特点:x 轴上的点纵坐标为0,y 轴上的点横坐标为0,原点的坐标是(0,0).
典型例题
知识点一:有序数对 例1. 填空题:
在电影票上,将“7排6号”简记作(7,6).
(1)6排7号可表示为__________; (2)(8,6)表示的意义是__________.
解题后的思考:用两个独立的数据表示平面内的位置时一定要先约定这两个数的顺序,不然会产生混乱.
知识点二:平面直角坐标系
例3. 在平面直角坐标系中描出下列各点:A (3,2)、B (-2,3)、C (5,0)、D (0,-3).
例4. 指出下列各点所在象限或坐标轴:A (-3,0)、B (-2,-2)、C (0,0)、D (0,3).
解题后的思考:点的坐标由点的横坐标和纵坐标确定,横坐标和纵坐标的符号决定点所在的象限,横、纵坐标为0决定点在y 轴或x 轴上.
例5. 已知坐标平面内点A (m ,n )在第四象限,那么点B (n ,m )在( ) A. 第一象限 B. 第二象限 C. 第三象限
D. 第四象限
例6. 已知点P 到x 轴和y 轴的距离分别是2和5,求点P 的坐标.
解题后的思考:①和数轴一样,︱x ︱表示数轴上表示数x 的点到原点的距离,平面直角坐标系中距离和绝对值的概念也是紧密联系在一起的.②写点P 的坐标时,横、纵坐标的前后顺序不能随意改变.③满足条件的点有4个,不能漏掉任一个.
例7. 如图所示,是在显微镜下观察到微粒P 从P 1依次运动到P 2、P 3的运动路线,那么:
(1)P1、P2、P3的位置如何表示?
(2)如果继续运动到P4、P5、P6,它们的位置分别是P4(8,6),P5(-9,1),P6(3,-3),请在图上画出P4、P5、P6的位置,并画出运动路线.
例8.如图所示,写出图中多边形ABCDEFG的各点的坐标,并回答下列问题:(1)图中哪几个点在x轴上?它们的坐标分别是什么?观察一下,在x轴上的点的坐标有什么特点?
(2)图中哪个点在y轴上?它的坐标是什么?观察一下,在y轴上的点的坐标又有什么特点?
(3)线段BC和GF都与x轴平行,观察一下,这两条线段的两个端点的坐标有什么特点?一般地,你能得到什么结论?
(4)线段DE与y轴平行,观察一下,这条线段的两个端点的坐标有什么特点?
A B C
D
E
F
G
x y
解答过程:如图所示,多边形各顶点的坐标分别为:A(-3,0),B(-2,3),C(2,3),D(4,2),E(4,0),F(3,-1),G(0,-1).
(1)图中点A和点E在x轴上,它的坐标分别为(-3,0),(4,0),它们的纵坐标都是0,一般地,在x轴上的点的纵坐标是0.
(2)图中点G在y轴上,它的坐标为(0,-1),一般地,在y轴上的点的横坐标是0.(3)线段BC的端点坐标分别为(-2,3)、(2,3),其特点是纵坐标相等;同样地,线段GF的端点坐标分别为:(0,-1)和(3,-1),它们的纵坐标也相等.一般地,与x 轴平行的线段上的点的纵坐标相同.
(4)线段DE的端点坐标分别为(4,2)、(4,0)它们的横坐标相同,一般地,与y 轴平行的线段上的点的横坐标相同.
小结:在坐标平面内的每一个点,都有唯一的有序数对与它对应;反过来,任意一个有序数对,都有平面内唯一一个点与它对应.
提分技巧
熟记一些特殊点的坐标,对今后研究函数的图像大有帮助:
①x轴上的点的坐标特征是纵坐标等于零;②y轴上的点的坐标特征是横坐标等于零;
③与x 轴平行的直线上的点的纵坐标相同;④与y 轴平行的直线上的点的横坐标相同; ⑤一、三象限的角平分线上的点的横坐标等于纵坐标; ⑥二、四象限的角平分线上的点的横坐标与纵坐标互为相反数.
同步练习(答题时间:60分钟)
一、选择题.
1. 在平面直角坐标系中,点P (-2,3)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象

2. 如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )
A. 点A
B. 点B
C. 点C
D. 点D
3. 如图所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是( )
A. (4,5)
B. (5,4)
C. (4,2)
D. (4,3)
4. 如图所示,横坐标是正数,纵坐标是负数的点是( ) A. A 点
B. B 点
C. C 点
D. D 点
5. 点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A. (-4,3) B. (-3,-4) C. (-3,4) D. (3,-4) *
6. 如果点A (a ,b )在第四象限,那么点(-a ,-b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 *
7. 若(a -3)2+︱b +2︱=0,则点M (a ,b )在( ) A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 **8. 已知点A (-3,2),B (3,2),则A 、B 两点相距( ) A. 3个单位长度 B. 4个单位长度 C. 5个单位长度 D. 6个单位长度
二、填空题.
9. 在奥运游泳馆“水魔方”一侧的座位席上,5排2号记为(5,2),则3排5号记为__________.
10. P (3,-4)到x 轴的距离是__________.
11. 已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为__________.
12.
平面直角坐标系中,如果一条线段的两个端点的横坐标相同,则该线段平行于

D
C
B A
五行三行六行
六列
五列四列
三列二列一行一列
__________轴,垂直于__________轴.
*13. 点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为__________.
**14. 如图所示,如果点A的位置为(-1,0),那么点B的位置为__________,点C的位置为__________,点D和点E的位置分别为__________、__________.
三、解答题.
15. 如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.
16. 在如图所示的国际象棋盘中,双方四只马的位置分别是A(b,3)、B(d,5)、C(f,7)、D(h,2),请在图中描出它们的位置.
1
2
3
4
5
6
7
8
*17. 在平面直角坐标系中,A是y轴上的点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),求点B的坐标.
**18. 在直角坐标系中描出点A(-2,0)、B(4,0)、C(3,5),并求出三角形ABC 的面积.
四、拓广探索.
**19. (1)所有横坐标相同的点的连线平行于__________,所有纵坐标相同的点的连线平行于__________.
(2)过点P(-2,3)且平行于x轴的直线上点的坐标特征是__________.过点P且平行于y轴的直线上点的坐标特征是__________.
(3)如果直线l平行于x轴,且到x轴的距离是5,那么直线l与y轴的交点坐标是__________.
(4)线段AB的长为3且平行于y轴,已知点B的坐标为(2,-5),求A点的坐标.。

相关文档
最新文档